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Exchange constants for local spin Hamiltonians from tight-binding models
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We consider the mapping of tight-binding electronic structure theory to a local spin Hamiltonian, based on the
adiabatic approximation for spin degrees of freedom in itinerant-electron systems. Local spin Hamiltonians are
introduced in order to describe the energy landscape of small magnetic fluctuations, locally around a given
spin configuration. They are designed for the linear response near a given magnetic state and, in general,
are insufficient to capture arbitrarily strong deviations of spin configurations from the equilibrium. In order
to achieve this mapping, we include a linear term in the local spin Hamiltonian that together with the usual
bilinear exchange tensor, produces an improved accuracy of effective magnetic Weiss fields for noncollinear
states. We also provide examples from tight-binding electronic structure theory, where our implementation of
the calculation of exchange constants is based on constraining fields that stabilize an out-of-equilibrium spin
configuration. We check our formalism by means of numerical calculations for iron dimers and chains.
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I. INTRODUCTION

The Heisenberg model and generalizations thereof are
among the most important paradigms of condensed matter
physics and have been very successful in describing the
magnetic behavior of both magnetic insulators, for which it
was suggested initially, and, with some reservations, metal-
lic magnets. There are several complementary approaches
of obtaining the exchange parameters that enter an effective
atomistic spin Hamiltonian for a specific material: (a) one
can obtain the exchange parameters analytically from a more
fundamental electronic Hamiltonian [1–3], (b) one can map
the spin Hamiltonian onto total energy calculations for spin
spirals [4] and spin-cluster expansions [5–9], or (c) one can
use energy variations of the magnetic ground state within first-
principles approaches such as spin-density functional theory
[10,11]. While approaches (a) and (b) aim to describe arbitrary
spin configurations, approach (c) is explicitly designed to
capture small fluctuations around the magnetic ground state.
In this paper, we will focus on approach (c), which was pio-
neered by Liechtenstein, Katsnelson, Antropov, and Gubanov
(LKAG) [10,11].
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In their work, Liechtenstein et al. emphasized that for
metals, the Heisenberg Hamiltonian “is applicable only for
small spin deviations from the ground state” [11], which
implies that terms beyond the bilinear Heisenberg exchange
interactions may be required to describe the magnetic be-
havior for strong deviations from the ground state. This was
further confirmed by explicit calculations for the cases of Fe,
Ni, and Fe-based magnetic alloys [12]. While the original
work by Liechtenstein et al. considered ferromagnetic ground
states, extensions of the LKAG formalism to nonequilibrium
[13,14] and noncollinear [15–21] states have been considered.
However, it was realized that a mapping of noncollinear spin
configurations to a Heisenberg model [19] or to a generalized
Heisenberg model with a bilinear exchange tensor [17] is,
in general, not possible for noncollinear states, apparently
requiring the inclusion of higher-order (beyond Heisenberg)
exchange contributions [3,9,22]. We propose an alternative so-
lution by including a linear term in a generalized spin model.
Linear terms are usually not considered in effective spin
Hamiltonians due to arguments connected to the degeneracy
of time-reversed states. We argue here that such a linear term
can be considered if one is interested only in small fluctuations
around a given spin configuration and takes into account that
the sign of the linear interaction parameter changes for the
spin-reversed configuration. As outlined here, higher-order
exchange interactions may not be required in this case, which
is in line with the original LKAG approach [10,11].

It is well established that the LKAG formalism is only
exact in the long-wavelength regime [23–25]. In an im-
plementation of the adiabatic approximation beyond the
long-wavelength limit, the inclusion of constraining fields is
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required [23,26,27]. These constraining fields stabilize non-
collinear, out-of-equilibrium spin configurations. We present
a formalism for calculating the full bilinear exchange tensor
from tight-binding models, which is based on the fact that
the effective magnetic field is the negative of the constraining
field [26–29]. This follows from the physical picture that the
constraining field has to cancel out the effective field act-
ing on a spin. From recent results that the effective field in
density functional theory (DFT) contains an additional term
besides the constraining field [28], we recover the formula
previously derived by Bruno for the isotropic Heisenberg ex-
change [23], which we extend to the full bilinear exchange
tensor. Results for the exchange parameters of nickel from a
formalism similar to Ref. [23] have been recently published
[30] and show a similar behavior as previous results based on
a frozen magnon approach [31], which also takes constraining
fields into account. Note that as was shown analytically [25],
the Bruno formula corresponds to the extraction of exchange
parameters from the inverse static magnetic susceptibility, that
is, to the energy of static spiral configurations, whereas LKAG
exchanges correspond to the poles of dynamic magnetic sus-
ceptibility, that is, to the spin-wave spectrum measured, e.g.,
by inelastic neutron scattering. In the formal limit of well-
defined local magnetic moments where intersite exchange
energies are much smaller than on-site Hund exchange split-
ting, these two expressions coincide.

The paper is organized as follows: in Sec. II, we introduce
and define the local spin Hamiltonian and derive an explicit
expression for the linear and bilinear terms from the effective
magnetic field. In Sec. III, we derive expressions based on
the constraining field for the exchange parameters in terms of
Green’s functions and self-energies. We apply these formulas
in Sec. IV to a tight-binding model for iron and present results
for iron dimers and chains. Finally, in Sec. V, we summarize
our results and provide a broader contextual analysis. In Ap-
pendices A and B, we give additional details on the definition
of the effective field and the calculation of Matsubara sums,
respectively. In Appendix C, we discuss the symmetry of
exchange constants within the different approaches that we
consider in this manuscript.

II. LOCAL SPIN HAMILTONIANS

We distinguish between two types of spin Hamiltonians:
global and local Hamiltonians. With a global Hamiltonian, we
denote a Hamiltonian that aims to describe energies of all pos-
sible spin configurations [approaches (a) and (b) above], while
a local Hamiltonian is designed to describe the energetics of
spin configurations in the vicinity of the ground state or, more
generally, in the vicinity of a predefined spin configuration
[approach (c) above]. Global Hamiltonians are in principle
superior, but in practice it may be difficult to obtain the nec-
essary parameters for higher-order exchange interactions if
they play a significant role. Also, rigorously speaking, it is not
guaranteed that the global Hamiltonian, expressed in terms of
spin operators only, exists for itinerant-electron systems at all.
Local spin Hamiltonians do not require any spin interactions
beyond the bilinear order (for Heisenberg exchange as well as
Dzyaloshinskii-Moriya interactions) and the exchange param-
eters can be directly computed without the need to fit the spin

Hamiltonian to many different spin configurations. However,
for a given local spin Hamiltonian, the range of validity, i.e.,
how small the fluctuations should be, is a priori not known
and depends on how significant the higher-order exchange
contributions are. Thus, local and global spin Hamiltonians
are complementary approaches with distinct advantages and
disadvantages. To avoid further misunderstanding, we have
to emphasize once more that here we mean “locality” and
“globality” of the Hamiltonians in energy and not in real
space.

In its most general form, the local spin Hamiltonian we
consider in this work is defined as

Hs = −
∑

iα

Ciαeiα − 1

2

∑
i j

∑
αβ

Jαβ
i j eiαe jβ, (2.1)

where eiα is the component α = x, y, z of the magnetic mo-
ment unit vector at site i, Jαβ

i j is the exchange tensor, and
we allow for a linear contribution, Ciα . Note that in this for-
mulation, the size of the magnetic moment on each site is
incorporated in the value of Jαβ

i j . The linear term in Eq. (2.1)
is an important difference between the local and global ap-
proaches. In the global approach, a linear term is not allowed
because the Hamiltonian (without an external magnetic field)
has to be invariant under an inversion of all magnetic moment
directions, eiα → −eiα , due to time-reversal symmetry. For
the local approach, the linear term is allowed since only small
fluctuations are described and the inversion of all moment
directions is beyond this regime. Time-reversal symmetry is
recovered by considering that the parameter Ciα changes its
sign for a time-reversed reference state.

The effective Weiss field of the Hamiltonian (2.1), which
is relevant for spin dynamics and for obtaining an equilibrium
configuration of the atomic moments, is given by

Beff
iα = − 1

Mi

∂Hs

∂eiα
= 1

Mi
Ciα + 1

Mi

∑
kν

Jαν
ik ekν, (2.2)

where Mi is the magnetic moment length at site i. To spec-
ify the parameters of the spin Hamiltonian, we consider the
following expansion of the effective field around a given spin
configuration {e0

i } to the first order:

Beff
iα ≈ Beff

iα

({
e0

i

}) +
∑

jβ

∂Beff
iα

∂e jβ

∣∣∣∣
{e0

i }

(
e jβ − e0

jβ

)
. (2.3)

By comparing Eqs. (2.2) and (2.3), we obtain

Jαβ
i j = Mi

∂Beff
iα

∂e jβ

∣∣∣∣
{e0

i }
, (2.4)

Ciα = MiB
eff
iα

({
e0

i

}) −
∑
kν

Jαν
ik e0

kν . (2.5)

As required by time-reversal symmetry,

Ciα
({

e0
i

}) = −Ciα
({ − e0

i

})
. (2.6)

If the system under consideration can be exactly described
by a bilinear spin Hamiltonian without any higher-order
terms, we have

Beff
iα

({
e0

i

}) = 1

Mi

∑
kν

Jαν
ik e0

kν, (2.7)
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FIG. 1. Illustration of a noncollinear spin chain studied as an
example in Sec. II, including the definition of the reference frame.

and the parameter Ciα vanishes and is not required. In that
case, the local and global spin Hamiltonians are identical. The
linear term in the local Hamiltonian, therefore, only plays a
role if higher-order exchange interactions are present in the
global Hamiltonian.

In the ground state, Beff
i = −∇ei E/Mi vanishes in Eq. (2.5)

since the gradient of the energy E has to be zero, and Ciα is
then determined by the exchange tensor Jαβ

i j alone. We note
that for the effective magnetic field that drives the precession
term of the dynamics of the moment direction ei,

ėi = γ ei × Beff
i , (2.8)

with γ the gyromagnetic ratio, only the component of the
effective field that is perpendicular to ei, i.e., Beff

i⊥, contributes
due to the cross product.

For a Heisenberg model with a ferromagnetic ground state
aligned along the z axis and isotropic exchange tensor,

Jαβ
i j = Ji jδαβ, (2.9)

we have

Cix = −
∑

j

Jxz
i j = 0, (2.10)

Ciy = −
∑

j

Jyz
i j = 0, (2.11)

Ciz = −
∑

j

Jzz
i j = 0. (2.12)

The requirement Jzz
i j = 0 follows from the projection to per-

pendicular effective fields (see Appendix A). Since Ciz is
the component parallel to the moment direction, it does not
contribute to Beff

i⊥ when considering small fluctuations around
the ferromagnetic ground state, even if we do not consider
the projection to perpendicular fields. Therefore, we recover
the established result that no linear terms are required for a
ferromagnetic Heisenberg model within the LKAG approach
[10,11].

As a simple example, we consider a one-dimensional spin
chain (see Fig. 1) with both bilinear and biquadratic nearest-
neighbor exchange contributions that are selected to result in

0 π/4 δθ π/2 3π/4 π

θ1 (rad)

−1

0

1

2

3

M
0
B

e
ff

0
x

(J
)

exact field

local model

FIG. 2. Comparison of the effective field for the toy model, given
by Eq. (2.17), with J/B = 1, and the corresponding local spin Hamil-
tonian, given by Eq. (2.2). We consider the effective field acting on
the spin at site i = 0 under rotations of the spin at site j = 1.

a noncollinear ground state,

H = −J
∑

i

ei · ei+1 + B
∑

i

(ei · ei+1)2, (2.13)

with J, B > 0. To obtain the ground state, it is sufficient to
consider configurations with

ei · ei+1 = cos(δθ ) ∀i, (2.14)

where δθ is the angle between two neighboring spins. The
energy is minimized for

δθ =
{

0, J/B � 2
arccos

(
J

2B

)
, J/B < 2,

(2.15)

i.e., for J/B < 2, the ground state is noncollinear. For simplic-
ity, we consider here only spin configurations within the xz
plane, such that the spin at each site j (specified as an integer)
is determined by a single angle θ j , with ground-state value

θ j = jδθ. (2.16)

Figure 2 shows a comparison of the exact effective field,
obtained from the gradient of Eq. (2.13),

MiBeff
i = −∇eiH

= J (ei+1 + ei−1)

− 2B(ei+1[ei · ei+1] + ei−1[ei · ei−1]), (2.17)

for J/B = 1 (for which δθ = π/3) and the effective field ob-
tained from the local spin Hamiltonian, given by the last part
of Eq. (2.2). The results are obtained for the spin at site i = 0
under rotations of the spin j = 1 with angle θ1, while all other
spins are in their noncollinear ground-state configuration. The
relevant ground-state effective exchange parameters are

Jxx
0,1 = Jxx

0,−1 = J − 2B cos(δθ ), (2.18)

Jxz
0,1 = −Jxz

0,−1 = −2B sin(δθ ). (2.19)

The effective field vanishes in the ground state, θ1 = δθ ,
as expected. The linear term C0x vanishes in this example
due to a mirror symmetry with respect to the spins at sites
−1 and +1 with θ+1 = −θ−1. As the figure shows, the local
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spin Hamiltonian provides an excellent approximation of the
effective field for small fluctuations around the ground state.
The result suggests that a local spin Hamiltonian is sufficient
for the calculation of, e.g., spin-wave spectra since they only
depend on energy variations near the ground state.

III. EXCHANGE CONSTANTS

We consider here the derivation of the exchange tensor Jαβ
i j

of the local spin Hamiltonian (2.1) based on a tight-binding
formalism. The standard approach is to consider variations of
the electronic energy [10,11], which may be used to obtain the
exchange parameters,

Jαβ
i j = − ∂2〈Ĥ〉

∂eiα∂e jβ
. (3.1)

From the point of view of a global spin Hamiltonian that
may contain higher-order exchange contributions, these ex-
change parameters Jαβ

i j are not just the bilinear exchange
parameters of such a global Hamiltonian but also take higher-
order exchange contributions into account [see Eqs. (2.18)
and (2.19)], which causes a configuration dependence
of Jαβ

i j [12,22].
Based on the result that the effective magnetic field, when

not considering DFT calculations, can just be obtained from
the constraining field [28],

Beff
iα = − 1

Mi

∂〈Ĥ〉
∂eiα

= −Bcon
iα , (3.2)

here we are taking the alternative approach of calculating the
exchange parameters from the constraining field,

Jαβ
i j = −Mi

∂Bcon
iα

∂e jβ
, (3.3)

which is equivalent to Eq. (3.1) if we assume Mi = const.
The constraining field Bcon

i is perpendicular to the moment
direction ei and is required to stabilize nonequilibrium spin
configurations within the adiabatic approximation [26–28,32].
It is added here to the full electronic tight-binding Hamilto-
nian Ĥtb,

Ĥ = Ĥtb + Ĥcon, (3.4)

with

Ĥcon = −
∑

i

γ Ŝi · Bcon
i , (3.5)

where Ŝi is the spin operator at lattice site i.
The tight-binding Hamiltonian consists of a hopping term

Ĥ0 and an interaction term Ĥint,

Ĥtb = Ĥ0 + Ĥint. (3.6)

The hopping term is, in second quantization, given by

Ĥ0 =
∑

i
, j
′,σ

ti
, j
′ ĉ†
i
σ ĉ j
′σ , (3.7)

which describes the hopping of an electron from state j
′σ
to i
σ with hopping amplitude ti
, j
′ and creation and an-
nihilation operators ĉ†

i
σ and ĉ j
′σ . The index i
σ indicates
the lattice site, orbit, and spin, respectively. The hopping

amplitudes are assumed to be constant parameters that do
not depend on the magnetic state of the system, which is a
consequence of expressing the tight-binding Hamiltonian in
Eq. (3.7) in a global spin basis (defined along a common
z axis). The form of the hopping part of the Hamiltonian
in Eq. (3.7) is that of a matrix which is block diagonal in
spin space, where each block has, e.g., for d states, dimen-
sion 5 × 5. Furthermore, the interaction term Ĥint includes
the Coulomb and spin-orbit interactions, where the former
interaction is responsible for spin pairing and the possibility
of forming a finite magnetic moment on each lattice site.
Within a mean-field approximation, these interactions could,
in principle, be included as a spin-dependent hopping term,
but we choose to keep the separation between the spin-
independent hopping in Ĥ0 and the interaction term Ĥint,
such that Ĥ0 is independent of the magnetic state. Within this
formalism, a spin-dependent hopping contribution could, in
principle, still be included in Ĥint and in the corresponding
self-energy �.

A. Exchange from constraining field

To obtain the exchange tensor Jαβ
i j , we have to calculate

the derivative of the constraining field. Our starting point is to
calculate the change of the magnetic moment component Mjβ

under a change of the prescribed directions {ei} [23], from
which we obtain the set of equations

∂Mjβ

∂eiα
= ∂ (Mje jβ )

∂eiα
≈ Mj

∂e jβ

∂eiα
= Miδαβδi j, (3.8)

where we assume a constant magnetic moment length Mj .
This approximation is valid in the magnetic ground state
[11]. Keeping the moment length fixed introduces to the con-
straining field a spurious contribution that is parallel to the
moment direction, which has, however, no relevance for the
spin dynamics, given by Eq. (2.8), and can be projected out
(see Appendix A).

The derivative of Mjβ can be obtained by expressing the
expectation value via Matsubara Green’s functions,

Mjβ = h̄γ

2

∑



∑
σσ ′

σ
β

σσ ′

∫
ω

[G(iω)] j
σ ′, j
σ (3.9)

= h̄γ

2

∫
ω

Tr
{
σ

β
j G(iω)

}
, (3.10)

with matrix elements[
σ

β

k

]
i
σ, j
′σ ′ = σ

β

σσ ′δikδ jkδ

′ , (3.11)

where σσσ ′ is the Pauli matrix vector. We use the following
shorthand notation for the Matsubara sums,∫

ω

≡ kBT
∑

iω

eiω0+
, (3.12)

with Boltzmann constant kB and temperature T . We include
the required convergence factor eiω0+

for the correct time
ordering of the operators.

From the inverse matrix derivative rule,

∂G = −G(∂G−1)G, (3.13)
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together with the Dyson equation,

G−1 = G−1
0 − �, (3.14)

we obtain

∂Mjβ

∂eiα
= h̄γ

2

∫
ω

Tr

{
σ

β
j G(iω)

[
∂Hcon

∂eiα
+ ∂�(iω)

∂eiα

]
G(iω)

}
,

(3.15)

where we assume a constant chemical potential μ (see Ap-
pendix B for the definition of the Green’s functions). Here
we have used that the noninteracting Green’s function G0 only
depends on the moment directions via the constraining field
contribution (which we include in G0),

∂G−1
0

∂eiα
= −∂Hcon

∂eiα
. (3.16)

All other contributions that depend on the moment directions
are, by definition, included in the self-energy �, which takes
correlation effects from Ĥint into account. From the matrix of
the constraining part of the Hamiltonian,

Hcon = − h̄γ

2

∑
kν

σ ν
k Bcon

kν , (3.17)

we obtain the corresponding derivative,

∂Hcon

∂eiα
= − h̄γ

2

∑
kν

σ ν
k

∂Bcon
kν

∂eiα
. (3.18)

We can now write

∂Mjβ

∂eiα
= Kβα

ji +
∑
kν

X βν

jk

∂Bcon
kν

∂eiα
, (3.19)

with

Kαβ
i j = h̄γ

2

∫
ω

Tr

{
σα

i G(iω)

[
∂�(iω)

∂e jβ

]
G(iω)

}
, (3.20)

X αβ
i j = − h̄2γ 2

4

∫
ω

Tr
{
σα

i G(iω)σβ
j G(iω)

}
. (3.21)

Inserting Eq. (3.19) into Eq. (3.8) gives

∑
kν

X βν

jk

∂Bcon
kν

∂eiα
= Miδαβδi j − Kβα

ji . (3.22)

By multiplying with X −1, we finally obtain

Jαβ
i j = −Mi

∑
kν

[X −1]αν
ik

(
Mjδβνδ jk − Kνβ

k j

)
. (3.23)

If the derivative ∂�/∂eiα is not easily accessible but
∂�/∂Bcon

iα is, then we can take a slightly different approach.
We write

∂Mjβ

∂eiα
=

∑
kν

X̃ βν

jk

∂Bcon
kν

∂eiα
, (3.24)

with

X̃ αβ
i j = − h̄2γ 2

4

∫
ω

Tr

{
σα

i G(iω)

[
σ

β
j − 2

h̄γ

∂�(iω)

∂Bcon
jβ

]
G(iω)

}
.

(3.25)

We obtain then the alternative but equivalent result,

Jαβ
i j = −MiMj[X̃

−1]αβ
i j . (3.26)

This reformulation is useful when the self-energy is obtained
from a diagrammatic expansion in terms of noninteracting
Green’s functions, where the derivative of the self-energy with
respect to the constraining field can be performed analytically.

B. DFT-like correction term

In DFT calculations with constraining fields, the effective
magnetic field is given by the energy gradient which, in this
case, is not identical to the negative of the constraining field
[28],

Beff
i = − 1

Mi
∇ei E = −Bcon

i − 1

Mi

〈∇∗
ei
ĤKS

〉
, (3.27)

where ĤKS is the auxiliary Kohn-Sham Hamiltonian [33] and
∇∗

ei
denotes the derivative with constant electron densities and

moment lengths [11]. Although in the present investigation
we are considering tight-binding models, we may need to take
this correction term into account if the tight-binding model has
been fitted to Kohn-Sham band structures and the DFT for-
malism has to be applied for consistency. The self-consistent
exchange constants are then obtained from a derivative of
Eq. (3.27),

Jαβ
sc,i j = −Mi

∂Bcon
iα

∂e jβ
− ∂

∂e jβ

〈
∂∗

∂eiα
ĤKS

〉
. (3.28)

We assume now that we have a tight-binding Hamiltonian
that reproduces the band structure of ĤKS, where the ex-
change splitting is parameterized via the following Stoner
term [34–36]:

ĤSt =
∑
i

′

I

′

h̄μB
Mi
ei · Ŝi
′ , (3.29)

where Mi
 is the magnetic moment length and Ŝi
 the spin
operator associated with the orbital 
 at site i with Stoner
parameter I

′ . From〈

∂∗

∂eiα
ĤSt

〉
=

∑


′

I

′Mi


h̄γμB
Mi
′α, (3.30)

we obtain

∂

∂e jβ

〈
∂∗

∂eiα
ĤSt

〉
=

∑


′

I

′Mi


h̄γμB

∂Mi
′α

∂e jβ
, (3.31)

where we assume that both I

′ and Mi
 are constant. Next,
analogous to Eq. (3.19), we derive an expression for the
derivative of the orbital resolved magnetic moments,

∂Mj
β

∂eiα
= Kβα

ji (
) +
∑
kν

X βν

jk (
)
∂Bcon

kν

∂eiα
, (3.32)

where (
) denotes that we restrict the trace in the calculation
of the matrices to a single orbital with index 
. Combining
Eqs. (3.32), (3.31), and (3.28), we obtain

Jαβ
sc,i j = Jαβ

i j + Jαβ

0,i j +
∑
kν

1

Mk
Kνα

ki Jνβ

k j , (3.33)
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where

Jαβ

0,i j = −
∫

ω

Tr

{
∂�

∂eiα
G(iω)

∂�

∂e jβ
G(iω)

}
(3.34)

is the contribution that we would get without the constraining
field and Jαβ

i j is the pure constraining field contribution derived
in Sec. III A. Here, the self-energy is given by the Stoner term,

� = HSt, (3.35)

which is, by definition, included in the self-energy due to the
dependence of HSt on the moment directions.

The structure of Eq. (3.33) corresponds to the DFT results
by Bruno [23] for isotropic Heisenberg exchange parameters
Ji j = Jxx

i j = Jyy
i j and an equation equivalent to Eq. (3.34) has

been previously derived by Katsnelson and Lichtenstein [37],
again only for Heisenberg parameters Ji j (see, also, Ref. [38]).
Exchange parameters calculated without constraining fields
have been shown to give the exact spin-wave energies in the
long-wavelength limit [23–25], i.e., for the calculation of the
exchange stiffness constant, it is not necessary to consider
constraining fields.

IV. NUMERICAL RESULTS

We have three different equations available for the calcu-
lation of exchange parameters: Eq. (3.23), which is based on
the constraining field; Eq. (3.33), which is valid for DFT cal-
culations or parametrized calculations mimicking DFT results
(as employed here) that include the constraining fields; and
Eq. (3.34), which is obtained without constraining fields. We
have implemented these three equations within the CAHMD

package [39] and applied them to a mean-field tight-binding
model for iron with a ferromagnetic ground state. We compare
the results of each approach for iron dimers and iron chains
with a lattice constant of 2.86 Å. The Slater-Koster parame-
ters [40] of the tight-binding model are taken from Ref. [41],
we do not include spin-orbit coupling, and we use the Stoner
term (3.29); see Ref. [28] for details. For the numerical eval-
uation of the exchange constants, we use a finite temperature
parameter, e.g., T = 1 K, to avoid divergences in the deriva-
tive of the Fermi function; see Appendix B. Since we do not
take finite temperature effects on the electronic structure and
lattice vibrations [42] into account, we will consider only the
zero-temperature limit.

A. Fe dimer

We first compare, in Fig. 3, for an iron dimer, the calculated
exchange constant Jxx

12 from Eq. (3.23) with the result obtained
by numerical differentiation of the constraining field,

Jxx
12 = −M1

∂Bcon
1x

∂e2x
. (4.1)

We keep the first moment aligned along the z axis and rotate
the second moment by an angle θ in the xz plane. The rotation
is performed by adjusting the moment direction in the Stoner
term (3.29) and applying the required constraining field to
stabilize the configuration. In the limit θ → 0 (the ferromag-
netic ground state), the agreement is exact, while for θ > 0,
there is a small difference which is due to the dependencies

0.00 0.25 0.50 0.75 1.00 1.25 1.50

θ (rad)

0.0

0.1

0.2

0.3

0.4

J
1
2

(e
V

)

Jxx
12 from Bcon

1

Jxx
12 formula

0.0 0.5 1.0 1.5

1.98

1.99

2.00

M1/μB

FIG. 3. Comparison of the exchange parameter Jxx
12 obtained by

numerical differentiation of the constraining field, given by Eq. (4.1),
and the one obtained from Eq. (3.23) as a function of the angle θ

between the two magnetic moments of an iron dimer. The inset shows
the magnetic moment length M1(= M2).

of the magnetic moments and the chemical potential on the
spin configuration that are both not taken into account in our
derivation of the exchange constants. The magnetic moments,
with M1 = M2, vary by about 1% and the chemical potential
by about 2% in the range θ = 0 to π/2; see Figs. 3 and 8 in
Appendix B.

Next, we consider the exchange tensor Jαβ

12 as a function
of the angle θ between the two moments. After projection
to perpendicular fields according to Eqs. (A6) and (A7) in
Appendix A, which removes the spurious contribution men-
tioned after Eq. (3.8), only the components xx, yy, and xz are
finite and are shown in Fig. 4. In the ferromagnetic ground
state, θ = 0, we have Jxx = Jyy and Jxz = 0, indicating a
Heisenberg-like local spin Hamiltonian. However, for θ > 0,
Jxx �= Jyy and Jxz �= 0, implying a non-Heisenberg-like behav-
ior, which requires the inclusion of the linear term Ciα in the
local spin Hamiltonian.

We calculate the exchange parameters from Eq. (3.23) for
two specific angles (θ = 0 and θ = 1) as examples and apply
them to the local spin Hamiltonian, given by Eq. (2.1). In
Fig. 5, we compare the effective field for these two cases

0.00 0.25 0.50 0.75 1.00 1.25 1.50

θ (rad)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

J
1
2

(e
V

) Jxx
12

Jyy
12

Jxz
12

FIG. 4. Components of the exchange tensor Jαβ

12 obtained from
Eq. (3.23) as a function of the angle θ between the two magnetic
moments of an iron dimer.
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B

e
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1
x
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exact field
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FIG. 5. Comparison of the effective field obtained from the con-
straining field with the field from the local spin Hamiltonian, given
by Eq. (2.1), with parameters calculated with Eq. (3.23) for θ = 0
and θ = 1, as a function of the angle θ between the two magnetic
moments of an iron dimer.

with the effective field given by the negative of the con-
straining field. For θ = 0, the local spin Hamiltonian is a
simple Heisenberg model with a single exchange parame-
ter J = Jxx = Jyy, while for θ = 1, the full exchange tensor
Jαβ

i j and the linear term Ciα have to be taken into account
with C1x = 0.3315 eV. The linear term includes a contribu-
tion from the effective field as defined in Eq. (2.5). In both
cases, the local spin Hamiltonian correctly describes small
deviations around the reference spin configurations, θ = 0
and θ = 1. The deviations of the exact field from the Heisen-
berg model confirms that beyond-Heisenberg contributions
are present in the underlying system, which is consistent with
the configuration-dependent exchange parameters in Fig. 4.

We compare, for the ferromagnetic ground state (θ = 0),
the Heisenberg exchange constants from Eqs. (3.23), (3.34),
and (3.33),

J = 0.3437 eV, (4.2)

J0 = 0.2575 eV, (4.3)

Jsc = 0.3485 eV. (4.4)

While the correction term changes Jsc in comparison to J by
only a small amount, the difference to J0, which is obtained
without the inclusion of constraining fields, is more signifi-
cant. For comparison, a recent tight-binding calculation with
constraining fields obtained J = 0.616 eV for an iron dimer
with a lattice constant of 2 Å [29], where the smaller lattice
constant causes a stronger exchange coupling than in our
case with lattice constant 2.86 Å. In DFT calculations, similar
deviations of the nearest-neighbor exchange with and without
constraining fields have been observed for bulk bcc Fe and
fcc Ni, while the energies of long-wavelength spin waves are
unaffected by constraining fields [30,31].

Although the difference between J and Jsc is very small,
the difference between the effective fields with and with-
out the DFT-like correction term can become significant in
noncollinear states [28]. This can be understood by consid-
ering that the exchange parameters give the derivative of

1 2 3 4 5

neighbor site j

0.00

0.05

0.10

0.15

0.20

J
i,

i+
j

(e
V

)

J , Eq. (3.23)

J0, Eq. (3.34)

Jsc, Eq. (3.33)

FIG. 6. Exchange parameters Ji,i+ j between sites i and i + j ob-
tained from Eqs. (3.23), (3.34), and (3.33) for an iron chain of 50
sites in the ferromagnetic ground-state configuration with periodic
boundary conditions.

the effective field and a small difference in the derivative
can change the effective field significantly for strongly non-
collinear states.

While the exchange constants Jαβ

0,i j and Jαβ
sc,i j are always

symmetric with respect to the interchange iα ↔ jβ, we find a
small asymmetry for Jαβ

i j in noncollinear states (θ �= 0) in our
numerical calculations, which we discuss in Appendix C.

B. Fe chain

In Fig. 6, we show the Heisenberg exchange parameters
Ji j for an iron chain in its ferromagnetic ground state, where
again the formulas based on the constraining field and the
parameterized DFT-like formalism give similar results, given
by Eqs. (3.23) and (3.33), while the results without constrain-
ing field, given by Eq. (3.34), differ significantly. In Fig. 7,
we compare the results for the nearest-neighbor exchange J ,
given by Eq. (3.23), in a finite iron chain of 50 spins with
and without periodic boundary conditions. As expected, in the
case with periodic boundary conditions, the nearest-neighbor
exchange is completely uniform for all sites, while for the

0 10 20 30 40 50

site i

0.150

0.175

0.200

0.225

0.250

0.275

J
i,

i+
1

(e
V

)

finite chain

periodic BCs

FIG. 7. Nearest-neighbor exchange parameters Ji,i+1 obtained
from Eq. (3.23) for a finite iron chain of 50 sites in the ferromagnetic
ground-state configuration in comparison to a chain with periodic
boundary conditions.
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case without periodic boundary conditions, there are strong
variations near the boundaries of the chain and the deviations
become smaller near the center. This reflects Friedel oscilla-
tions in the magnetic profile, induced by the abrupt change
of the effective potential and hopping parameter at the edges.
Such variations of the exchange constants near the boundary
of a magnet could be important for a proper description of
surface and edge spin waves and topological magnons in two-
and three-dimensional magnets [43].

V. SUMMARY

We have derived the mapping of tight-binding electronic
structure theory to local spin Hamiltonians. We show that in
order to capture effects beyond bilinear Heisenberg exchange,
the inclusion of a linear term to the spin Hamiltonian improves
the accuracy of calculating, e.g., a local Weiss field. Linear
contributions are usually not considered due to arguments
based on the energy of time-reversed states. We argue here that
this is not a problem for local spin Hamiltonians, which are
designed to describe the energetics of spin fluctuations around
a given spin configuration, in particular by consideration of
configuration-dependent parameters. Local spin Hamiltonians
are shown to be useful for the calculation of spin-wave spectra
and spin dynamics simulations near to the ground-state con-
figuration.

We also provide explicit formulas for the exchange con-
stants based on a derivation from the effective field for
tight-binding models with and without constraining fields.
If we consider the effective field that is required for DFT
calculations [28], we recover previous results [23,37], demon-
strating the consistency of our approach. We apply the derived
formulas to a tight-binding model for iron dimers and chains,
and find good agreement with the exchange constant derived
by numerical differentiation of the constraining field. The nu-
merical tight-binding electronic structure theory calculations
in Sec. IV are based on a formulation where spin functions are
defined along a global quantization axis. In this formulation,
the tight-binding parameters (that typically are parametrized
to reproduce static electronic structures obtained from ab
initio theory) are fixed and independent of the magnetic con-
figuration. This implies that the configuration dependence of
the kinetic energy does not enter the equations of exchange
interactions or the local Weiss field. A description that relies
on a local quantization axis, for which spin functions are
defined on each atomic site, would release this constraint and
represents an obvious extension of this work.

The local spin Hamiltonian, together with the exchange
constant formulas, is demonstrated to correctly describe the
effective field near a given spin configuration. We find, how-
ever, that for larger deviations from a given spin configuration
from which the exchange parameters were calculated, there
can be a pronounced configuration dependence of the param-
eters. This fact implies that beyond-Heisenberg contributions
are required and are effectively taken into account.

While for the description of arbitrary spin configurations
a global spin Hamiltonian is required, we expect that the
local approach described here will find applications to char-
acterize spin waves and spin fluctuations for magnets with
noncollinear ground states. A consistent extension of the

LKAG approach to these noncollinear states would not be
possible without the linear term in the Hamiltonian or by
inclusion of higher-order terms [17]. The exchange constant
formulas that we have derived for tight-binding models will
be useful both for model Hamiltonians and for ab initio elec-
tronic structure calculations.

ACKNOWLEDGMENTS

We thank Pavel Bessarab, Ksenia Vodenkova, and Lars
Nordström for insightful discussions. The authors acknowl-
edge financial support from the Knut and Alice Wallenberg
Foundation through Grant No. 2018.0060. O.E. also acknowl-
edges support of eSSENCE, the Swedish Research Council
(VR), the Foundation for Strategic Research (SSF), and ERC
synergy Grant No. 854843-FASTCORR. D.T. acknowledges
support from the Swedish Research Council (VR) through
Grant No. 2019-03666. A.D. acknowledges support from the
Swedish Research Council (VR) through Grants No. VR
2015-04608, No. VR 2016-05980, and No. VR 2019-05304.
The work of M.I.K. is supported by ERC synergy Grant No.
854843-FASTCORR. The computations were enabled by re-
sources provided by the Swedish National Infrastructure for
Computing (SNIC) at Chalmers Center for Computational
Science and Engineering (C3SE), High Performance Comput-
ing Center North (HPCN), and the National Supercomputer
Center (NSC), partially funded by the Swedish Research
Council through Grant Agreement No. 2016-07213.

APPENDIX A: PROJECTION TO PERPENDICULAR
FIELDS

If we consider a spin Hamiltonian

Hs = −
∑

iα

C̃iαeiα − 1

2

∑
i j

∑
αβ

J̃αβ
i j eiαe jβ, (A1)

that does not necessarily result in effective fields that are
purely perpendicular to the magnetic moment directions,

Beff
iα = 1

Mi
C̃iα + 1

Mi

∑
kν

J̃αν
ik ekν, (A2)

then we can project out the parallel component,

Beff
i⊥ = Beff

i − ei
(
Beff

i · ei
)
. (A3)

From this projection, we obtain parameters that produce
purely perpendicular fields,

Jαβ
i j = J̃αβ

i j −
∑

ν

J̃νβ
i j eiνeiα, (A4)

Ci = C̃i − ei(C̃i · ei ). (A5)

For a state with ei = êz, we have

Jαβ
i j = J̃αβ

i j (for α �= z), (A6)

Jzβ
i j = 0, (A7)

Ciz = 0. (A8)

This projection to perpendicular fields can break the symme-
try Jαβ

i j = Jβα
ji and is not required for practical calculations
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FIG. 8. Dependence of the chemical potential μ of an iron dimer
on the angle θ between the two magnetic moments.

since parallel components do not contribute to the equation of
motion (2.8).

APPENDIX B: MATSUBARA SUMS

For the evaluation of the exchange formulas, we have to
calculate Matsubara sums over pairs of Green’s functions, for
example,

X αβ
i j = − h̄2γ 2

4

∫
ω

Tr
{
σα

i G(iω)σβ
j G(iω)

}
. (B1)

We use the eigenbasis expansion of the Matsubara Green’s
function,

G(iω) =
∑

n

|n〉 〈n|
iω − ξn

, (B2)

where {|n〉} are the single-electron eigenstates of the Hamilto-
nian with ξn = εn − μ. Here, εn is the energy of the state |n〉
and μ is the chemical potential that controls the occupation of
the states, which we plot in Fig. 8 for the iron dimer. It is now
straightforward to perform the summation over Matsubara
frequencies,

∫
ω

1

(iω − ξn)(iω − ξn′ )
=

{ f (ξn )− f (ξn′ )
ξn−ξn′ , ξn �= ξn′

f ′(ξn), ξn = ξn′ ,
(B3)

where the Fermi function and its derivative are given by

f (ξn) = 1

eβξn + 1
, (B4)

f ′(ξn) = −βeβξn

(eβξn + 1)2 = β f (ξn)[ f (ξn) − 1], (B5)

with the inverse temperature β = 1/(kBT ).
The Matsubara formalism that we employ here introduces

a temperature dependence. Since we consider only the zero-
temperature limit, it is important to confirm the convergence
of our calculations for T → 0. This is demonstrated in Fig. 9
for the Heisenberg exchange of an iron dimer in the ferro-
magnetic ground state, which shows only a weak temperature
dependence for T < 300 K.
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FIG. 9. Dependence of the Heisenberg exchange J12 of a ferro-
magnetic iron dimer on the temperature parameter T in the exchange
formulas given by Eqs. (3.23), (3.34), and (3.33).

APPENDIX C: SYMMETRY OF EXCHANGE CONSTANTS

Exchange constants that are derived from the curvature of
the energy,

Jαβ
i j = − ∂2〈Ĥ〉

∂eiα∂e jβ
, (C1)

are by definition symmetric with respect to the interchange
iα ↔ jβ. While this fundamental symmetry is directly re-
flected in the exchange formula Jαβ

0,i j in Eq. (3.34), it is
not obvious that the derived formulas for Jαβ

i j and Jαβ
sc,i j in

Eqs. (3.23) and (3.33) fulfill this symmetry. We have therefore
checked this symmetry numerically within our tight-binding
calculations for an iron dimer. Our results in Fig. 10 show that
Jαβ

sc,i j fulfills the symmetry exactly, whereas Jαβ
i j breaks it for

θ �= 0, although the asymmetry reaches only the order of 1%.
This asymmetry is not related to the asymmetry that can be
introduced by the projection discussed in Appendix A because
we have not used this projection here.

From the constraining field theorem [28], we obtain the
following relation for the exchange constant Jαβ

i j obtained
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θ (rad)

0.00

0.25

0.50

0.75

1.00

δJ
/
J

(%
)

Jxx
12 − Jxx

21

Jxx
sc,12 − Jxx

sc,21

FIG. 10. Numerical check of the symmetry of the exchange con-
stants Jxx

i j and Jxx
sc,i j of an iron dimer as a function of the angle θ

between the two magnetic moments.
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from the constraining field via Eq. (3.3):

Jαβ
i j = − ∂2〈Ĥtb〉

∂eiα∂e jβ
+ ∂

∂e jβ

〈
∂Ĥtb

∂eiα

〉
. (C2)

The fundamental tight-binding Hamiltonian Ĥtb as defined in
Eq. (3.6) is independent of the moment directions {ei}, which
implies that Jαβ

i j is symmetric since the second term on the
right-hand side of Eq. (C2) vanishes in that case. However,
our numerical calculations are based on a mean-field tight-
binding model where the electron-electron interactions are
effectively included within a mean-field approximation via the
Stoner term, given by Eq. (3.29). This Stoner term depends
on the moment directions {ei} and causes, in our calcula-
tions, the asymmetry of Jαβ

i j . The symmetry-breaking term is

subtracted in the definition of Jαβ
sc,i j , given by Eq. (3.28), such

that

Jαβ
sc,i j = − ∂2〈Ĥtb〉

∂eiα∂e jβ
, (C3)

where we assume constant charges and moment lengths, i.e.,
∇ei ≡ ∇∗

ei
, which is consistent with the approximations made

to derive the exchange formulas in Sec. III. The quantity
〈Ĥtb〉 describes the band energy of the tight-binding model,
while the total energy contains additional constant energy
contributions that arise from the mean-field decoupling and
are not included in Ĥtb here. The exchange constant Jαβ

i j is
derived from the constraining field, which corresponds to the
gradient of the total energy [28], explaining the difference
between Jαβ

i j and Jαβ
sc,i j . Without the mean-field approximation,

this difference would not arise.
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