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Quantum states of a skyrmion in a two-dimensional antiferromagnet
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Quantum states of a skyrmion in a two-dimensional antiferromagnetic lattice are obtained by quantizing the
scaling parameter of Belavin-Polyakov model. Skyrmion classical collapse due to violation of the translational
invariance of the continuous spin-field model by the lattice is replaced in quantum mechanics by transitions
between discrete energy levels of the skyrmion. Rates of transitions due to emission of magnons are computed.
Ways of detecting quantization of skyrmion states are discussed.
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I. INTRODUCTION

Skyrmions came to material science [1] from high-energy
physics where they were introduced to model atomic nu-
clei [2–4]. They are prospective candidates for topologically
protected magnetic memory [5–7]. Topological stability of
skyrmions arises from discrete homotopy classes of mapping
of the continuous field on the continuous geometrical space,
e.g., mapping of a three-component constant-length spin field
onto the two-dimensional (2D) space of a magnetic film. It
relies on the translation (to be exact, conformal) invariance of
the 2D Heisenberg model. As soon as this invariance is broken
by the crystal lattice, skyrmions become unstable against col-
lapsing [8] and must be stabilized by additional interactions,
such as Dzyaloshiskii-Moriya, magnetic anisotropy, Zeeman,
etc. In a typical experiment, the size of the skyrmion is
controlled by the magnetic field. Below a certain size, the
exchange interaction always wins and the skyrmion collapses
[9].

The observed skyrmion textures typically encompass thou-
sands or spins. Even the smallest nanoscale skyrmions
experimented with are still comprised of hundreds of spins.
Such skyrmions were imaged by the Lorentz transmission
electron microscopy [10] and are generally perceived as clas-
sical objects. As the skyrmion becomes smaller, however, one
must expect that at some point quantum mechanics comes into
play. This paper is motivated by the observation that classical
collapse of a skyrmion into a point of a crystal lattice is at
odds with quantum mechanics. It contradicts the uncertainty
principle the same way as the classical collapse of an electron
onto a proton does. The problem at hand is much more diffi-
cult, however, than the problem of the hydrogen atom. Huge
number of spin degrees of freedom possessed by the skyrmion
resembles the problem of the many-electron atom for which
analytical computation of quantum states is impossible.

Some aspects of the quantum behavior of skyrmions
have been addressed in the past. Quantum motion of a
skyrmion in the pinning potential has been studied, based
upon the analogy of the Thiele dynamics with the motion of a
charged particle in the magnetic field [11]. Magnon-skyrmion

scattering in chiral magnets has been addressed by deriving a
Bolgoliubov-de Gennes Hamiltonian from the Lagrangian of
the spin field [12]. By developing Holstein-Primakoff trans-
formation of a skyrmion texture, quantum spin excitations of
the skyrmion have been obtained [13,14] and it was shown
that quantum fluctuations tend to stabilize skyrmion textures.
A particle model of a skyrmion quantum liquid emerging from
the melting of a skyrmion crystal has been proposed [15].
Quantum tunneling of a skyrmion under the energy barrier
created by competing interactions has been studied within
the semiclassical approach based upon Euclidean action for
the spin field [16,17]. Evidence of quantum skyrmion states
has been obtained by exact diagonalization of the Heisenberg
Hamiltonian of a frustrated ferromagnet [18]. A review of
quantum skyrmionics highlighting the relation of the problem
to Chern-Simons theories and quantum Hall effect has been
given in Ref. [19]. Recently, quantum computer simulator has
been utilized to obtain quantum skyrmion states in a lattice
model with Heisenberg, Dzyaloshinskii-Moriya, and Zeeman
interactions [20].

In this paper, we take a different approach to the quantiza-
tion of the skyrmion field. A Belavin-Polyakov skyrmion [1]
is characterized by a scaling parameter λ that can be roughly
interpreted as its size. In a continuous spin-field exchange
model, the energy of the skyrmion is independent of λ. How-
ever, in a discrete model with a finite lattice spacing a, the
energy acquires [8] a term proportional to −(a/λ)2. It leads
to the collapse of a classical skyrmion to a point, λ → 0.
In quantum mechanics, the lattice term can be interpreted as
a potential well U (λ) inside which the skyrmion must have
quantized energy levels. In antiferromagnets, inertia associ-
ated with the dynamics of the Néel vector allows one to
introduce the conjugate momentum associated with the gener-
alized coordinate λ, thus making quantization of the problem
straightforward. It is conceptually similar to the quantization
of a string loop collapsing under tension [21]. We consider
a basic 2D exchange model of antiferromagnetic spins in a
square lattice and neglect all interactions other than exchange
interaction. Such a model is directly relevant to the parental
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compounds of high-temperature superconductors, such as,
e.g., La2CuO4, where copper spins belonging to weakly in-
teracting CuO2 layers are arranged in a square lattice with
negligible magnetic anisotropy and no Dzyaloshinskii-Moriya
interaction.

The paper is organized as follows. Classical dynamics
of the antiferromagnetic skyrmion in a 2D crystal lattice is
discussed in Sec. II. Quantization of the Hamiltonian of the
skyrmion is performed in Sec. III. Eigenfunctions and eigen-
values of the skyrmion in the potential well created by the
lattice are obtained. Rates of the transitions between quan-
tized states of the skyrmion, accompanied by the radiation
of a magnon, are computed in Sec. IV. Possible systems and
experiments are discussed in Sec. V.

II. CLASSICAL SKYRMION ON A LATTICE

We begin with the exchange Hamiltonian of a 2D antifer-
romagnet in a continuous spin-field approximation:

H0 = 1

2
JS2

∫
dxdy

(
1

c2
∂t L · ∂t L + ∂iL · ∂iL

)
. (1)

Here J > 0 is a constant of the exchange interaction between
nearest-neighbor spins of length S, L is a normalized Néel
vector, and c is the speed of antiferromagnetic spin waves that
equals 2

√
2JSa/h̄ in a square lattice. Summation over the re-

peated index i = x, y is assumed. The first term in Eq. (1) can
be interpreted as the kinetic energy responsible for the inertia
of the spin field in antiferromagnets [8,22,23]. In the low-
energy domain, strong antiferromagnetic exchange between
antiparallel sublattices makes the length of the Néel vector
nearly constant, L2 = 1. Hamiltonian Eq. (1) is equivalent to
the σ model in relativistic field theory [2].

Within the continuous field theory based upon Hamiltonian
Eq. (1), skyrmions are stable due to the conservation of the
topological charge Q = 1

4π

∫
dxdy L · (∂xL × ∂yL) that takes

values Q = 0,±1,±2, . . .. The skyrmion with Q = ±1 is
given by [1]

L =
(

2λr cos(ϕr + γ )

r2 + λ2
, Q

2λr sin(ϕr + γ )

r2 + λ2
,

r2 − λ2

r2 + λ2

)
, (2)

where r and ϕr are polar coordinates in the 2D plane, γ

is an arbitrary chirality angle, and λ is an arbitrary scaling
parameter. Crucial for our treatment of the quantum problem
is the observation that λ can be both positive and negative.
Its sign is related to the chirality of the skyrmion while its
modulus can be interpreted as the skyrmion size. The energy
of the skyrmion, E0 = 4πJS2, is independent of γ and λ.

Lattice of a finite spacing a breaks the stability of the
skyrmion by making its energy depend on λ. This dependence
was worked out in Ref. [8] within a Heisenberg model with
two antiferromagnetic sublattices in a square lattice. The lat-
tice contribution to the Hamiltonian is

Hlat = − a2

24
JS2

∫
dxdy ∂2

i L · ∂2
i L. (3)

Treating this term as a perturbation and substituting Eq. (2)
into Eq. (3), one obtains for the energy of the skyrmion with

FIG. 1. Dependence of the energy of the Belavin-Polyakov
skyrmion on its size, computed numerically in a square lattice of
spins.

λ � a:

E = 4πJS2

[
1 − 1

6

(a

λ

)2
]
. (4)

This result can be generalized [24] for an arbitrary Q. It is
independent of the chirality angle γ . It shows that due to a
nonzero a, the skyrmion would decrease its energy by col-
lapsing toward smaller λ.

The dynamics of the collapse is described by the Hamilto-
nian H = H0 + Hlat . For the skyrmion given by Eq. (2), one
has [8]

H = E0 + π h̄2

2Ja2
ln

(
l/

√
e√

λ2 + a2/6

)(
dλ

dt

)2

− 2πJS2a2

3(λ2 + a2/6)
.

(5)

Here we have introduced a large-distance cutoff l due to
the finite size of the 2D system and a small-distance cutoff
due to the discreteness of the crystal lattice. The latter was
chosen such as to eliminate the unphysical discontinuities at
λ → 0 in the denominators of Eq. (5) and provide the zero
static energy at λ = 0. This choice is supported by the direct
numerical summation for the energy on the lattice, using
skyrmion profile in Fig. 2 with different λ, see Fig. 1. Ex-
cellent fit of the microscopic many-spin result by the potential
V = −4πJS2a2/(6λ2 + a2) of Eq. (5) allows one to extend it
to the region λ < a.

The behavior of λ(t ) corresponding to the collapse of a
classical skyrmion of the initial size λ0 = 15a in a circular 2D
space of radius l = 1000a that follows from the conservation
of energy,(

dx

dt

)2

ln

(
l̄/

√
e√

x2 + 1/6

)
= 4

3

[
1

x2 + 1/6
− 1

x2
0 + 1/6

]
,

(6)

is shown in Fig. 2. It is derived from the Hamiltonian
Eq. (5) by choosing x = λ/a, t̄ = JSt/h̄, and the initial state
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FIG. 2. Classical collapse of a skyrmion with from the initial size
λ0 = 15a in a circular 2D space of radius l = 1000a. The inset shows
periodic oscillations of the skyrmion between states of opposite
chirality described by Eq. (6).

that starts from rest, dx/dt = 0, with x = x0 = λ0/a. The
dependence of the skyrmion lifetime on the system size l̄ =
l/a is weak.

Temporal behavior of the collapsing skyrmion shown in
Fig. 2 was confirmed by the numerical study of the full two-
sublattice classical antiferromagnetic Heisenberg spin model
on a square lattice [8]. That model also captured the decay
of the topological charge to zero at the final stage of the
collapse. Based upon numerical results, it was argued that
the collapse of the skyrmion toward lower energies via the
reduction of λ was accompanied by the radiation of magnons.
If this effect was neglected, the skyrmion would collapse and
expand in a periodic manner, oscillating in the potential well
V = −4πJS2a2/(6λ2 + a2) created by the lattice between
positive and negative λ corresponding to opposite chiralities,
see inset in Fig. 2.

Here we notice that the classical theory of the skyrmion
collapse comes into conflict with quantum mechanics. The
contraction of a skyrmion to a point accompanied by its grow-
ing radial momentum contradicts the uncertainty principle.
Quantum mechanics should suppress continuous radiation
of magnons by the skyrmion as it suppresses continuous
radiation of electromagnetic waves by a classical electron
falling onto a proton. This must make skyrmions more stable
against the collapse. In the correct description, the skyrmion
must have quantized energy levels in the lattice potential and
probability distribution of the skymion size. Its expectation
root-mean-square (rms) value must be computed as

λ̄ =
√

〈λ2〉 =
[∫

dλψ∗(λ)λ2ψ (λ)

]1/2

, (7)

based upon the knowledge of the skyrmion wave function
ψ (λ).

III. QUANTUM HAMILTONIAN

Hamiltonian Eq. (5) can be viewed as a Hamiltonian of a
particle with a coordinate λ and a mass

M(λ) = π h̄2

Ja2
ln

(
l/

√
e√

λ2 + a2/6

)
(8)

that depends logarithmically on l and λ. Its typical
value for, e.g., J ∼ 1000 K and a ∼ 0.3 nm is M ∼
10−28 kg, which is about 100 electron masses. Up to
a log factor, it coincides with the mass of the an-
tiferromagnetic skyrmion, M = E0/c2, that can be ob-
tained by substituting Eq. (2) with x replaced by x − vt
into Eq. (1). The generalized momentum is p = M(dλ/dt ),
so up to a constant E0 the Hamiltonian can be written as

H = p2

2M(λ)
− 2πJS2a2

3(λ2 + a2/6)
. (9)

Imposing quantization as

λ p̂ − p̂λ = ih̄ (10)

and writing

p̂ = −ih̄
d

dλ
, (11)

we obtain

H = p̂
1

2M(λ)
p̂ − 2πJS2a2

3(λ2 + a2)

= −Ja2

2π

d

dλ

[
ln−1

(
l/

√
e√

λ2 + a2/6

)
d

dλ

]
(12)

− 2πJS2a2

3(λ2 + a2/6)
.

It is easy to check that this Hamiltonian is Hermitian for sym-
metric and antisymmetric wave functions of the bound states.
The classical limit corresponds to S → ∞ when the potential
energy dominates over the kinetic energy or to l → ∞ when
the mass of the particle becomes infinite. In the numerical
work presented below, we use S = 1/2 and l = 1000. The
dependence on l is weak while results for other S are quali-
tatively similar because choosing a different S only changes
the depth of the potential well.

Eigenstates of the Hamiltonian Eq. (12) for the discrete
energy spectrum at S = 1/2 and l = 1000a are shown in
Fig. 3. A finite element discretization method with an Arnoldi
algorithm and shooting have been used and compared with
each other. The density of energy levels increases toward the
top of the potential well created by the lattice. These states
represent symmetric and antisymmetric quantum oscillations
between opposite chiralities corresponding to positive and
negative λ.

Note that energy eigenstates can be alternatively found
from the Bohr-Sommerfeld condition:

∮
dλ p(λ) = 2π h̄(n +

1/2), which reduces in our case to solving the equation∫ xn

−xn

dx

{
2

π
ln

(
l̄/

√
e√

x2 + 1/6

)
[Ēn − V̄ (x)]

}1/2

= n + 1

2
,

(13)
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FIG. 3. Upper panel: Eigenfunctions of four lowest-energy states
for S = 1/2, l = 1000a scaled to x = λ/a. Lower panel: Energy
levels of the skyrmion for S = 1/2 in the units of J in the potential
well V (x) = −4πS2/(6x2 + 1).

with x = λ/a, l̄ = l/a, Ē = E/J , V̄ = V/J = −4πS2/

(6x2 + 1), for Ēn = V̄ (xn), and n = 0, 1, 2, .... Allowed
values of n are restricted by the condition xn < l̄ . This
quasiclassical method works surprisingly well for small n,
see Fig. 4. The error is 1.3% for the ground state and −4.9%
for n = 12 as compared to the values obtained by solving
Schrödinger equation. For large n, the decrease of En on
increasing n is faster than exp(−n).

For each of the quantum states, one can compute the
rms value of λ according to Eq. (7) with the wave function
ψ (λ) shown in the upper panel of Fig. 3. The first 12 λ̄n

are listed in Table I together with the corresponding energy
levels. An interesting observation is in order. While distances

FIG. 4. Energy levels computed by solving the Schrödinger
equation for the eigenstates and obtained with the help of the Bohr-
Sommerfeld quantization condition, Eq. (13).

between the energy levels decrease exponentially as one ap-
proaches the top of the potential well, the distances between
the corresponding skyrmion rms sizes increase. This can be
qualitatively understood by showing positions of the energy
levels and skyrmion rms sizes together with the attractive
potential, V = −4πJS2a2/(6λ2 + a2), see Fig. 5. Correlation
Ēn ∼ V (λ̄n) is apparent from the figure. Due to the quan-
tization of skyrmion states, the transitions between densely
packed energy levels of a collapsing nanoscale skyrmion must
occur via sizable jumps toward smaller skyrmion sizes.

IV. TRANSITIONS BETWEEN QUANTUM STATES
OF A SKYRMION

The quantum counterpart of the continuous skyrmion col-
lapse in a classical theory are quantum transitions from higher
to lower energy levels with lower λ̄n. They are accompanied
by radiation of magnons that correspond to quantized linear
waves δL(r, t ) of L. Since a skyrmion is an exact extremum
of the Hamiltonian Eq. (1), it does not interact with linear
excitations to the first order on δL. This is easy to see from the
fact that skyrmion solutions are obtained from the variation of
the exchange Hamiltonian under the condition L2 = 1,

δH = −1

2
JS2

∫
dxdy [∂i

2L − (L · ∂i
2L)L] · δL, (14)

which provides the extremal equation for the skyrmion ∂i
2L =

(L · ∂i
2L)L.

Interaction of skyrmions with magnons comes from the lat-
tice term given by Eq. (3). Writing L in that term as Ls + δL,

TABLE I. Energy levels and rms skyrmion sizes for S = 1/2.

n 0 1 2 3 4 5 6 7 8 9 10 11 12

λ̄n/a 0.1518 0.2994 0.4663 0.6840 0.9841 1.410 2.029 2.943 4.318 6.428 9.741 15.09 24.03
En/J −2.581 −1.635 −0.9861 −0.5666 −0.3108 −0.1634 −0.08273 −0.04043 −0.01910 −0.008715 −0.003827 −0.001607 −0.0006391
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FIG. 5. Relation between energies and rms sizes of quantized
skyrmion states is determined by the shape of the potential due to
the lattice. Upper panel: Small skyrmions with S = 1/2 in a lattice
with l = 1000a. Lower panel: Large skyrmions.

where Ls is the skyrmion field of Eq. (2), we obtain

Hint = − 1

12
JS2a2

∫
dxdy

(
∂2

x Ls · ∂2
x δL + ∂2

y Ls · ∂2
y δL

)
.

(15)

We select the quantized wave approximation for δL,

δL =
∑
q,α

√
h̄c2

2JS2Aωq
eα

(
e−iq·raq,α + eiq·ra†

q,α

)
, (16)

with α = x, y. Here a†
q,α, aq,α are operators of creation and

annihilation of magnons corresponding to quantum oscilla-
tions of the Néel vector, eα are their polarization vectors, A
is the area of the xy space, and ωq = cq. The factor under the
square root in Eq. (16) is chosen such that Eq. (1) for magnons
becomes

Hm =
∑
q,α

h̄ωqa†
q,αaq,α. (17)

These two branches of antiferromagnetic magnons are quan-
tized waves [23] of Lx and Ly under the assumption that the

Néel vector at infinity is directed along the z axis. It is easy to
see that they satisfy the conventional commutation relation for
an antiferromagnet: [Lx, Lz] = 1

2 Mz → 0, with Mz being the
magnetization. The rate of the transition from the state ψm(λ)
with zero magnons to the lower energy state ψn(λ) (n < m)
and one magnon is given by Fermi’s golden rule [25],

� = 2π

h̄

∑
i 	= j

〈i|Ĥint| j〉〈 j|Ĥint|i〉δ(Ei − Ej )

= 2π

h̄

∑
q,α

|〈ψm(λ)1q,α|Ĥint|ψn(λ)0〉|2δ(h̄ωq − mn),

(18)

where mn = Em − En. Substituting here Ĥint of Eq. (15), one
obtains

�mn = 2π

h̄

(
1

12
JS2a2

)2 ∑
q,α

∣∣∣∣
∫

dλψ∗
m(λ)ψn(λ)

×
∫

dxdy
(
∂2

x Ls · 〈1q,α|∂2
x δLq,α|0m〉

+ ∂2
y Ls · 〈1q,α|∂2

y δLq,α|0m〉)∣∣∣∣
2

δ(h̄ωq − mn). (19)

In this expression,

∂2
x δLq,α = −

√
h̄c2

2JS2Aωq
eαq2

x

(
e−iq·raq,α + eiq·ra†

q,α

)
(20)

and thus

〈1q,α|∂2
x δL|0m〉 = −

√
h̄c2

2JS2Aωq
eαq2

x eiq·r, (21)

and similar for ∂2
y δL. This gives

�mn = 2π

h̄

(
1

12
JS2a2

)2 h̄c2

2JS2A

∑
q,α

∣∣∣∣
∫

dλψ∗
m(λ)ψn(λ)

×
∫

dxdy

(
∂2

x Ls · eα

q2
x

ωq
eiq·r + ∂2

y Ls · eα

q2
y

ωq
eiq·r

)∣∣∣∣
2

×δ(h̄ωq − mn),

which can be represented as

�mn = πJS2a4c2

144A

∑
q

1

ωq
(Mx + My)δ(h̄ωq − mn),

with

Mα ≡
∣∣∣∣
∫

dλψ∗
n (λ)ψm(λ)Fα

∣∣∣∣
2

, α = x, y, (22)

where

Fα ≡
∫

dxdy
(
∂2

x Lsαq2
x + ∂2

y Lsαq2
y

)
eiq·r

= −(
q4

x + q4
y

) ∫
dxdyLsαeiq·r = −(

q4
x + q4

y

)
L̃sα (λ, q).
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Further simplification requires computation of the Fourier
transform of the skyrmion field:

L̃sα (λ, q) ≡
∫

dxdyLsα (λ, r)eiq·r. (23)

In terms of the latter,

�mn = πJS2a4c2

144A

∑
q

(
q4

x + q4
y

)2

ωq
(M̃x + M̃y)δ(h̄ωq − mn),

where

M̃α ≡
∣∣∣∣
∫

dλψ∗
m(λ)ψn(λ)L̃sα (λ, q)

∣∣∣∣
2

, α = x, y.

By symmetry, M̃x and M̃y make equal contributions to the rate,
which simplifies to

�mn = JS2a4

144h̄

∫ ∞

0
dq

∫ 2π

0
dϕqq8(sin4 ϕq + cos4 ϕq

)2

×M̃xδ

(
q − mn

h̄c

)
. (24)

To calculate M̃x, we need the in-plane component of the
skyrmion field:

Lsx (r, ϕr ) = L⊥(r) sin (ϕr + γ ). (25)

From Eq. (2), one has L⊥(r) = 2λr/(λ2 + r2). Then

L̃sx (q, ϕq ) =
∫ ∞

0
rL⊥(r)dr

∫ 2π

0
dϕr sin (ϕr + γ )

×e−iqr cos (ϕr−ϕq )

= −4π i sin (ϕq + γ )λ|λ|K1(|λ|q)

and

M̃x ≡ (4π )2 sin2 (ϕq + γ )|Fmn(q)|2, (26)

where

Fmn(q) ≡
∫

dλψ∗
m(λ)ψn(λ)λ|λ|K1(|λ|q), (27)

with K1 being the modified Bessel function. The transition rate
�mn of Eq. (24) becomes

�mn = JS2a4

144h̄

∫ ∞

0
dq

∫ 2π

0
dϕqq8(sin4 ϕq + cos4 ϕq

)2

×(4π )2 sin2 (ϕq + γ )|Fmn(q)|2δ
(

q − mn

h̄c

)
. (28)

The integral over ϕq equals 19π/32 independently of γ , yield-
ing the final compact expression for the rate,

�mn = 19π3JS2

288h̄
(qmna)4

∣∣q2
mnFmn(qmn)

∣∣2
, (29)

with qmn ≡ mn/(h̄c) and Fmn defined by Eq. (27). Com-
putation of the transition rates reduces, therefore, to the
computation of the coefficients Fnm with the wave functions
of the stationary states of the skyrmion found in Sec. III.

Since energies of skyrmion eigenstates, En, decrease very
fast on increasing n (see Fig. 4), so do distances between
the levels mn for large m and n. In this case, the smallness

of |λ|qmn = |λ|mn/(h̄c) allows one to replace K1(|λ|q) in
Eq. (27) with its asymptotic form 1/(|λ|q), leading to Fmn =
λmn/q with λmn = ∫

dλ λψ∗
m(λ)ψn(λ) and to

�mn = 19π3JS2

288h̄
(qmna)4|qmnλmn|2, m, n � 1. (30)

This makes the rates of transitions between high excited levels
proportional to 6

mn and progressively small with increasing m
and n. Numerically obtained transition rates for S = 1/2 are
shown in Table II. The selection rule related to the parity of
the skyrmion states is apparent.

V. DISCUSSION

We have studied quantum states of antiferromagnetic
skyrmions by quantizing the scaling parameter of Belavin-
Polyakov model. Our results suggest that energies and sizes
of nanoscale skyrmions are quantized. Quantum mechanics
must also slow down the collapse of small skyrmions, making
them more stable as was proposed earlier [13]. The question is
whether quantum states of skyrmions and transitions between
them can be observed in experiments.

Evidence of skyrmions has been reported in parental com-
pounds of high-temperature superconductors [26]. In fact,
many of these materials can be ideal systems for application
of our theory as they consist of weakly interacting 2D an-
tiferromagnetic layers of spins 1/2 in a square lattice. The
antiferromagnetic superexchange interaction [27] of copper
spins via oxygen in CuO layers of La2CuO4 is 140meV. This
places lifetimes of the low-lying excited states of the skyrmion
in the picosecond to nanosecond range. Transitions between
upper excited states have much lower probability.

It should be emphasized that our model is not catching the
final stage of the decay of the skyrmion accompanied by the
disappearance of its topological charge when it decreases to
the atomic size. This requires a different mechanism. In clas-
sical mechanics on the lattice, it must occur via instability of
the skyrmion shape that breaks its radial symmetry. Quantum
mechanics effectively switches the skyrmion model from 2 to
2+1 dimensions where topological charge is not conserved
but working it out may require more than one degree of
freedom. We have not attempted to solve this problem here.

Quantization of the quasiclassical states of skyrmions that
are large compared to the lattice spacing must be captured
by our model with reasonable accuracy. For such skyrmions,
the distance between adjacent energy levels is of order  ∼
|E | ∼ 2πJS2a2/(3λ2). Transition from classical to quantum
dynamics should occur at temperatures satisfying T � , that
is, for sizes satisfying λ/a �

√
2πJS2/(3T ). For La2CuO4,

this gives λ � 3a at room temperature and λ � 30a at helium
temperature. The latter makes observation of quantum behav-
ior of skyrmions promising at low temperature. If the collapse
of a skyrmion could somehow be visualized with the help of
modern imaging techniques, its quantum nature would reveal
itself in a large jump from a nanometer size to the atomic size.

At elevated temperatures, skyrmions would be created by
thermal fluctuations. When many small skyrmions are present,
quantization of their energy levels must lead to the peaks in the
absorption and noise spectra corresponding to the transitions
between the levels. If low temperatures were required for a
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TABLE II. Transition rates in units J/h̄ from state m to state n for S = 1/2 and l = 1000.

nm 0 1 2 3 4 5 6 7 8

0 0 0.970 × 10−3 0 1.36 × 10−3 0 0.659 × 10−3 0 2.00 × 10−4 0
1 0 0 0.284 × 10−3 0 0.389 × 10−4 0 1.60 × 10−4 0 0.439 × 10−4

2 0 0 0 0.471 × 10−4 0 0.603 × 10−4 0 2.25 × 10−5 0
3 0 0 0 0 0.512 × 10−5 0 0.604 × 10−5 0 2.01 × 10−6

4 0 0 0 0 0 0.389 × 10−6 0 0.417 × 10−6 0
5 0 0 0 0 0 0 2.17 × 10−8 0 2.11 × 10−8

6 0 0 0 0 0 0 0 0.941 × 10−9 0
7 0 0 0 0 0 0 0 0 0.328 × 10−10

precision study of quantization of skyrmion states, a practical
question would be how to create a sufficient number of anti-
ferromagnetic skyrmions at such temperatures. One way to do
it could be via rapid cooling of the sample accompanied by
quantum relaxometry [28] of the antiferromagnetic state that
settles in.

In this paper, we have not addressed quantum mechanics
of ferromagnetic skyrmions. In the absence of interac-
tions other than the Heisenberg exchange, the ferromagnetic
dynamics, unlike antiferromagnetic dynamics, is massless.
Consequently, the quantization method we applied cannot be
easily extended to a ferromagnet. This already showed up in
our study of the classical collapse [8]. The collapse of the
antiferromagnetic skyrmion was investigated by two methods:
via dynamical equation for λ(t ) and by solving numerically
the full two-sublattice Heisenberg spin model with the initial
state containing a skyrmion. Excellent agreement between
the two methods was achieved. On the contrary, the study

of the collapse of the ferromagnetic skyrmion relied on the
second method only. The observed dynamics was very differ-
ent, with the lifetime of the ferromagnetic skyrmion scaling
as [h̄/(JS2)](λ0/a)5 compared to [h̄/(JS2)](λ0/a)2 for the
antiferromagnetic skyrmion. Due to its complexity, the full
spin model, however, is not well suited for computing energy
levels of a small ferromagnetic skyrmion. Finding a method
for a 2D ferromagnet similar to that for a 2D antiferromagnet,
as well as inclusion in the model of other interactions such as
Dzyaloshinskii-Moriya, dipole-dipole, Zeeman, and magnetic
anisotropy remains a challenging task.

ACKNOWLEDGMENTS

This work has been supported by the Grant No. DE-FG02-
93ER45487 funded by the U.S. Department of Energy, Office
of Science.

[1] A. A. Belavin and A. M. Polyakov, Metastable states of two-
dimensional isotropic ferromagnets, Pis’ma Zh. Eksp. Teor. Fiz.
22, 503 (1975) [JETP Lett. 22, 245 (1975)].

[2] T. H. R. Skyrme, A non-linear theory of strong interactions,
Proc. Roy. Soc. London A 247, 260 (1958).

[3] A. M. Polyakov, Gauge Fields and Strings (Harwood Academic
Publishers, Chur, Switzerland, 1987).

[4] N. Manton and P. Sutcliffe, Topological Solitons (Cambridge
University Press, Cambridge, UK, 2004).

[5] A. O. Leonov, T. L. Monchesky, N. Romming, A. Kubetzka,
A. N. Bogdanov, and R. Wiesendanger, The properties of iso-
lated chiral skyrmions in thin magnetic films, New J. Phys. 18,
065003 (2016).

[6] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: advances
in physics and potential applications, Nat. Rev. Mater. 2, 17031
(2017).

[7] A. N. Bogdanov and C. Panagopoulos, Physical foundations
and basic properties of magnetic skyrmions, Nat. Rev. Phys. 2,
492 (2020).

[8] L. Cai, E. M. Chudnovsky, and D. A. Garanin, Collapse of
skyrmions in two-dimensional ferromagnets and antiferromag-
nets, Phys. Rev. B 86, 024429 (2012).

[9] F. Muckel, S. von Malottki, C. Holl, B. Pestka, M. Pratzer,
P. F. Bessarab, S. Heinze, and M. Morgensten, Experimental
identification of two distinct skyrmion collapse mechanisms,
Nat. Phys. 17, 395 (2021).

[10] C. Back, V. Cros, H. Ebert, K. Everschor-Sitte, A. Fert, M.
Garst, T. Ma, S. Mankovsky, T. L. Monchesky, M. Mostovoy,
N. Nagaosa, S. S. P. Parkin, C. Pfleiderer, N. Reyren, A.
Rosch, Y. Taguchi, Y. Tokura, K. von Bergmann, and J.
Zang, The 2020 skyrmionics roadmap, J. Phys. D 53, 363001
(2020).

[11] S.-Z. Lin and L. N. Bulaevskii, Quantum motion and level quan-
tization of a skyrmion in a pinning potential in chiral magnets,
Phys. Rev. B 88, 060404(R) (2013).

[12] C. Schütte and M. Garst, Magnon-skyrmion scattering in chiral
magnets, Phys. Rev. B 90, 094423 (2014).

[13] A. Roldán-Molina, M. J. Santander, A. S. Nunez, and J.
Fernández-Rossier, Quantum fluctuations stabilize skyrmion
textures, Phys. Rev. B 92, 245436 (2015).

[14] Y.-T. Oh, H. Lee, J.-H. Park, and J. H. Han, Dynamics of
magnon fluid in Dzyaloshinskii-Moriya magnet and its manifes-
tation in magnon-skyrmion scattering, Phys. Rev. B 91, 104435
(2015).

[15] R. Takashima, H. Ishizuka, and L. Balents, Quantum skyrmions
in two-dimensional chiral magnets, Phys. Rev. B 94, 134415
(2016).

[16] A. Derras-Chouk, E. M. Chudnovsky, and D. A. Garanin, Quan-
tum collapse of a magnetic skyrmion, Phys. Rev. B 98, 024423
(2018).

[17] S. M. Vlasov, P. F. Bessarab, I. S. Lobanov, M. N. Plotkina,
V. M. Uzdin, and H. Jónsson, Magnetic skyrmion annihilation

224423-7

https://doi.org/10.1098/rspa.1958.0183
https://doi.org/10.1088/1367-2630/18/6/065003
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/s42254-020-0203-7
https://doi.org/10.1103/PhysRevB.86.024429
https://doi.org/10.1038/s41567-020-01101-2
https://doi.org/10.1088/1361-6463/ab8418
https://doi.org/10.1103/PhysRevB.88.060404
https://doi.org/10.1103/PhysRevB.90.094423
https://doi.org/10.1103/PhysRevB.92.245436
https://doi.org/10.1103/PhysRevB.91.104435
https://doi.org/10.1103/PhysRevB.94.134415
https://doi.org/10.1103/PhysRevB.98.024423


DERRAS-CHOUK, CHUDNOVSKY, AND GARANIN PHYSICAL REVIEW B 103, 224423 (2021)

by quantum mechanical tunneling, New J. Phys. 22, 083013
(2020).

[18] V. Lohani, C. Hickey, J. Masell, and A. Rosch, Quantum
Skyrmions in Frustrated Ferromagnets, Phys. Rev. X 9, 041063
(2019).

[19] H. Ochoa and Y. Tserkovnyak, Quantum skyrmionics, Int. J.
Mod. Phys. 33, 1930005 (2019).

[20] O. M. Sotnikov, V. V. Mazurenko, J. Colbois, F. Mila, M. I.
Katsnelson, and E. A. Stepanov, Probing the topology of the
quantum analog of a classical skyrmion, Phys. Rev. B 103,
L060404 (2021).

[21] M. Karliner, I. Klebanov, and L. Susskind, Size and shape of
strings, Int. J. Mod. Phys. A 3, 1981 (1988).

[22] F. D. M. Haldane, O(3) Nonlinear σ Model and the Topological
Distinction Between Integer- and Half-Integer-Spin Antiferro-
magnets in Two Dimensions, Phys. Rev. Lett. 61, 1029 (1988).

[23] B. A. Ivanov and A. K. Kolezhuk, Solitons With Internal De-
grees of Freedom in 1D Heisenberg Antiferromagnets, Phys.
Rev. Lett. 74, 1859 (1995).

[24] D. Capic, D. A. Garanin, and E. M. Chudnovsky, Stabilty of
biskyrmions in centrosymmetric magnetic films, Phys. Rev. B
100, 014432 (2019).

[25] A. Messiah, Quantum Mechanics (Dover Publications, New
York, 2014).
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