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Spin-orbit torques in strained PtMnSb from first principles
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We compute spin-orbit torques (SOTs) in strained PtMnSb from first principles. We consider both tetragonal
strain and shear strain. We find a strong linear dependence of the field-like SOTs on these strains, while the
antidamping SOT is only moderately sensitive to shear strain and even insensitive to tetragonal strain. We also
study the dependence of the SOT on the magnetization direction. In order to obtain analytical expressions suitable
for fitting our numerical ab initio results we derive a general expansion of the SOT in terms of all response
tensors that are allowed by crystal symmetry. Our expansion includes also higher-order terms beyond the usually
considered lowest order. We find that the dependence on the strain is much smaller for the higher-order terms
than for the lowest order terms. In order to judge the sensitivity of the SOT to the exchange correlation potential
we compute the SOT in both GGA and LDA. We find that the higher-order terms depend significantly on the
exchange-correlation potential, while the lowest order terms are insensitive to it. Since the higher-order terms are
small in comparison to the lowest order terms the total SOT is insensitive to the exchange correlation potential
in strained PtMnSb.
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I. INTRODUCTION

The spin-orbit torque (SOT) allows us to switch the mag-
netization by electric current in noncentrosymmetric bulk
crystals and in bilayers with structural inversion asymme-
try [1]. It therefore paves the way to novel spintronic
memory devices. Among the noncentrosymmetric bulk crys-
tals the half-metallic half-Heusler compounds are promising
for spintronics applications [2–5]. In particular, their high
conduction-electron spin-polarization enhances for example
the tunneling magnetoresistance and the giant magnetoresis-
tance [6–9], and their half-metallicity suppresses the Gilbert
damping [10].

The SOT in the half-Heusler NiMnSb depends strongly
on the strain, which may be controlled by varying the sub-
strate [11,12]. Notably, NiMnSb thin films sputtered on GaAs
substrates yield SOT effective fields per applied current that
are similar in magnitude to those in Pt/Co/AlOx magnetic
bilayers [13]. Tetragonal strain adds Dresselhaus spin-orbit
interaction (SOI) to the microscopic half-Heusler Hamilto-
nian, while shear strain supplements it with both Rashba and
Dresselhaus SOI.

The SOTs arising from Dresselhaus and Rashba SOI cor-
respond to the lowest order in the expansion of the SOT with
respect to the magnetization [14]. In magnetic bilayers the
higher-order terms in this expansion have been found to be
sizeable in experiments [15], and several theoretical works
have therefore considered the dependence of the SOT on
the magnetization direction in detail in these bilayer systems
[16–18]. However, in the case of half-Heusler crystals the
higher-order contributions in the expansion of the SOT in
terms of the directional cosines of the magnetization have not
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yet been considered. Therefore, our symmetry analysis of the
SOT in this paper includes also the first higher-order terms
in the directional cosine expansion. Such angular expansions
may be used to fit experimental SOT data [15]. In the present
paper we use the angular expansion in order to fit our ab
initio data, which allows us to separate the SOT into the
lowest-order Dresselhaus and Rashba SOI contributions and
the remaining higher-order terms.

PtMnSb is a promising material for spintronics ap-
plications. Its half-metallicity has been established both
experimentally and theoretically. It can be grown epitaxially
on MgO(001) [19] and on W(001)/MgO(001) [20]. It exhibits
a giant magneto-optical Kerr effect [21,22], which makes
it attractive for magneto-optical recording. Furthermore, it
exhibits a negative anisotropic magnetoresistance and it has
been used for room-temperature giant magnetoresistance de-
vices [23,24]. In this paper we discuss the SOT in PtMnSb
with tetragonal and shear strain obtained from first-principles
density-functional theory calculations.

This paper is structured as follows: In Sec. II we discuss the
form of the SOT expected in half Heuslers based on the sym-
metry of the cubic, tetragonally strained, and shear-strained
crystals. The tetragonally strained case is discussed in detail
in Sec. II, while the cubic and the shear-strained cases are
discussed in detail in the Appendices A and B. In Sec. III
we present our ab initio results on the SOTs in PtMnSb. In
Sec. III A we describe the computational details. In Sec. III B
we discuss the results on the odd torque and in Sec. III C we
discuss the results on the even torque. This paper ends with a
summary in Sec. IV.

II. SYMMETRY OF SOTS IN HALF-HEUSLER CRYSTALS

Similar to the conductivity tensor, which measures the
response of the electric current to an applied electric field in
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linear response, we introduce the torkance tensor to quantify
the response of the torque to an applied electric field [25]. The
torque T acting on the magnetization in one crystal unit cell
is written as

T =
∑

i j

êiti jE j, (1)

where ti j is the torkance tensor, Ej is the j-th component of
the applied electric field, and êi is a unit vector in the i-th
Cartesian direction. In cubic and tetragonally strained PtMnSb
the crystal lattice vectors a, b, and c used in the following
sections are related to êi by a = aê1, b = bê2, and c = cê3,
where a, b, and c are the lattice constants. In shear-strained
PtMnSb we choose the a and b axes as follows:

a = a
(

cos
ε

2
, sin

ε

2
, 0

)T
, b = a

(
sin

ε

2
, cos

ε

2
, 0

)T
, (2)

where we use ε = 90◦ − γ to quantify the shear strain, and γ

is the angle between the a and b axes.
We separate the torkance into even and odd parts

with respect to inversion of the magnetization direction,
i.e., t (M̂) = teven(M̂) + todd(M̂), where teven(M̂) = [t (M̂) +
t (−M̂)]/2 and todd(M̂) = [t (M̂) − t (−M̂)]/2. The corre-
sponding even SOT is often referred to as the antidamping
SOT, while the odd SOT is often referred to as the field-ike
SOT. ti j is an axial tensor of rank 2. It is possible to use the
symmetries of the half-Heusler crystal in order to determine
the form of ti j . In practice only the torque perpendicular to
the magnetization is of relevance and our ab initio approach
described in Sec. III A computes only this perpendicular com-
ponent by construction. However, in general, an axial tensor of
rank 2 consistent with the crystal symmetry may predict also
a component of the torque that is parallel to the magnetiza-
tion. In order to avoid this irrelevant component we consider
instead the symmetry of the effective magnetic field B that
one would have to apply in order to generate a torque of
the same size as the SOT. After determining the symmetry-
allowed form of the response of B to an applied electric field
we may subsequently obtain the torque from T = μM̂ × B.
Here, μ is the magnetic moment within one unit cell and M̂
is its direction. This approach guarantees that the torque T is
perpendicular to the magnetization such that it is not necessary
to remove irrelevant contributions obtained from symmetry
analysis.

A. Odd torque

The effective field of the odd torque can be expressed in
terms of the electric field E and the magnetization direction
M̂ as follows:

Bodd
i = χ

(a)
i j E j + χ

(a)
i jkl E jM̂kM̂l + . . . (3)

Here, χ
(a)
i j is an axial tensor of second rank, χ

(a)
i jkl is an axial

tensor of fourth rank and summation over repeated indices
is implied. Note that the effective field of the odd torque is
even in the magnetization: Bodd(M̂) = Bodd(−M̂) because of
T odd = μM̂ × Bodd (in our notation the torque T carries the
superscript odd, when it is odd in the magnetization, i.e.,
T odd(M̂) = −T odd(−M̂), while the effective magnetic field B
carries the superscript odd, when it generates T odd). In order to

TABLE I. List of axial tensors of ranks 2 and 4 allowed by sym-
metry in tetragonally strained half Heuslers. The notation introduced
in Eq. (5) is used. Arrows indicate tensors that may be replaced by
others due to permutations of indices, while (8) denotes tensors that
may be replaced by others due to Eq. (8).

# χ (a#) # χ (a#) Remark

1 〈22〉 − 〈11〉 7 〈3113〉 − 〈3223〉 → χ (a5)

2 〈2112〉 − 〈1221〉 8 〈2323〉 − 〈1313〉 → χ (a6)

3 〈1122〉 − 〈2211〉 9 〈2233〉 − 〈1133〉
4 〈3322〉 − 〈3311〉 10 〈1212〉 − 〈2121〉 → −χ (a2)

5 〈3131〉 − 〈3232〉 11 〈2222〉 − 〈1111〉 (8)
6 〈2332〉 − 〈1331〉

express the symmetry-allowed tensors χ
(a)
i j and χ

(a)
i jkl in terms

of basis tensors we introduce the following notation to define
these basis tensors:

δ
(mn)
i j = δimδ jn → 〈mn〉 (4)

and

δ
(mnop)
i jkl = δimδ jnδkoδl p → 〈mnop〉. (5)

The superscripts (mn) and (mnop) serve to label the basis
tensors. As a simple example to illustrate the use of these
basis tensors consider the unit matrix. The unit matrix can be
expressed as follows:

δi j = δ
(11)
i j + δ

(22)
i j + δ

(33)
i j , (6)

or simply 〈11〉 + 〈22〉 + 〈33〉. Similarly, any given tensor may
be expressed in terms of these basis tensors. The symmetry-
allowed form of the torkance tensor depends on the crystal-
lographic point group [14,26]. Cubic, tetragonally-strained,
and shear-strained PtMnSb possess different crystallographic
point groups. Therefore, we discuss the symmetry-allowed
form of the torkance tensor separately for these three cases
in the following. Note that in Eq. (3) we expand the effective
field only in terms of the applied electric field and in terms
of the magnetization but we do not expand it in terms of the
strain. This is a major difference to the treatment of e.g. the
piezomagnetic effects in Ref. [26], where the strain itself is
considered as a perturbation. Instead, we assume here that the
strain is constant and that it determines the symmetry-allowed
form of the response tensor by affecting the crystallographic
point group.

Tetragonal strain

First, we consider the case of tetragonal strain. The cases
of shear strain and of cubic half Heuslers are discussed in
Appendix A. For a = b �= c and α = β = γ = 90◦ (point
group 4̄2m) we list the 11 axial tensors of rank 2 and 4 that
are allowed by symmetry in Table I. In Eq. (3) the indices k
and l of χ

(a)
i jkl both couple to magnetization and are therefore

interchangeable. Therefore, as indicated in Table I by arrows,

χ
(a10)
i jkl = −χ

(a2)
i jlk , χ

(a7)
i jkl = χ

(a5)
i jlk , χ

(a8)
i jkl = χ

(a6)
i jlk . (7)

Moreover, we find(
χ

(a3)
i jkl − χ

(a9)
i jkl − χ

(a11)
i jkl

)
M̂kM̂l = −χ

(a1)
i j . (8)
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Thus, we do not need to consider the tensors 10, 7, 8 and
11 when we express χ

(a)
i jkl in terms of the tensors in Table I.

Consequently, we can express the tensors in Eq. (3) as

χ
(a)
i j = α1χ

(a1)
i j

χ
(a)
i jkl = α2χ

(a2)
i jkl + α3χ

(a3)
i jkl + α4χ

(a4)
i jkl + α5χ

(a5)
i jkl

+ α6χ
(a6)
i jkl + α7χ

(a9)
i jkl (9)

in terms of seven expansion coefficients α1, . . . , α7. The ten-
sor χ

(a1)
i j = δ

(22)
i j − δ

(11)
i j describes the effective SOT field from

Dresselhaus SOI [12,14]. The tensors 2, 3, 4, 5, 6, and 9
describe higher-order contributions to the SOT, which have
not yet been discussed in the literature.

The odd torque T odd is related to its effective field by

T odd
i = �i jB

odd
j , (10)

where

� = μ

⎛
⎝ 0 −M̂3 M̂2

M̂3 0 −M̂1

−M̂2 M̂1 0

⎞
⎠. (11)

Using Eqs. (3), (9), and (10) we obtain

T odd = toddE, (12)

where

todd
i j = μ

7∑
k=1

αkϑ
(oddk)
i j (13)

with

ϑ (odd1) =
⎛
⎝ 0 −M̂3 0

−M̂3 0 0

M̂2 M̂1 0

⎞
⎠,

ϑ (odd2) =
⎛
⎝−M̂1M̂2M̂3 0 0

0 −M̂1M̂2M̂3 0

M̂2
1 M̂2 M̂1M̂2

2 0

⎞
⎠,

ϑ (odd3) =
⎛
⎝ 0 M̂2

1 M̂3 0

M̂2
2 M̂3 0 0

−M̂3
2 −M̂3

1 0

⎞
⎠,

ϑ (odd4) =
⎛
⎝0 0 M̂3

2 − M̂2
1 M̂2

0 0 M̂3
1 − M̂1M̂2

2

0 0 0

⎞
⎠,

ϑ (odd5) =
⎛
⎝M̂1M̂2M̂3 −M̂2

2 M̂3 0

−M̂2
1 M̂3 M̂1M̂2M̂3 0
0 0 0

⎞
⎠,

ϑ (odd6) =
⎛
⎝0 0 −M̂2M̂2

3

0 0 −M̂1M̂2
3

0 0 2M̂1M̂2M̂3

⎞
⎠,

ϑ (odd7) =
⎛
⎝ 0 −M̂3

3 0

−M̂3
3 0 0

M̂2
3 M̂2 M̂1M̂2

3 0

⎞
⎠. (14)

Since

ϑ (odd2) + ϑ (odd5) − ϑ (odd3) + ϑ (odd7) = ϑ (odd1), (15)

we can set α7 = 0 in Eq. (13). Thus, the odd torkance tensor
can be expressed in terms of 6 tensors ϑ (odd1), ..., ϑ (odd6):

todd
i j =

6∑
k=1

βkϑ
(oddk)
i j (16)

with expansion coefficients β1, ..., β6. By fitting Eq. (16) to
the odd torque given for a set of magnetization directions,
one may determine the coefficients βi and subsequently use
Eq. (16) to predict the odd torque for any magnetization di-
rection.

B. Even torque

The effective field of the even torque can be expressed in
terms of the electric field E and the magnetization direction
M̂ as follows:

Beven
i = χ

(p)
i jk E jM̂k + χ

(p)
i jklmE jM̂kM̂l M̂m + . . . . (17)

Here, χ (p)
i jk is a polar tensor of third rank, χ (p)

i jklm is a polar tensor
of fifth rank and summation over repeated indices is implied.
Note that the effective field of the even torque is odd in the
magnetization.

Tetragonal strain

Here, we discuss the case of tetragonal strain. The cases
of shear strain and of cubic half Heuslers are discussed in
Appendix B. For a = b �= c and α = β = γ = 90◦ we list the
polar tensors that are allowed by symmetry in Table II. In
Eq. (17) the indices k, l and m of χ

(p)
i jklm are contracted with

the magnetization direction and are therefore interchangeable.
Tensors that are related to other tensors by interchange of the
indices k, l and m are specified in Table II by arrows. These
tensors do not need to be considered when we expand χ

(p)
i jklm.

When considering the permutations of the indices k, l and m
the list of independent tensors that are needed in the expansion
of χ

(p)
i jk and χ

(p)
i jklm is therefore reduced to the following ones:

1, 2, 3, 4, 6, 7, 8, 14, 15, 17, 23, 24, 25, 26.
Due to the relations

�ni
[
χ

(p4)
i jklm + 2χ

(p17)
i jklm

]
M̂kM̂lM̂m = 0,

�ni
[
χ

(p6)
i jklm + χ

(p7)
i jklm + χ

(p25)
i jklm

]
M̂kM̂lM̂m = 0,[

χ
(p7)
i jklm + χ

(p15)
i jklm + χ

(p23)
i jklm

]
M̂kM̂lM̂m = χ

(p1)
i jk M̂k,[

χ
(p8)
i jklm + χ

(p17)
i jklm + χ

(p24)
i jklm

]
M̂kM̂lM̂m = χ

(p2)
i jk M̂k,[

χ
(p14)
i jklm + χ

(p25)
i jklm + χ

(p26)
i jklm

]
M̂kM̂lM̂m = χ

(p3)
i jk M̂k, (18)

we do not need to consider the tensors 17, 23, 24, 25, and
26. This leaves us with 3 polar tensors of rank 3 and 6 polar
tensors of rank 5 to describe the SOT effective magnetic field
in the tetragonal case, i.e., 9 tensors in total.
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TABLE II. List of polar tensors of rank 3 and 5 allowed by sym-
metry in tetragonally strained half Heuslers. The notation introduced
in Eq. (5) is used. Arrows indicate tensors that may be replaced by
others due to permutation of indices, while (18) denotes tensors that
may be replaced by others due to Eq. (18).

# χ (p#) Note # χ (p#) Note

1 〈321〉 + 〈312〉 18 〈13121〉 + 〈23212〉 → 17
2 〈231〉 + 〈132〉 19 〈22321〉 + 〈11312〉 → 6
3 〈213〉 + 〈123〉 20 〈11321〉 + 〈22312〉 → 6
4 〈33231〉 + 〈33132〉 21 〈31211〉 + 〈32122〉 → 15
5 〈33321〉 + 〈33312〉 → 4 22 〈13211〉 + 〈23122〉 → 17
6 〈22231〉 + 〈11132〉 23 〈32111〉 + 〈31222〉 (18)
7 〈32331〉 + 〈31332〉 24 〈23111〉 + 〈13222〉 (18)
8 〈23331〉 + 〈13332〉 25 〈12311〉 + 〈21322〉 (18)
9 〈33213〉 + 〈33123〉 → 4 26 〈21311〉 + 〈12322〉 (18)
10 〈32313〉 + 〈31323〉 → 7 27 〈11231〉 + 〈22132〉 → 6
11 〈23313〉 + 〈13323〉 → 8 28 〈12131〉 + 〈21232〉 → 25
12 〈32133〉 + 〈31233〉 → 7 29 〈21131〉 + 〈12232〉 → 26
13 〈23133〉 + 〈13233〉 → 8 30 〈22213〉 + 〈11123〉 → 6
14 〈21333〉 + 〈12333〉 31 〈11213〉 + 〈22123〉 → 6
15 〈31121〉 + 〈32212〉 32 〈12113〉 + 〈21223〉 → 25
16 〈32221〉 + 〈31112〉 → 15 33 〈21113〉 + 〈12223〉 → 26
17 〈23221〉 + 〈13112〉 (18)

Using T even = μM̂ × Beven, and T even = tevenE, we arrive
at

t even
i j = μ

9∑
k=1

γkϑ
(evenk)
i j (19)

with

ϑ (even1) =
⎛
⎝ M̂2

2 M̂1M̂2 0

−M̂1M̂2 −M̂2
1 0

0 0 0

⎞
⎠,

ϑ (even2) =
⎛
⎝0 0 −M̂1M̂3

0 0 M̂2M̂3

0 0 −M̂2
2 + M̂2

1

⎞
⎠,

ϑ (even3) =
⎛
⎝ −M̂2

3 0 0

0 M̂2
3 0

M̂1M̂3 −M̂2M̂3 0

⎞
⎠,

ϑ (even4) =
⎛
⎝0 0 2M̂1M̂2

2 M̂3

0 0 −2M̂2
1 M̂2M̂3

0 0 0

⎞
⎠,

ϑ (even5) =
⎛
⎝ 0 −M̂1M̂2M̂2

3 0

M̂1M̂2M̂2
3 0 0

−M̂1M̂2
2 M̂3 M̂2

1 M̂2M̂3 0

⎞
⎠,

ϑ (even6) =
⎛
⎝ M̂2

2 M̂2
3 M̂1M̂2M̂2

3 0

−M̂1M̂2M̂2
3 −M̂2

1 M̂2
3 0

0 0 0

⎞
⎠,

FIG. 1. Conventional unit cell of PtMnSb. The Pt, Mn, and Sb
atoms each form an fcc lattice individually. The polar and azimuthal
angles of the magnetization are denoted by θ and φ, respectively. By
� we denote the angle � = φ − 45◦.

ϑ (even7) =
⎛
⎝0 0 −M̂3

3 M̂1

0 0 M̂3
3 M̂2

0 0 M̂2
1 M̂2

3 − M̂2
2 M̂2

3

⎞
⎠,

ϑ (even8) =
⎛
⎝ −M̂4

3 0 0

0 M̂4
3 0

M̂3
3 M̂1 −M̂3

3 M̂2 0

⎞
⎠,

ϑ (even9) =
⎛
⎝ M̂2

1 M̂2
2 M̂3

2 M̂1 0

−M̂3
1 M̂2 −M̂2

1 M̂2
2 0

0 0 0

⎞
⎠. (20)

III. RESULTS

A. Computational details

We performed electronic structure calculations of PtMnSb
based on the generalized gradient approximation (GGA) [27]
as implemented in the FLEUR program [28]. The unit cell
is shown in Fig. 1. In order to judge how sensitive the SOT
is to the exchange correlation functional, we performed ad-
ditional calculations within the local density approximation
(LDA) [29]. We included SOI self-consistently using the sec-
ond variation method [30]. To compute cubic PtMnSb we
use the experimental lattice constant acub = ccub = 11.72a0

[20] in our calculations, where a0 is Bohr’s radius. We con-
sidered 4 systems with different tetragonal strains η = (c −
ccub)/ccub: η = 1.45% (a = 11.49a0 and c = 11.89a0), η =
0.723% (a = 11.61a0 and c = 11.81a0), η = −0.723% (a =
11.84a0 and c = 11.64a0), and η = −1.45% (a = 11.95a0

and c = 11.55a0). Additionally, we considered 7 systems with
different shear strains ε = γ − 90◦, where γ is the angle
between the a axis and the b axis: ε = 2◦, ε = 1◦, ε = 0.5◦,
ε = 0.2◦, ε = 0.1◦, ε = −0.1◦, ε = −0.2◦

After obtaining the electronic structure self-consistently
we generated maximally localized Wannier functions (ML-
WFs) using the Wannier90 code [31] in order to calculate the
SOTs according to the method described in Ref. [25] with the
help of Wannier interpolation for computational speed-up. We
disentangled 44 MLWFs from 66 bands. For Mn and Pt we
used sp3d2, dxy, dyz and dzx trial orbitals. For Sb we employed
s and p trial orbitals.
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The even torkance is given by [25]

t even
i j = eh̄

2πN
∑

kn �=m

Im[〈ψkn|Ti|ψkm〉〈ψkm|v j |ψkn〉]

×
{

�(Ekm − Ekn)

[(EF − Ekn)2 + �2][(EF − Ekm)2 + �2]

+ 2�

[Ekn − Ekm][(EF − Ekm)2 + �2]

+ 2

[Ekn − Ekm]2 Im log
Ekm − EF − i�

Ekn − EF − i�

}
(21)

and the odd torkance is given by

todd
i j = eh̄

πN
∑
knm

�2Re[〈ψkn|Ti|ψkm〉〈ψkm|v j |ψkn〉]
[(EF − Ekn)2 + �2][(EF − Ekm)2 + �2]

,

(22)

where N is the number of k points used to sample the Bril-
louin zone, e is the elementary positive charge, Ti is the i-th
Cartesian component of the torque operator, v j is the j-th
Cartesian component of the velocity operator, � is the quasi-
particle broadening, and ψkn and Ekn denote the Bloch
function for band n at k point k and the corresponding band
energy, respectively. A constant broadening of � = 25 meV
was used in the calculations unless noted otherwise.

Due to the half-metallicity the spin magnetic moment per
unit cell takes the integer value μ = 4μB when SOI is not
included in the calculations, where μB is Bohr’s magne-
ton. When we compute the magnetic moments contained in
muffin-tin spheres around the atoms, we find that Mn con-
tributes most to the total magnetic moment. In detail the
atomic magnetic moments (in units of μB) obtained in GGA
(LDA) are as follows: 3.91 (3.8) on Mn, 0.11 (0.14) on Pt,
and −0.072 (−0.047) on Sb. In our calculations of SOT we
include SOI and therefore the magnetic moment slightly devi-
ates from the integer value μ = 4μB. This deviation depends
on the strain and on the magnetization direction, but it is at
most 1% for the strains that we consider. Therefore, μ ≈ 4μB

is very well satisfied in all our calculations. When we present
our ab initio results we use ea0 ≈ 8.478 × 10−30Cm as the
unit of torkance. A torkance of one ea0 corresponds therefore
to an effective magnetic field of B = ea0E/μ ≈ 0.229 μT
when the applied electric field is E = 1 V/m.

In Ref. [25] we have shown that the odd SOT is pro-
portional to 1/� in the limit � → 0, while the even SOT
is independent of � in this limit. Therefore, it may be con-
venient to discuss the odd SOT per applied electric current,
because this ratio is independent of � in the limit of � → 0.
The resistivity of cubic PtMnSb at � = 25 meV is given
by ρxx = 17 μ� cm, which we computed using the equations
given in Ref. [25]. Consequently, an odd torkance of one
ea0 at � = 25 meV corresponds to an effective magnetic
field per electric current-density ratio of B/ j = ea0E/(μ j) =
ea0ρxx/μ ≈ 3.89 × 10−14 Tm2/A.

FIG. 2. Angular dependence of the odd torkance in PtMnSb for
several strains η = (c − ccub)/ccub obtained in GGA (filled circles)
and LDA (filled triangles) when the electric current is applied along
the [110] direction and when the magnetization is in-plane. � is
the angle between the magnetization and the [110] direction. The
component of the odd torque pointing in the [001] direction is shown.
Solid lines are fits to the GGA results according to Eq. (16).

B. Odd torque

In Fig. 2 we show the odd torkance as a function of the
azimuthal angle of the magnetization for different tetragonal
strains. Strain increases the odd torkance significantly. At
large strain the odd SOT is of the same order of magnitude
as in experiments on NiMnSb [13]. A suitable substrate on
which PtMnSb[100] grows under tetragonal strain is W[100].
For W the theoretically estimated misfit strain is 2.1%, while
the evaluation of diffraction data yields an estimated in-plane
tensile strain of 0.31%–0.52% [20].

In the tetragonal systems the differences between the
torkances computed with GGA (filled circles) and LDA (filled
triangles) are very small. However, in the cubic system GGA
and LDA differ even qualitatively: Here, the torkance has
maxima close to 120◦ and close to 240◦ when GGA is used.
However, when LDA is used it has a maximum at 0◦ instead.
When we use Eq. (16) to fit the ab initio results we obtain very
good agreement between the fit and the data, as shown in the
figure.

In Fig. 3 we show the odd torkance as a function of the
polar angle θ . It varies only moderately with the angle θ ,
in contrast to the strong variation with the angle φ shown
in Fig. 2. When the tetragonal strain is η =1.45% the odd
torkance is of the same order of magnitude as the even
and odd torkances in magnetic bilayers such as Co/Pt and
Mn/W [25].

In Fig. 4 we show the strain dependence of the parameters
βk in Eq. (16), which we use to fit the ab initio results. In
cubic PtMnSb we find that relations Eq. (A8) are satisfied
well. The coefficient β1 varies linearly with strain and depends
strongly on it, while the coefficients β2 through β6 are less
sensitive to strain than β1. In Eq. (16) β1 is the coefficient
of ϑ

(odd1)
i j , which describes the SOT from Dresselhaus-type

SOI. However, β1 does not vanish for zero strain. Of course,
this does not imply that there is a Dresselhaus field at η = 0.
Instead, it is simply a manifestation of Eq. (15), which shows
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FIG. 3. Angular dependence of the odd torkance in PtMnSb for
several strains η = (c − ccub)/ccub obtained in GGA when the elec-
tric current is applied in the [110] direction. The magnetization is
rotated from the [001] direction (θ=0) to the [110] direction (θ =
90◦). We show only the component of the torque that is parallel to
the unit vector eθ of the spherical coordinate system. Ab initio data
are shown by symbols, while solid lines are fits according to Eq. (16).

that ϑ
(odd1)
i j is not linearly independent from the higher order

contributions described by the tensors 2, 3, 5, and 7.
In Eq. (16) we made the choice α7 = 0 in order to get an

unambiguous representation of the torque in terms of a set of
fitting parameters, which is only possible when we expand the
torkance in terms of linearly independent tensors. However,
it is possible to choose a different combination of tensors
such that the coefficient of ϑ

(odd1)
i j is zero at η = 0. Such a

combination has the advantage that one may claim that the
coefficient of ϑ

(odd1)
i j corresponds to the Dresselhaus SOI. For

this purpose we perform a second fitting run after determining
the parameters β1, ..., β6 in Eq. (16) in the first fitting run. The
second fitting run is based on

todd
i j =

7∑
k=1

β ′
kϑ

(oddk)
i j , (23)

FIG. 4. PtMnSb: Expansion coefficients βi in Eq. (16) for sev-
eral strains η = (c − ccub)/ccub when the odd torkance is obtained
from GGA.

FIG. 5. PtMnSb: Expansion coefficients β ′
i in Eq. (23) for several

strains η = (c − ccub)/ccub when the odd torkance is obtained from
GGA.

where we fix β ′
7 = β1(η = 0), while β ′

1, ..., β
′
6 are free fitting

parameters. As shown in Fig. 5 this two-step fitting procedure
leads to β ′

1(η = 0) = 0, which can be understood easily from
Eq. (15). We can thus claim that β ′

1 describes the SOT from
the Dresselhaus field.

In Fig. 6 we show the expansion coefficients for the SOT
obtained from LDA. Interestingly, the β ′

1 in Figs. 5 and 6
differ by less than 1%. Thus, the differences between LDA
and GGA, which are illustrated in Fig. 2, are reflected mostly
by the differences in the higher-order coefficients β ′

2, ..., β
′
7.

These higher-order coefficients differ significantly between
GGA and LDA. However, for sufficiently large strain the
contribution of the higher-order terms is relatively small com-
pared with the Dresselhaus SOT described by β ′

1. Therefore,
the odd SOT is insensitive to the choice of the exchange
correlation potential in strained PtMnSb, as discussed already
in Fig. 2.

Next, we discuss the effect of shear strain ε on the odd
torque. In Fig. 7 we show the odd torkance as a function of the
azimuthal angle φ in the shear strained crystal. The enhance-
ment of the odd SOT with shear strain is similarly strong as

FIG. 6. PtMnSb: Expansion coefficients β ′
i in Eq. (23) for sev-

eral strains η = (c − ccub)/ccub when the odd torkance is obtained
from LDA.
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FIG. 7. Odd torkance in shear-strained PtMnSb obtained in
GGA. The current direction is along [100]. The magnetization is
in-plane. φ is the angle between the magnetization and the [100]
direction. Ab initio data are shown by filled circles, while solid lines
are fits according to Eq. (A9).

the enhancement with tetragonal strain. When the shear strain
is ε = 2◦ the odd torkance is of the same order of magnitude
as the even and odd torkances in magnetic bilayers such as
Co/Pt and Mn/W [25]. The variation of the odd torkance
with azimuthal angle φ is similar to the angular dependence
in tetragonally strained PtMnSb shown in Fig. 2.

At ε = 2◦ the odd torkance exhibits a maximum at φ = 0◦.
In order to investigate the dependence of this maximum on ε

we show in Fig. 8 the odd torkance at φ = 0◦ as a function
of ε. In the considered range the dependence on ε is approxi-
mately linear.

In Fig. 9 we show the expansion coefficients βi in Eq. (A9)
of the odd torkance. At large shear strain β1 dominates clearly
over the other contributions, i.e., the SOT from Rashba SOI is
dominant. Since shear strain automatically implies tetragonal
strain, a SOT from Dresselhaus SOI – described by β2 – is

FIG. 8. Dependence of the odd torkance on shear-strain in
PtMnSb when the polar and azimuthal angles of magnetization are
θ = 90◦ and φ = 0◦, respectively.

FIG. 9. Expansion coefficients βi in Eq. (A9) of the odd torkance
in shear-strained PtMnSb obtained in GGA.

present as well, but it is small compared to the SOT from
Rashba SOI.

C. Even Torque

In Fig. 10 we show the even torkance as a function of
the azimuthal angle � for several tetragonal strains η. The
even torque is considerably less sensitive to strain than the
odd torque. Additionally, at η = 1.45% the maximum even
torkance is smaller than the maximum odd torkance by a
factor of 12.5. In contrast to magnetic bilayer systems such as
Co/Pt [15], where the even SOT is typically more important
than the odd SOT, in PtMnSb the odd SOT dominates.

In Fig. 11 we show the even torkance in shear-strained
PtMnSb at � = 100 meV. While the even torkance is more

FIG. 10. Angular dependence of the even torkance obtained
within GGA in PtMnSb for several tetragonal strains η = (c −
ccub)/ccub when the electric current is applied along [110] direction
and when the magnetization is in-plane. � is the angle between
magnetization and the [110] direction. We show the component of
the even torque that is parallel to the unit vector eφ of the spherical
coordinate system. Ab-initio data are shown by filled circles, while
solid lines are fits according to Eq. (19).
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FIG. 11. Angular dependence of the even torkance obtained
within GGA in PtMnSb for several shear strains ε when the electric
current is applied along the [100] direction and when the magnetiza-
tion is in-plane. φ is the angle between magnetization and the [100]
direction. We show the component of the even torque that is parallel
to the unit vector eφ of the spherical coordinate system. Ab initio
data are shown by filled circles, while solid lines are fits according to
Eq. (B2).

sensitive to shear strain than to tetragonal strain, it is less
sensitive to shear stain than the odd torkance.

IV. SUMMARY

We discuss the constraints that crystal symmetry imposes
on the form of the SOT torkance tensor in half Heuslers
with tetragonal or shear strain. We discuss the lowest order
tensors, which correspond to Rashba and Dresselhaus SOI,
but also higher order tensors. We perform first-principles DFT
calculations of the SOT in half-Heusler PtMnSb as a function
of tetragonal and shear strain. The odd torkance in PtMnSb
depends strongly on tetragonal strain, which we attribute to
the Dresselhaus SOI. We find the SOT from Dresselhaus SOI
to be insensitive to the exchange-correlation functional, i.e.,
the differences between GGA and LDA are negligible. In
contrast, the higher-order tensors differ substantially between
GGA and LDA. However, these higher-order contributions are
small in PtMnSb with tetragonal strain, such that the total odd
torque in PtMnSb is insensitive to the exchange-correlation
functional. The even torkance depends only weakly on tetrag-
onal strain, but it depends moderately strongly on shear strain.
The dependence of the odd SOT on shear strain is similarly
strong as its dependence on tetragonal strain and it arises
mostly from the Rashba SOI. In SOT applications PtMnSb
should be grown on suitable substrates that maximize strain
in order to obtain large torkances. Our results show that in
strained PtMnSb torkances of the same order of magnitude as
in NiMnSb experiments may be achieved.
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APPENDIX A: SYMMETRY ANALYSIS FOR THE ODD
TORQUE IN CUBIC HALF HEUSLERS AND IN HALF

HEUSLERS UNDER SHEAR STRAIN

a. Cubic PtMnSb

In the following we discuss the odd torque for the case
of cubic half Heuslers, i.e., a = b = c and α = β = γ = 90◦
(point group 4̄3m). In contrast to the case with tetragonal
strain, symmetry does not allow axial tensors of rank 2 in
cubic PtMnSb [14]. The following axial tensors of rank 4 are
allowed by symmetry:

χ
(a12)
i jkl = δ

(2121)
i jkl − δ

(1212)
i jkl − δ

(3131)
i jkl + δ

(3232)
i jkl + δ

(1313)
i jkl

− δ
(2323)
i jkl ,

χ
(a13)
i jkl = −δ

(2211)
i jkl + δ

(1122)
i jkl + δ

(3311)
i jkl − δ

(3322)
i jkl

− δ
(1133)
i jkl + δ

(2233)
i jkl ,

χ
(a14)
i jkl = −δ

(1221)
i jkl + δ

(2112)
i jkl + δ

(1331)
i jkl − δ

(2332)
i jkl − δ

(3113)
i jkl

+ δ
(3223)
i jkl . (A1)

Since the indices k and l of χi jkl both couple to magnetization
in Eq. (3) and since

χ
(a12)
i jkl M̂kM̂l = χ

(a14)
i jkl M̂kM̂l , (A2)

we do not need to consider χ (a14) when we expand χ
(a)
i jkl in

terms of the tensors in Eq. (A1). Comparison of these tensors
to Table I yields

χ
(a12)
i jkl = χ

(a2)
i jlk − χ

(a5)
i jkl − χ

(a6)
i jlk ,

χ
(a13)
i jkl = χ

(a3)
i jkl − χ

(a4)
i jkl + χ

(a9)
i jkl . (A3)

Thus, for the cubic half Heuslers, we can express the tensors
in Eq. (3) as follows:

χ
(a)
i j = 0, χ

(a)
i jkl = α12χ

(a12)
i jkl + α13χ

(a13)
i jkl , (A4)

with two coefficients α12 and α13 [14].
The corresponding torkance is given by

todd
i j = μ

13∑
k=12

αk ϑ
(oddk)
i j =

13∑
k=12

βk ϑ
(oddk)
i j (A5)
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with

ϑ (odd12) = ϑ (odd2) − ϑ (odd5) − ϑ (odd6) =
⎛
⎝−2M̂1M̂2M̂3 M̂2

2 M̂3 M̂2M̂2
3

M̂2
1 M̂3 −2M̂1M̂2M̂3 M̂1M̂2

3

M̂2
1 M̂2 M̂1M̂2

2 −2M̂1M̂2M̂3

⎞
⎠ (A6)

and

ϑ (odd13) = ϑ (odd3) − ϑ (odd4) + ϑ (odd7) =
⎛
⎝ 0 M̂2

1 M̂3 − M̂3
3 −M̂3

2 + M̂2
1 M̂2

M̂2
2 M̂3 − M̂3

3 0 −M̂3
1 + M̂1M̂2

2

−M̂3
2 + M̂2

3 M̂2 −M̂3
1 + M̂1M̂2

3 0

⎞
⎠. (A7)

Instead of using Eq. (A5) to fit the odd torkance in cubic
PtMnSb, one can of course also use Eq. (16). By equating
Eqs. (A5) and (16) we find that in cubic PtMnSb the following
relations should be satisfied:

β1 = −β4, 2β1 = β3,

2β1 = −β2 − β5, β6 = β1 + β5. (A8)

b. Shear strain

Finally, we discuss the odd torque in the presence of shear
strain.

We present the axial tensors of rank 2 and rank 4 that
are allowed by symmetry in shear-strained half-Heuslers in
Table III. As indicated by arrows in the Table, tensors 6, 7,
15, 16, 17, and 18 do not need to be considered because both
indices k and l of χ

(a)
i jkl couple to magnetization in Eq. (3)

and these tensors may therefore be replaced by others. Ad-
ditionally, tensor 8 does not need to be considered, because it
evaluates to zero when both indices k and l of χ

(a)
i jkl are con-

tracted with the magnetization. Tensor 1 describes the SOT
effective field from Rashba SOI, tensor 2 describes the SOT
effective field from Dresselhaus SOI [14], and the remaining
tensors describe higher-order contributions that have not yet
been discussed in the literature. Tensor 2 appears also in the
case of tetragonal strain, see the first tensor in Table I. This is
expected, because shear strain is automatically accompanied
by tetragonal strain.

TABLE III. List of axial tensors of rank 2 and 4 allowed by
symmetry in shear-strained half Heuslers. The notation introduced
in Eq. (5) is used. Arrows indicate tensors that may be replaced by
others due to permutation of indices, while (A10) denotes tensors
that may be replaced by others due to Eq. (A10).

# χ (a#) Note # χ (a#) Note

1 〈21〉 − 〈12〉 12 〈3132〉 − 〈3231〉 (A10)
2 〈22〉 − 〈11〉 13 〈3232〉 − 〈3131〉 (A10)
3 〈2121〉 − 〈1212〉 14 〈2332〉 − 〈1331〉
4 〈2221〉 − 〈1112〉 15 〈2313〉 − 〈1323〉 → 5
5 〈2331〉 − 〈1332〉 16 〈3123〉 − 〈3213〉 → 12
6 〈2112〉 − 〈1221〉 → 3 17 〈3223〉 − 〈3113〉 → 13
7 〈2212〉 − 〈1121〉 → 4 18 〈2323〉 − 〈1313〉 → 14
8 〈3312〉 − 〈3321〉 ∅ 19 〈2133〉 − 〈1233〉
9 〈2122〉 − 〈1211〉 20 〈2233〉 − 〈1133〉
10 〈2222〉 − 〈1111〉 21 〈2111〉 − 〈1222〉 (A10)
11 〈3322〉 − 〈3311〉 22 〈2211〉 − 〈1122〉 (A10)

The corresponding torkance may be written as

todd
i j =

2∑
#=1

β#�imχ
(a#)
m j +

22∑
#=3

β#�imχ
(a#)
m jkl M̂kM̂l , (A9)

where the matrix � is defined in Eq. (11). As discussed above,
one may set β# = 0 for all tensors # indicated by an arrow or
by ∅ in Table III, i.e., β6 = 0, β7 = 0, β8 = 0, β15 = 0, . . . .
However, due to the relations

�imχ
(a1)
m j = �imχ

(a4)
m jkl M̂kM̂l − �imχ

(a12)
m jkl M̂kM̂l

+ �imχ
(a19)
m jkl M̂kM̂l + �imχ

(a21)
m jkl M̂kM̂l ,

�imχ
(a2)
m j = �imχ

(a10)
m jkl M̂kM̂l + �imχ

(a20)
m jkl M̂kM̂l

+ �imχ
(a22)
m jkl M̂kM̂l ,

�imχ
(a3)
m j = �imχ

(a10)
m jkl M̂kM̂l + �imχ

(a13)
m jkl M̂kM̂l ,

�im
[
χ

(a4)
m jkl − �imχ

(a9)
m jkl − �imχ

(a12)
m jkl

]
M̂kM̂l = 0,

(A10)
the remaining tensors in Eq. (A9) are not linearly independent.
Therefore, we may additionally choose β21 = 0, β22 = 0,
β13 = 0, and β12 = 0. Thus, only 11 independent tensors need
to be considered in Eq. (A9) with 11 corresponding fitting
parameters β#.

APPENDIX B: SYMMETRY ANALYSIS FOR THE EVEN
TORQUE IN CUBIC HALF HEUSLERS AND IN HALF

HEUSLERS UNDER SHEAR STRAIN

a. Cubic PtMnSb

When a = b = c and α = β = γ = 90◦, symmetry allows
11 polar tensors of rank 3 and rank 5, which we list in
Table IV.

In Eq. (17) the last three indices are contracted with the
magnetization. Therefore, for the purpose of application in
Eq. (17), χ

(p6)
i jklm is equivalent with χ

(p2)
i jklm, χ

(p4)
i jklm is equivalent

with χ
(p3)
i jklm, and χ

(p9)
i jklm is equivalent with χ

(p8)
i jklm, as indicated

in the Table. Consequently, we do not need to consider χ
(p6)
i jklm,

χ
(p4)
i jklm, and χ

(p9)
i jklm. Thus, the contribution to the effective field

of the even SOT which is third order in M̂ can be expressed in
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TABLE IV. List of polar tensors of rank 3 and 5 allowed by symmetry in cubic half Heuslers. The notation introduced in Eq. (5) is used.
Arrows indicate tensors that may be replaced by others.

# χ (p#) Note

1 〈321〉 + 〈231〉 + 〈312〉 + 〈132〉 + 〈213〉 + 〈123〉
2 −〈13121〉 − 〈12131〉 − 〈23212〉 − 〈21232〉 − 〈32313〉 − 〈31323〉
3 〈32221〉 + 〈23331〉 + 〈31112〉 + 〈13332〉 + 〈21113〉 + 〈12223〉
4 〈31211〉 + 〈21311〉 + 〈32122〉 + 〈12322〉 + 〈23133〉 + 〈13233〉 →χ (p3)

5 〈32111〉 + 〈23111〉 + 〈31222〉 + 〈13222〉 + 〈21333〉 + 〈12333〉
6 〈13211〉 + 〈12311〉 + 〈23122〉 + 〈21322〉 + 〈32133〉 + 〈31233〉 →χ (p2)

7 〈23221〉 + 〈32331〉 + 〈13112〉 + 〈31332〉 + 〈12113〉 + 〈21223〉
8 〈11321〉 + 〈11231〉 + 〈22312〉 + 〈22132〉 + 〈33213〉 + 〈33123〉
9 −〈33321〉 − 〈22231〉 − 〈33312〉 − 〈11132〉 − 〈22213〉 − 〈11123〉 →χ (p8)

10 −〈31121〉 − 〈21131〉 − 〈32212〉 − 〈12232〉 − 〈23313〉 − 〈13323〉
11 −〈22321〉 − 〈33231〉 − 〈11312〉 − 〈33132〉 − 〈11213〉 − 〈22123〉

terms of the tensor

χ
(p)
i jklm = α2χ

(p2)
i jklm + α3χ

(p3)
i jklm + α5χ

(p5)
i jklm + α7χ

(p7)
i jklm

+ α8χ
(p8)
i jklm + α10χ

(p10)
i jklm + α11χ

(p11)
i jklm. (B1)

b. Shear strain

Finally, we consider the case of shear strain. In Table V we
present the polar tensors of rank 3 and 5 allowed by symmetry
in shear-strained half Heuslers. As indicated in the Table by
arrows, several tensors may be replaced by others, because in
Eq. (17) the indices k, l , and m of χ

(p)
i jklm are interchangeable.

The corresponding torkance may be written as

t even
i j = �in

[
7∑

#=1

β#χ
(p#)
n jk +

68∑
#=8

β#χ
(p#)
n jklmM̂lM̂m

]
M̂k, (B2)

where the matrix � is defined in Eq. (11). As discussed above,
one may set β# = 0 for all tensors # indicated by an arrow in
Table III, i.e., β12 = 0, β13 = 0, β17 = 0, . . . .

Due to the relations

�inχ
(p1)
n jk M̂k = �in

[
χ

(p51)
n jklm + χ

(p62)
n jklm

]
M̂kM̂lM̂m,

�inχ
(p1)
n jk M̂k = −�inχ

(p5)
n jklmM̂kM̂l M̂m,

0 = �in
[
χ

(p27)
n jklm + χ

(p62)
n jklm

]
M̂kM̂lM̂m,

0 = �in
[
χ

(p16)
n jklm + 1

2χ
(p46)
n jklm

]
M̂kM̂lM̂m,

0 = �in
[
χ

(p1)
n jk + [

χ
(p15)
n jklm + χ

(p20)
n jklm + χ

(p27)
n jklm

]
× M̂l M̂m

]
M̂k,

0 = �in
[
χ

(p2)
n jk − [

χ
(p14)
n jklm + χ

(p63)
n jklm − 1

2χ
(p46)
n jklm

]
× M̂l M̂m

]
M̂k,

0 = �in
[
χ

(p3)
n jk − [

χ
(p42)
n jklm + χ

(p49)
n jklm + χ

(p54)
n jklm

]
M̂lM̂m

]
× M̂k,

0 = �in
[
χ

(p3)
n jk + [

χ
(p9)
n jklm + χ

(p21)
n jklm − χ

(p42)
n jklm

−χ
(p49)
n jklm

]
M̂lM̂m

]
M̂k,

TABLE V. List of polar tensors of rank 3 and 5 allowed by
symmetry in shear-strained half Heuslers. The notation introduced
in Eq. (5) is used. Arrows indicate tensors that may be replaced by
others due to permutations of indices, while tensors indicated by (B3)
may be replaced by others due to Eq. (B3).

# χ (p#) Note # χ (p#) Note

1 〈333〉 35 〈12113〉 + 〈21223〉 → 21
2 〈231〉 + 〈132〉 36 〈11113〉 + 〈22223〉 → 22
3 〈321〉 + 〈312〉 37 〈13313〉 + 〈23323〉 → 27
4 〈311〉 + 〈322〉 38 〈23133〉 + 〈13233〉 → 14
5 〈131〉 + 〈232〉 (B3) 39 〈13133〉 + 〈23233〉 → 27
6 〈213〉 + 〈123〉 40 〈21333〉 + 〈12333〉 (B3)
7 〈113〉 + 〈223〉 41 〈11333〉 + 〈22333〉 (B3)
8 〈21321〉 + 〈12312〉 42 〈32221〉 + 〈31112〉
9 〈22321〉 + 〈11312〉 43 〈31221〉 + 〈32112〉
10 〈21131〉 + 〈12232〉 44 〈32121〉 + 〈31212〉 → 43
11 〈22131〉 + 〈11232〉 45 〈31121〉 + 〈32212〉 → 42
12 〈21231〉 + 〈12132〉 → 8 46 〈33321〉 + 〈33312〉 (B3)
13 〈22231〉 + 〈11132〉 → 9 47 〈32211〉 + 〈31122〉 → 43
14 〈23331〉 + 〈13332〉 48 〈31211〉 + 〈32122〉 → 42
15 〈13221〉 + 〈23112〉 49 〈32111〉 + 〈31222〉 (B3)
16 〈13121〉 + 〈23212〉 50 〈31111〉 + 〈32222〉 (B3)
17 〈12321〉 + 〈21312〉 → 8 51 〈33311〉 + 〈33322〉 (B3)
18 〈11321〉 + 〈22312〉 → 9 52 〈33231〉 + 〈33132〉 → 46
19 〈13211〉 + 〈23122〉 → 16 53 〈33131〉 + 〈33232〉 → 51
20 〈13111〉 + 〈23222〉 54 〈32331〉 + 〈31332〉 (B3)
21 〈12311〉 + 〈21322〉 55 〈31331〉 + 〈32332〉 (B3)
22 〈11311〉 + 〈22322〉 56 〈33213〉 + 〈33123〉 → 46
23 〈12231〉 + 〈21132〉 → 8 57 〈33113〉 + 〈33223〉 → 51
24 〈11231〉 + 〈22132〉 → 9 58 〈32313〉 + 〈31323〉 → 54
25 〈12131〉 + 〈21232〉 → 21 59 〈31313〉 + 〈32323〉 → 55
26 〈11131〉 + 〈22232〉 → 22 60 〈32133〉 + 〈31233〉 → 54
27 〈13331〉 + 〈23332〉 (B3) 61 〈31133〉 + 〈32233〉 → 55
28 〈21113〉 + 〈12223〉 → 10 62 〈33333〉 (B3)
29 〈22113〉 + 〈11223〉 → 11 63 〈23111〉 + 〈13222〉 (B3)
30 〈21213〉 + 〈12123〉 → 8 64 〈23211〉 + 〈13122〉 → 15
31 〈22213〉 + 〈11123〉 → 9 65 〈21311〉 + 〈12322〉 → 10
32 〈23313〉 + 〈13323〉 → 14 66 〈22311〉 + 〈11322〉 → 11
33 〈12213〉 + 〈21123〉 → 8 67 〈23121〉 + 〈13212〉 → 15
34 〈11213〉 + 〈22123〉 → 9 68 〈23221〉 + 〈13112〉 → 16
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0 = �in
[
χ

(p4)
n jk − [

χ
(p43)
n jklm + χ

(p50)
n jklm + χ

(p55)
n jklm

]
M̂lM̂m

]
× M̂k,

0 = �in
[
χ

(p4)
n jk + [

χ
(p8)
n jklm + χ

(p22)
n jklm − χ

(p43)
n jklm

−χ
(p50)
n jklm

]
M̂lM̂m

]
M̂k,

0 = �in
[
χ

(p6)
n jk − [

χ
(p10)
n jklm + χ

(p21)
n jklm + χ

(p40)
n jklm

]
× M̂l M̂m

]
M̂k,

0 = �in
[
χ

(p7)
n jk − [

χ
(p11)
n jklm + χ

(p22)
n jklm + χ

(p41)
n jklm

]
× M̂lM̂m

]
M̂k, (B3)

we may additionally set β# = 0 in Eq. (B2) for # =
5, 27, 40, 41, 46, 49, 50, 51, 54, 55, 62, 63. Thus, there are
only six linearly independent polar tensors of rank 3 and
12 linearly independent polar tensors of rank 5 that need to
be considered in Eq. (B2), i.e., 18 tensors in total and 18
corresponding fitting parameters β#.

[1] A. Manchon, J. Železný, I. M. Miron, T. Jungwirth, J. Sinova,
A. Thiaville, K. Garello, and P. Gambardella, Current-induced
spin-orbit torques in ferromagnetic and antiferromagnetic sys-
tems, Rev. Mod. Phys. 91, 035004 (2019).

[2] I. Galanakis, P. Mavropoulos, and P. H. Dederichs, Electronic
structure and SlaterPauling behaviour in half-metallic Heusler
alloys calculated from first principles, J. Phys. D 39, 765 (2006).

[3] K. Elphick, W. Frost, M. Samiepour, T. Kubota, K. Takanashi,
S. Hiroaki, S. Mitani, and A. Hirohata, Heusler alloys for
spintronic devices: Review on recent development and future
perspectives, Sci. Technol. Adv. Mater. 22, 235 (2020).

[4] J. Ma, V. I. Hegde, K. Munira, Y. Xie, S. Keshavarz,
D. T. Mildebrath, C. Wolverton, A. W. Ghosh, and W. H.
Butler, Computational investigation of half-Heusler com-
pounds for spintronics applications, Phys. Rev. B 95, 024411
(2017).

[5] F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser,
Half − Heusler compounds: Novel materials for energy and
spintronic applications, Semicond. Sci. Technol. 27, 063001
(2012).

[6] B. Kwon, Y. Sakuraba, H. Sukegawa, S. Li, G. Qu, T.
Furubayashi, and K. Hono, Anisotropic magnetoresistance and
current-perpendicular-to-plane giant magnetoresistance in epi-
taxial NiMnSb-based multilayers, J. Appl. Phys. 119, 023902
(2016).

[7] Z. Wen, T. Kubota, T. Yamamoto, and K. Takanashi, Enhanced
current-perpendicular-to-plane giant magnetoresistance effect
in half-metallic NiMnSb based nanojunctions with multiple Ag
spacers, Appl. Phys. Lett. 108, 232406 (2016).

[8] G. Qu, P.-H. Cheng, Y. Du, Y. Sakuraba, S. Kasai, and K. Hono,
Investigation of spin-dependent transports and microstructure in
NiMnSb-based magnetoresistive devices, Appl. Phys. Lett. 111,
222402 (2017).

[9] Z. Wen, T. Kubota, T. Yamamoto, and K. Takanashi, Fully
epitaxial c1b-type NiMnSb half-Heusler alloy films for current-
perpendicular-to-plane giant magnetoresistance devices with a
Ag spacer, Sci. Rep. 5, 18387 (2015).

[10] C. Liu, C. K. A. Mewes, M. Chshiev, T. Mewes, and W. H.
Butler, Origin of low gilbert damping in half metals, Appl.
Phys. Lett. 95, 022509 (2009).

[11] C. Ciccarelli, L. Anderson, V. Tshitoyan, A. J. Ferguson, F.
Gerhard, C. Gould, L. W. Molenkamp, J. Gayles, J. Zelezny,
L. Smejkal, Z. Yuan, J. Sinova, F. Freimuth, and T. Jungwirth,
Room-temperature spin orbit torque in NiMnSb, Nat. Phys. 12,
855 (2016).

[12] J. elezn, Z. Fang, K. Olejnk, J. Patchett, F. Gerhard, C. Gould,
L. W. Molenkamp, C. Gomez-Olivella, J. Zemen, T. Tich,

T. Jungwirth, and C. Ciccarelli, Unidirectional magnetore-
sistance and spin-orbit torque in NiMnSb, arXiv:2102.12838
[cond-mat.mes-hall].

[13] N. Zhao, A. Sud, H. Sukegawa, S. Komori, K. Rogdakis, K.
Yamanoi, J. Patchett, J. W. A. Robinson, C. Ciccarelli, and H.
Kurebayashi, Growth, strain, and spin-orbit torques in epitax-
ial Ni-Mn-Sb films sputtered on GaAs, Phys. Rev. Mater. 5,
014413 (2021).

[14] J. Železný, H. Gao, A. Manchon, F. Freimuth, Y. Mokrousov,
J. Zemen, J. Mašek, J. Sinova, and T. Jungwirth, Spin-orbit
torques in locally and globally noncentrosymmetric crystals:
Antiferromagnets and ferromagnets, Phys. Rev. B 95, 014403
(2017).

[15] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov,
S. Blügel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella,
Symmetry and magnitude of spin-orbit torques in ferromagnetic
heterostructures, Nat. Nanotechnol. 8, 587 (2013).

[16] F. Mahfouzi and N. Kioussis, First-principles study of the an-
gular dependence of the spin-orbit torque in Pt/Co and Pd/Co
bilayers, Phys. Rev. B 97, 224426 (2018).

[17] J.-P. Hanke, F. Freimuth, B. Dupé, J. Sinova, M. Kläui, and
Y. Mokrousov, Engineering the dynamics of topological spin
textures by anisotropic spin-orbit torques, Phys. Rev. B 101,
014428 (2020).

[18] K. D. Belashchenko, A. A. Kovalev, and M. van Schilfgaarde,
First-principles calculation of spin-orbit torque in a Co/Pt bi-
layer, Phys. Rev. Mater. 3, 011401(R) (2019).

[19] J. Krieft, J. Mendil, M. H. Aguirre, C. O. Avci, C. Klewe,
K. Rott, J.-M. Schmalhorst, G. Reiss, P. Gambardella, and T.
Kuschel, Co-sputtered PtMnSb thin films and PtMnSb/Pt bi-
layers for spin-orbit torque investigations, Phys. Status Solidi
RRL 11, 1600439 (2017).

[20] M. C. Kautzky and B. M. Clemens, Structure and
magneto-optical properties of epitaxial PtMnSb(001) on
W(001)/MgO(001), Appl. Phys. Lett. 66, 1279 (1995).

[21] P. G. van Engen, K. H. J. Buschow, R. Jongebreur, and M.
Erman, PtMnSb, a material with very high magneto-optical kerr
effect, Appl. Phys. Lett. 42, 202 (1983).

[22] V. N. Antonov, P. M. Oppeneer, A. N. Yaresko, A. Y.
Perlov, and T. Kraft, Computationally based explanation
of the peculiar magneto-optical properties of PtMnSb
and related ternary compounds, Phys. Rev. B 56, 13012
(1997).

[23] M. C. Kautzky, F. B. Mancoff, J.-F. Bobo, P. R. Johnson, R. L.
White, and B. M. Clemens, Investigation of possible giant mag-
netoresistance limiting mechanisms in epitaxial PtMnSb thin
films, J. Appl. Phys. 81, 4026 (1997).

224414-11

https://doi.org/10.1103/RevModPhys.91.035004
https://doi.org/10.1088/0022-3727/39/5/S01
https://doi.org/10.1080/14686996.2020.1812364
https://doi.org/10.1103/PhysRevB.95.024411
https://doi.org/10.1088/0268-1242/27/6/063001
https://doi.org/10.1063/1.4939557
https://doi.org/10.1063/1.4953403
https://doi.org/10.1063/1.4996736
https://doi.org/10.1038/srep18387
https://doi.org/10.1063/1.3157267
https://doi.org/10.1038/nphys3772
http://arxiv.org/abs/arXiv:2102.12838
https://doi.org/10.1103/PhysRevMaterials.5.014413
https://doi.org/10.1103/PhysRevB.95.014403
https://doi.org/10.1038/nnano.2013.145
https://doi.org/10.1103/PhysRevB.97.224426
https://doi.org/10.1103/PhysRevB.101.014428
https://doi.org/10.1103/PhysRevMaterials.3.011401
https://doi.org/10.1002/pssr.201600439
https://doi.org/10.1063/1.113262
https://doi.org/10.1063/1.93849
https://doi.org/10.1103/PhysRevB.56.13012
https://doi.org/10.1063/1.364925


FREIMUTH, BLÜGEL, AND MOKROUSOV PHYSICAL REVIEW B 103, 224414 (2021)

[24] Z. Wen, T. Kubota, and K. Takanashi, Optimization of half-
HeuslerPtMnSb alloy films for spintronic device applications,
J. Phys. D 51, 435002 (2018).

[25] F. Freimuth, S. Blügel, and Y. Mokrousov, Spin-orbit
torques in Co/Pt(111) and Mn/W(001) magnetic
bilayers from first principles, Phys. Rev. B 90, 174423
(2014).

[26] R. R. Birss, Symmetry and Magnetism (North-Holland,
Amsterdam, 1964).

[27] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[28] See http://www.flapw.de.
[29] U. von Barth and L. Hedin, A local exchange-correlation poten-

tial for the spin polarized case. i, J. Phys. C 5, 1629 (1972).
[30] C. Li, A. J. Freeman, H. J. F. Jansen, and C. L. Fu, Mag-

netic anisotropy in low-dimensional ferromagnetic systems:
Fe monolayers on Ag(001), Au(001), and Pd(001) substrates,
Phys. Rev. B 42, 5433 (1990).

[31] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G.
Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune
et al., Wannier90 as a community code: new features and appli-
cations, J. Phys.: Condens. Matter 32, 165902 (2020).

224414-12

https://doi.org/10.1088/1361-6463/aadf4e
https://doi.org/10.1103/PhysRevB.90.174423
https://doi.org/10.1103/PhysRevLett.77.3865
http://www.flapw.de
https://doi.org/10.1088/0022-3719/5/13/012
https://doi.org/10.1103/PhysRevB.42.5433
https://doi.org/10.1088/1361-648X/ab51ff

