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Cluster glass transition and relaxation in the random spinel CoGa2O4
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We report magnetic properties in the random spinel magnet CoGa2O4. Rietveld analysis of the x-ray diffrac-
tion profile for CoGa2O4 reveals that the Co and Ga ions are distributed randomly in the tetrahedral A sites and
octahedral B sites in the cubic spinel structure. CoGa2O4 exhibits a spin-glass transition at TSG = 8.2 K that is
confirmed by measurements of the dc and ac susceptibilities and thermoremanent magnetization (TRM) that
develops below TSG. From the frequency dependence of the freezing temperature Tf for CoGa2O4, it is indicated
that the relaxation time τ (T ) follows a Vogel-Fulcher law τ = τ0exp[−Ea/kB(T − T0)]. An analysis of specific
heat suggested that a doublet ground state of the octahedrally coordinated Co2+ was stabilized by spin-orbit and
crystal field couplings. The relaxation rate of TRM is considerably enhanced at TSG and decays rapidly above
and below TSG. The time course of TRM is reproduced by nonexponential relaxation forms, such as a stretched
exponential (Kohlrausch) as well as Ogielski and Weron relaxation forms. This behavior is displayed universally
in glass systems, and the characteristic parameters associated with these functions were reasonable.
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I. INTRODUCTION

The A-site spinel antiferromagnets (AFMs) with stoi-
chiometry AB2O4, where A is a divalent magnetic cation and
B is a trivalent nonmagnetic cation, have been a platform
for the realization of novel magnetic states (e.g., quantum
spin or orbital liquid states [1–3]), pressure-induced valence
transitions [4,5], and a Néel to spin spiral (NSS) transition
[2], which is characterized by a propagation vector q that
forms continuous surfaces in k space. In the spinel structure,
the A and B cations occupy tetrahedral and octahedral sites,
respectively. The former (latter) has previously been called
the A site (B site). Actually, the A site forms a diamond
lattice, which consists of two interpenetrated face-centered
cubic (fcc) lattices shifted along the [111] axis. The A-site
spinel is therefore magnetically bipartite. In other words,
the Néel state is realized if one introduces only a near-
est neighbor antiferromagnetic interaction J1 between spins
occupying sites in the respective fcc sublattices. As indi-
cated in Fig. 1(a), a next-nearest neighbor antiferromagnetic
interaction J2 acts competitively with the nearest neighbor
interaction, and a magnetic frustration effect is therefore an-
ticipated. For such A-site frustrated antiferromagnets, a Monte
Carlo simulation shows a distinctive phase diagram in the
temperature-(J2/J1) plane. The simulation predicts that the
Néel state is destabilized rapidly with increasing J2/J1 and
that a magnetic transition to a spin spiral state occurs at
J2/J1 = 1/8; meanwhile, densely quasidegenerated magnetic
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states characterized by propagation vector q form continuous
surfaces in k space for J2/J1 > 1/8 [Fig. 1(b)] [2]. In the typ-
ical exemplary system, CoAl2O4 is expected to be a platform
that exhibits novel magnetic behavior. Because “frustration” is
an inherent topological feature of the A-site spinel or diamond
lattice AFMs, the magnetic states are quite sensitive to crys-
tallographic perturbations such as inversion [6,7], magnetic
dilution [8], and chemical and physical pressures [8,9]. The
inversion, which is a chemical disorder (antisite defect of
cationic configuration between the A sites and B sites), is
represented by the chemical formula (A1−ηBη )[B2−ηAη]O4. In
this representation, parentheses and square brackets indicate
the A-site and B-site occupations, respectively, and η is the so-
called inversion parameter. Microscopically, an inverted Co2+

ion at the B site couples strongly with neighboring Co2+ ions
at the A site and B site via exchange interactions JAB and JBB,
respectively [Fig. 1(a)].One can deduce therefore that these
exchange interactions are spatially and randomly distributed
in the A-site spinel and bring an exchange disorder, which
seems to act as strong magnetic perturbations to the magnetic
state, in particular, lifting the degeneracy due to the frustra-
tion and stimulating an ordering transition [10]. It has been
revealed experimentally that a Néel to spin glass (NSG) tran-
sition occurs at ηc ∼ 0.08 in a partially inverted CoAl2O4 [6],
whereas in the magnetically diluted system Co1−xZnxAl2O4,
the transition occurs at xc = 0.06 [8]. The higher sensitivity
of the magnetic ground state with respect to these chemical
disorders is due to the magnetic state of CoAl2O4, which is
expected to be located in the vicinity of J2/J1 = 1/8 where the
NSS transition occurs [2], as shown schematically in Fig. 1(b).
At the phase boundary, the facts suggest that the transition
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FIG. 1. (a) Spinel structure. Red, yellow, and gray spheres repre-
sent the tetrahedral, octahedral cation, and oxygen sites, respectively.
Orange and blue dashed lines are connected between nearest and
next-nearest neighbor A-A pairs. Red and black dashed lines repre-
sent nearest neighbor A-B and B-B pairs, respectively. (b) Schematic
phase diagrams of the AB2O4 magnet projected into the η(x)-T [6,8]
and (J2/J1)-T [2] planes.

temperature is drastically reduced, and concomitantly, the
magnetic stiffness constant κ becomes zero; the magnetically
ordered states are destabilized at J2/J1 = 1/8. In other words,
a “classical” spin liquid is realized at low temperatures in the
vicinity of J2/J1 = 1/8. The exchange stiffness constant κ is
related specifically to the energy cost of magnetically ordered
spins when the alignment of neighboring spins coupled with
an exchange interaction is distorted infinitesimally from that
of the ground state. Experimentally, the magnetic ground state
has been proposed to be a spin-glass [6,11], spin-liquid [6,12],
unconventionally magnetically ordered [13,14], and antiferro-
magnetic [15,16] state.

Recent neutron diffraction measurements by MacDougall
et al. [17] have revealed that (i) an intense Lorentzian
scattering component observed in single crystals with η =
0.02 ± 0.04 remains even well below the freezing temper-
ature T ∗ = 6.5 ± 1 K, (ii) an anisotropic Lorentzian-squared
character is also established below T ∗, and (iii) the observed
antiferromagnetic spin wave excitation is consistent with that
of antiferromagnetism with a J2/J1 value of 0.110 ± 0.003,
which is close to the NSS boundary J2/J1 = 0.125, but falls
in the Néel ordered region [Fig. 1(b)], where a first-order
phase transition is theoretically expected to occur [2]. A
similar value of J2/J1 = 0.109 ± 0.002 has been reported by

Zaharko et al. using a single-crystal specimen with η = 0.05
[14,18]. Based on these observations, MacDougall et al. [17]
have hypothesized that there is a peculiar magnetic feature
below T ∗; that is, the antiferromagnetic domain wall motion
is kinetically inhibited, and the long-range antiferromagnetic
correlation is therefore blocked. The incomplete magnetic
order (the suppression of antiferromagnetic long-range order)
found also by Zaharko et al. [14,18] immediately suggests that
a frozen and fragmented AFM structure is formed. Indeed, the
discrepancy between magnetic susceptibilities measured after
ZFC (zero field cooling) and FC (field cooling) [6,8,18] and
the emergence of the thermoremanent magnetization (TRM)
[8] observed in CoAl2O4 are indicative of small-volume
(finite-size) effects and glassy natures. In addition to these
phenomena, a relaxation of TRM, a smear-out of a phase tran-
sition, and exchange bias are also indicative of nanomagnets
[19] and spin glass [20].

The magnetic states of previously examined CoAl2O4 sam-
ples have been located near both the NSS and NSG boundaries
[8,15]. This condition seems to be the underlying cause of
their controversial behavior with respect to magnetism, and
it may account, in particular, for the magnetic ground state
and the incomplete magnetic ordering of the A-site spinel
CoAl2O4. For CoGa2O4, in contrast to the case of CoAl2O4,
we might expect that the magnetic states would not be near
both boundaries because the degree of chemical disorder is
quite sufficient to diminish the effect of magnetic frustration
discussed theoretically in Ref. [2] and far from the NSG
boundary of ηc ∼ 0.08 [7]. Both the Co and Ga ions are
distributed randomly to the A and B sites. Actually, the in-
version parameters determined by powder neutron [21] and
single-crystal x-ray [22] diffraction are 0.60 and 0.575(4),
respectively. These values of η are comparable with the value
of 0.63 obtained by Melot et al. for a powder sample [7]. The
magnetic ground state of CoGa2O4 has been postulated to be
a spin-glass state below T ∼ 10 K because the dc-magnetic
susceptibility curve shows splitting between field-cooled and
zero-field cooled measurements [7,21], and ac susceptibility
shows a cusp at Tf ∼ 10 K [21]. The freezing temperature,
Tf , increases with increasing frequency [23]. These spin
glass type behaviors are consistent with the fact that neu-
tron diffraction does not show any magnetic reflections at
T = 1.5 K [21].

In this paper, we report that comprehensive structural and
magnetic investigations in the ternary spinel oxide CoGa2O4

reveal that the inversion parameter is close to that of a random
spinel η = 3/2 and that the cluster spin-glass state is realized
below the spin-glass transition at TSG = 8.2 K. Remarkably,
TRM is observed in CoGa2O4, and it decays nonexponen-
tially below TSG as a function of time. We demonstrated
successfully that a generalized relaxation function based on
the stochastic theory of dielectric relaxation derived by Weron
[24] was reproduced experimentally in the TRM relaxation.
Interestingly, for the insulating spin-glass CoGa2O4, the pa-
rameter q extracted from the TRM relaxation seemed to show
a temperature dependence closely resembling that obtained by
neutron spin echo measurements [25] in canonical (metallic)
spin-glass systems. The parameter q has been characterized
as a nonextensive entropy parameter and was originally in-
troduced in a generalization of Boltzmann-Gibbs entropy by
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FIG. 2. X-ray diffraction profiles for (a) CoGa2O4 and (b)
ZnGa2O4. Note that the x-ray wavelengths used for CoGa2O4 and
ZnGa2O4 are slightly different. The vertical green lines show posi-
tions of the Bragg reflections. The difference between observed and
calculated intensities is plotted as the lower blue trace.

Tsallis [26,27]. In this study, q was specifically a measure of
the collective and hierarchical nature of relaxation phenomena
in spin-glass systems [28]. Moreover, the relaxation time τ (T )
obtained from the frequency dependence of the freezing tem-
perature and the TRM decay curve suggested the existence
of a crossover in the relaxation process at T ∼ TSG from a
high-temperature, Vogel-Fulcher type to a low-temperature,
quantum mechanical relaxation process. These findings might
facilitate further investigation and give insight into the char-
acteristics of the frustrated A-site antiferromagnets, such as
CoAl2O4, the magnetic ground state of which has not yet been
revealed.

II. EXPERIMENT

A solid-solid reaction method was used to synthesize
CoGa2O4 and ZnGa2O4 polycrystalline samples with the
proper amounts of CoO (4N), ZnO(4N), and Ga2O3 (4N).
The mixed powder was calcinated at 1300 °C in ordinary
air for 24 h and cooled to room temperature at a rate of
42.5 °C/h. We performed powder x-ray diffraction mea-
surements using a synchrotron x-ray source and made
crystal structure refinements with Rietveld analysis software,
RIETAN-PF [29]. Powder x-ray diffraction measurements using
synchrotron radiation (λ = 0.620 089 Å for CoGa2O4 and
0.652 96 Å for ZnGa2O4) were conducted on the BL15XU
beam line at SPring-8 (Harima, Japan) [30]. The dc and ac
magnetizations and specific heat at ambient pressure were
measured using a magnetic properties measurement system
(MPMS-XL, Quantum Design) and a physical properties
measurement system (PPMS Dynacool, Quantum Design),
respectively. The error in phase for ac susceptibility was cor-
rected by that measured for a paramagnetic reference material
Dy2O3. The temperature dependence and relaxation of TRM
were measured after field cooling with an excitation dc field
of HFC = 100 Oe applied at T = 70 K. After the measurement
temperature T = Tm had been reached, the sample was held at
that temperature for tm = 100 − 300 s. The magnetic field was
then immediately reduced to zero. Fourier transform infrared
(FT IR) spectroscopy was carried out using a conventional
spectrometer (FT/IR-6200; JASCO) with KBr pellets.

III. RESULTS

A. X-ray diffraction

Figures 2(a) and 2(b) show x-ray diffraction profiles for
CoGa2O4 and ZnGa2O4, respectively. Each sample can be as-
signed to have a cubic spinel structure (space group: Fd-3m)
with a cationic configuration disorder quantified by the in-
version parameter, η = 0.664(8) for CoGa2O4. Because the
difference of atomic form factors for Zn and Ga is too small
to determine η reasonably by Rietveld refinement, we as-
sumed that the degree of inversion was zero for ZnGa2O4. The
crystallographic parameters and reliable parameters refined
by the Rietveld method are listed in Table I. The parameters
obtained for CoGa2O4 in this work are in good agreement
with previously reported values [7,21,22].

B. Dc susceptibility

Figure 3(a) shows the temperature dependence of magnetic
susceptibility χ (T ) after zero ZFC and FC at HFC = 100 Oe.
The cusp exhibited by χ (T ) after ZFC at T = 8.5(5) K

TABLE I. Crystallographic parameters and reliability factors obtained by Rietveld refinement for CoGa2O4 and ZnGa2O4.

Sample a (Å) u gA (Co/Zn)a gA (Ga) gB (Co/Zn)a gB(Ga)a Rwp S

CoGa2O4 8.32654(1) 0.25844(11) 0.336(8) 0.664(8) 0.332(4) 0.668(4) 4.04 3.56
CoGa2O4

b 8.325 0.2582 0.38 0.62 0.31 0.69 − −
ZnGa2O4 8.33361(2) 0.26265(14) 1.0 0 0 1.0 5.16 4.85

aConstraints: gA(Co/Zn) + gA(Ga) = 1, 2gB(Co/Zn) = 1 − gA(Co/Zn), 0.5gA(Ga) + gB(Ga) = 1 for CoGa2O4.
bMelot et al. [7]. Assumed to be gA (Zn) = 1.0 and gB (Ga) = 1.0 for ZnGa2O4.
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FIG. 3. Temperature dependence of (a) magnetic susceptibility
χmol and (b) reciprocal susceptibility 1/χmol for CoGa2O4.

signals a spin-glass transition. As shown in Fig. 3(b), χ (T )
obeys a modified Curie-Weiss law, χ (T ) = χ0 + C/(T − θ ),
where χ0, C, and θ are the temperature-independent suscep-
tibility, Curie constant, and Weiss temperature, respectively.
The constant susceptibility χ0 = −8.21(1)×10−5 emu/mol
(Langevin diamagnetic susceptibility) obtained by measuring
χ (T ) for ZnGa2O4 was evaluated as the constant suscepti-
bility for CoGa2O4. The parameters estimated by the least
squares method are C = 3.08(0) and θ = −49.9(3) K. The
effective moment peff = 4.97(0) μB, which is calculated from
the value of C, was close to reported values [7,31] but rather
larger than 4.51 μB for CoAl2O4 [8]. The observation that
peff was larger for CoGa2O4 than for CoAl2O4, which has
a smaller inversion with η = 0.055 [8], might have resulted
from the significant occupation of the B site (η = 0.66)
by Co2+. The value of peff was estimated with the simple
equation, p2

eff = (1−η)p2
eff (A) + ηp2

eff (B), where peff (A) and
peff (B) are the effective moments of the Co2+ ions at the
A and B sites, respectively. The value of peff (B), 5.22 μB,
was significantly larger than that of peff (A), 4.47 μB, and the
value of g[S(S + 1)]0.5 = 3.87 for S = 3/2 and g = 2. If the
spin-orbit coupling is negligibly small compared with the
octahedral crystal field energy, the 3d electronic state of Co2+

is split into doubly degenerate dγ and triply degenerate dε

FIG. 4. Real (χ ′) and imaginary (χ ′′) components of the ac sus-
ceptibility as a function of temperature at various frequencies.

states by the tetrahedral or octahedral ligand fields, but the
dγ (dε) state lies below the dε (dγ ) state for Co2+ ions that
occupy A sites (B sites). The electronic configurations of Co2+

in the A site and B site can be represented with (dγ )4(dε)3 and
(dε)5(dγ )2, respectively. The latter therefore has an orbital
degree of freedom, that is, 2υ + 1 = 3, where υ = 1 is a
pseudo orbital moment for the (dε)5(dγ )2 configuration. The
former has no orbital degree of freedom because υ = 0 for the
(dγ )4(dε)3 configuration. As mentioned below, however, the
spin and orbital (configurational) degrees of freedom involved
with the inverted Co2+ ion, which was primarily associated
with CoGa2O4, seemed to be reduced by spin-orbit coupling.

C. Ac susceptibility

The spin-glass state can be confirmed by the dynamical
response of the frequency dependence of ac susceptibility
within the frequency range 0.3 � ν � 1500 Hz in the vicinity
of the transition. Figure 4 shows the real (χ ′) and imaginary
(χ ′′) components of the ac susceptibility χ (ν) as a func-
tion of temperature at various frequencies. χ ′(T ) exhibits a
cusp at the freezing temperature Tf , which decreases with
increasing frequency ν. The maximum value of χ ′(at T = Tf )
decreases with increasing ν. These frequency-dependent char-
acteristics are typically observed in spin-glass systems. Note
that in addition to the spin-glass behavior around T = 9 K,
a weak frequency dependence in χ ′(T ) is observable at high
temperatures below 50 K. The relaxation time τac = ν−1,
the mean time for spin flipping, shows a divergence due to
the critical slowing down at the spin-glass transition tem-
perature TSG = 8.2 K (see Appendix A). The temperature
dependence of τac deviates remarkably from the Arrhenius law
τac(T ) = τ0exp(Ea/kBT ) (Fig. 5). It is generally recognized
that in a spin-glass system, magnetic clusters form that consist
of strongly interacting spins blocked in random directions
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FIG. 5. Semilogarithmic plot of frequency ν versus 1/Tf (Arrhe-
nius plot) and 1/(Tf − T0) (Vogel-Fulcher plot). Dashed and solid
lines represent least squares fitting curves of the Arrhenius function
at high frequencies and the Vogel-Fulcher function, respectively.

whose size and correlation length ξ grow with decreasing
temperature. Consequently, τ (T ) tends to diverge at low tem-
peratures. The deviation from the Arrhenius law suggests
that a temperature-dependent activation energy can be em-
ployed. The strong temperature dependence of τ evidenced
in CoGa2O4 can be described by an empirical equation, the
so-called Vogel-Fulcher law,

τac(T ) = τ0 exp

[
Ea

kB(Tf − T0)

]
, (1)

where τ0, kB, and T0 are the characteristic time for spin
flipping, the Boltzmann constant, and the material-dependent
characteristic temperature (denoted as the Vogel-Fulcher tem-
perature), respectively (see Fig. 5). Based on the derivation
of the quantities in Eq. (1) in the intermetallic spin-glass
compound PrRhSn3 [32], one can derive τ0 = 2.86 × 10−10 s,
Ea/kB = 42.3(6) K, and T0 = 7.14(3) K for CoGa2O4. The
value of τ0 is considerably larger than the values of typ-
ical canonical spin-glass systems (e.g., τ0 ∼ 10−12 s for
single spin flipping process). The slow dynamics observed
in CoGa2O4 suggests that strongly interacting clusters are
established in the glass state. The experimentally obtained
parameters of 
Tf/Tf
logν = 0.028 (comparable to that of
the cluster-glass system PrRhSn3), (Tf − T0)/Tf = 0.22 (com-
parable to that of a short-range interaction spin-glass system),
and Ea/kBTf = 5.9 at ν = 3 Hz (comparable to those of
Eu0.4Sr0.6S and Mn aluminosilicate) lie in the range of the em-
pirical values for insulating, short-range interaction spin-glass
systems, and most probably cluster glass [33]. The implication
is therefore that the random spinel CoGa2O4 undergoes a
cluster-glass transition at TSG = 8.2 K.

FIG. 6. MTRM and (1/MTRM)(dMTRM/dT) as a function of
temperature.

D. Thermoremanent magnetization

Generally, thermoremanent magnetization (TRM) is as-
sociated with spin glasses or superparamagnetism [34–36].
Since the discovery of spin-glass TRM, it has been used as
a probe of the field-quenched state in spin glasses [35,36] and
of aging (i.e., memory and rejuvenation) effects realized in
spin and also cluster glasses [37,38]. Here we focus on both
its magnetic relaxation and critical behavior in the vicinity
of and below TSG. In CoGa2O4 and also in the isostructural
CoAl2O4, the spin-glass state is induced by the chemical
disorder that accompanies the enhancement of TRM [8]. Ac-
tually, the value of TRM, MTRM, increases monotonically
with increasing η [39] and is enhanced anomalously at the
magnetic phase boundary in a diluted system [8]. The relax-
ation and relaxation component ratio of TRM for CoGa2O4

can signal features of magnetic properties, as shown be-
low. MTRM(T ) develops rapidly below TSG, but it is clearly
apparent even slightly above TSG under our experimental
conditions, whereas the derivative of TRM with respect to
temperature shows a steplike enhancement at T = 8.2 K
(not shown). The logarithmic derivative, dlnMTRM/dT [≈
(1/MTRM)(dMTRM/dT )], shows a more definitive peak at
T = 8.5 K, a temperature slightly higher than TSG (Fig. 6).
Similarly, the relaxation ratio, defined as 
MTRM/MTRM =
[MTRM(tf ) − MTRM(ti )]/MTRM(ti), which is extracted from the
isothermal decay curve at various temperatures [Fig. 7(a)],
exhibited a sharp peak at T = 8.2 K, which corresponds to
the spin-glass transition temperature TSG = 8.2 K obtained
above [Fig. 7(b)]. Here ti and tf are the initial and final points
in the decay curves, respectively. Note that one can derive

MTRM/MTRM = −
t/τ if one assumes a Debye-type relax-
ation MTRM(t ) = MTRM(0)exp(−t/τD), where MTRM(0) and
τD are the TRM value at t = 0 and the relaxation time, respec-
tively, and 
t = tf − ti. Below TSG, the relaxation rate decays
rapidly with decreasing temperature, and its temperature
variation can be fitted by an Arrhenius function with a con-
stant term, 
MTRM/MTRM ∼ a0 + a1exp(−EArr/kBT ), where
a0 and a1 are temperature-independent constants, and ETRM

is an activation energy for the TRM relaxation [Fig. 7(b)].
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FIG. 7. (a) Decay profiles and (b) temperature dependence of the
relaxation rate [MTRM(tf ) − MTRM(ti )]/MTRM(ti ) of thermoremanent
magnetization MTRM. Red solid line is a guide to aid visualization.
Blue solid line represents a fitting curve to an Arrhenius function
(see text).

We extracted the quantities, a0 = −0.041(5), a1 = −3.5(7),
and EArr/kB = 18(2) K by a least squares fitting to the Ar-
rhenius function. As shown below, the value of ETRM/kB was
consistent with the temperature when the specific heat is a
maximum. Consequently, we can roughly estimate τD(T ) at
T = 2 K and TSG to be ∼106 and 104 s, respectively. These
times are one order of magnitude larger than the values ob-
tained directly from the isothermal decay curves of MTRM

fitted by other decay functions (see Appendix B). Instead,
the MTRM(t) curve is reproduced by the so-called stretched
exponential and other functional forms, as mentioned below.

Figures 8(a) and 8(b) show isothermal curves of MTRM(t)
at T = 3 (<TSG) and 8.5 K (>TSG), respectively, as a function
of time after the excitation field (HFC = 100 Oe) had been
turned off. In advance, the sample was field cooled with

FIG. 8. Isothermal decays of MTRM measured at (a) T = 2 K and
(b) 8.5 K. The red, blue, and green dashed lines represent curves ob-
tained by least squares fitting of the Weron, Ogielski, and Kohlrausch
relaxation functions, respectively.

HFC = 100 Oe from 70 K to the measurement temperature T.
Before measuring MTRM(t) at the measurement temperature,
the magnetic field HFC = 100 Oe was kept for a waiting time
tw = 300 s. It is apparent that the profiles of MTRM(t) change
qualitatively at T ∼ TSG [Figs. 8(a) and 8(b)]. Below TSG, the
variation of MTRM with time for CoGa2O4 follows fairly typi-
cal relaxation functions: a stretched exponential (Kohlrausch),
or the Ogielski and Weron functions (see Appendix B) with
reasonable parameters. Figure 8(a) shows the isothermal de-
cay of MTRM at 3 K with least squares fits for the Weron,
Ogielski, and Kohlrausch functions displayed by red, blue,
and green dashed lines, respectively. The MTRM(t) curve is
reproduced fairly well by the Weron and Ogielski functions
but not as well by the Kohlrausch function. As demonstrated
in Appendix C, the tw-dependent behavior, which is one of
the aging effects often apparent in TRM decay for spin and
cluster glasses [36,39], can be neglected for CoGa2O4 to
facilitate extraction of the relaxation parameters for the re-
laxation functions from the fitted MTRM(t) curve. Above and
in the vicinity of the spin-glass transition, a time-independent
component term must be added to these functions to reproduce
the MTRM(t) curve:

MTRM = p0 + p1φ(t ), (2)
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where p0 and p1 are time-independent constants (magne-
tization components), and φ(t ) is the relaxation function
mentioned above [Fig. 8(b)]. Note that the residual field Hres

in the magnetometer, which was estimated to be a few tenths
of an oersted, can make an extrinsic contribution to the value
of p0, which is estimated to be Mres = χ (T ∼ TSG)Hres ∼ 1 ×
10−4 emu/g (∼3 × 10−2 emu/mol). This value is comparable
to the value of p0 observed at 9 K.

Here we employ the Weron relaxation function
(Appendix B) with a constant term p0 to reproduce
the isothermal decay curves of MTRM. In the vicinity
of the spin-glass transition at T = TSG, parameters
obtained by employing both the one-component (p0 = 0)
and two-component (p0 �= 0) models are compared in
Figs. 9(a)–9(c) and 10. The total moment ptot = p0 + p1

increases rapidly in the vicinity of the spin-glass transition
at TSG = 8.2 K. The temperature variation of ptot is rather
well described by ptot (T ) = p0

tot (1−T/TSG)α at T < TSG

with p0
tot = 4.7(1) emu/mol and α = 0.77(5). Here, p0

tot
is the TRM at T = 0. The exponent β stays at ∼0.5
below the transition, but it increases rapidly to ∼1.0 at
temperatures close to TSG [Fig. 9(b)]. The coefficient k
decreases with increasing temperature and approaches zero
at high temperatures [Fig. 9(c)]. Note that in the limit
of k = 0 and β = 1.0, the decay function asymptotically
approaches a Debye function p1exp(−t/τ ). The implication
is that TRM relaxation above the spin-glass transition can
be associated with a single spin flip with a weak magnetic
correlation between spins. Moreover, the relaxation time τ

increases with decreasing temperature and apparently follows
an Arrhenius law with an activation energy Ea ∼ 100 K at
T ∼ TSG and Ea < 10 K at T � TSG. As shown in Fig. 10,
at T ∼ TSG, the τW(T ) and τD(T ) curves approach the
extrapolated curve of τac(T ) in accord with the Vogel-Fulcher
law (Fig. 5). In contrast, above TSG the tendency of τac(T )
differs considerably. The discrepancy between τac and τW is
reconsidered below.

Here, we propose that the relaxation of the TRM may oc-
cur through either of two mechanisms: (1) the Vogel-Fulcher
(VF) law and (2) an Arrhenius law with a small Ea, or
a temperature-independent relaxation mechanism, such as a
quantum mechanical process, i.e., tunneling through a poten-
tial barrier:

1

τtot
= 1

τVF
+ 1

τArr
(3)

(see Fig. 10). As shown above, it is plausible that τVF diverges
exponentially at T0 = 7.14 K. At T � TSG the temperature
dependence of τTRM might be suppressed, and τtot may be-
come nearly constant because of the presence of the second
term in Eq. (3). It is generally established that the relaxation
time τ scales with the number of relaxing units N or effective
volume v of magnetic clusters responsible for magnetic relax-
ation according to a generalized expression such as τ = v1/γ

with 0 � γ � 1 [28]. Consequently, the cluster size might be
saturated at T � TSG in CoGa2O4, but it might not actually
diverge anymore at T = T0. In contrast, it is apparent in glass-
forming liquids that the temperature variation of viscosity
follows the VF law; i.e., viscosity diverges at T0 below the
glass transition temperature [40].

FIG. 9. Temperature dependences of (a) ptot = p0 + p1, (b) β,
and (c) k and q. Dashed curve in (a) represents a numerically fit-
ted curve that corresponds to ptot (T ) = p0

tot (1−T/TSG )α with p0
tot =

4.4 emu/mol and α = 0.77. Vertical and horizontal dashed lines in
(c) indicate q = 5/3 and T = TSG, respectively.

Figure 9(c) shows the temperature dependence of k, which
is called the interaction parameter. k is related with the wait-
ing time and the collective nature of the interaction and
associated with the nonextensivity parameter q via the sim-
ple equation q = (2k + 1)/(k + 1) [28] (see Appendix B).
The value of q varies in the range 1 < q < 2 when k > 0.
Theoretical findings reveal that the extensive-nonextensive
critical phenomenon at q = 5/3 is expected to occur in
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FIG. 10. Relaxation time τ as a function of TSG/T. τac is obtained
by a least squares fitting ac-χ (ν). τD and τW are obtained by numer-
ical fittings of the decay curve of MTRM(t) with Debye and Weron
relaxation functions, respectively. Inset shows τVF, τArr, and τtot as a
function of TSG/T represented by red and blue solid lines and a black
dotted line, respectively.

complex physical systems such as glasses, polymers, and col-
loids [26]. In various metallic canonical spin-glass systems,
measurement of the neutron spin echo has demonstrated that
the q(T ) curves collapse in a curve with q ∼ 5/3 at the
spin-glass transition T = TSG, whereas q(T ) asymptotically
approaches q = 2 at T = 0 and reaches q = 1 at T ∼ 1. 5T SG

[25]. Surprisingly, the q(T ) obtained from the relaxation
curves MTRM(t) of CoGa2O4 follow the q(T ) subtracted from
the neutron spin echo spectra S(Q, t) in canonical (metallic)
spin glasses, where Q is the scattering vector and t is in the
range 0.01–10 ns.

E. FT IR spectra

A comparison of the FT IR spectra of ZnGa2O4 and
CoGa2O4 facilitated detection of the inversion effect on the

FIG. 11. FT IR spectra for CoGa2O4 and the isostructural com-
pound ZnGa2O4. Arrows indicate the broad peak and shoulder
observed at 560 and 720 cm−1, respectively.

infrared (IR) spectrum of CoGa2O4, which is sensitive to
structure and the nature of bonding. Figure 11 shows the FT
IR spectra for ZnGa2O4 and CoGa2O4. The IR spectral peaks
assigned theoretically to the T1u mode [41] were observed
at the IR frequencies listed in Table II for ZnGa2O4. For
the ZnGa2O4 synthesized in this study, the strong peaks at
582 and 439 cm−1 corresponded well with previously cal-
culated [41] and observed [42] values. Contrary to the case
of ZnGa2O4, a shoulder and a broad peak were observed at
720 and 560 cm−1, respectively, in the spectra of CoGa2O4

(Fig. 11). Compared with that of ZnGa2O4, the IR spectrum
of CoGa2O4 shifted as expected toward higher frequencies
when the mass difference between Co and Zn was consid-
ered. The shift was estimated to be detectable but small, e.g.,
(mZn/mCo)1/2 = 1.05. Actually, for the Zn and Co aluminates
with η < 0.055, the shift of the IR peak position was negligi-
bly small [43]. As shown in Fig. 11 and Table II, the IR peak at
620 cm−1 of CoGa2O4 was shifted from the peak at 582 cm−1

of ZnGa2O4 by a factor of 1.07, slightly larger than the 1.05
estimated above, whereas the IR peak at 434 cm−1 might have
been shifted toward lower frequency. In the largely inverted
CoGa2O4, the additional structures of the IR spectra seemed
to be related to the tetrahedrally coordinated Ga3+ and the

TABLE II. Calculated and observed FT IR mode frequencies (unit: cm−1) for ZnGa2O4, CoGa2O4, and NiAl2O4.

ZnGa2O4
a ZnGa2O4 ZnGa2O4 CoGa2O4 NiAl2O4

580 570 582 720s 810s

429 420 439 620 715
342 328 560b 600b

175 175 434 505
[41] [42] This work This work [44]

aCalculated values. s: shoulder. b: broad peak.
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octahedrally coordinated Co2+ ions. Whereas the mass differ-
ence between Co and Ga is relatively small, the phonon modes
are rather strongly modified by the inversion, at least in the
region 550 − 850 cm−1. Note that in this study, the IR phonon
modes below 400 cm−1 of the spinel compounds were not
detected because the lower-frequency limit of the spectrome-
ter was 398 cm−1. These inversion-induced structures are also
apparent in the inverse spinel NiAl2O4 with η = 1 (Table II)
[44] and the partially inverted ZnAl2O4 nanoparticles with
η = 0.34 [45]. The spectral intensity of the shoulder at
790 cm−1 diminishes with decreasing η in ZnAl2O4 nanopar-
ticles annealed subsequently at various temperatures up to
1273 K [45,46]. The shoulder has been claimed to be indica-
tive of the presence of the inverted Al3+ ion [45,46]. It is
plausible that in the IR spectrum of CoGa2O4, the shoulder
at 810 cm−1 is accompanied with the IR modes involving a
Ga3+ ion at the A site.

F. Specific heat

The magnetic state in CoGa2O4 was also characterized
by specific heat measurements. The specific heat divided
by temperature Cmol/T exhibits a broad maximum at T =
10 K accompanied by a glass transition at TSG = 8.2 K
[Fig. 12(a)]. To calculate the magnetic component of the
specific heat 
Cmol and magnetic entropy Smag we needed
to estimate the lattice contribution of the specific heat Clattice

for CoGa2O4. Theoretical considerations indicate that for
ZnGa2O4 the partial phonon density of states (PDOS) for the
heavy Zn and Ga ions is distributed mainly below 360 cm−1,
whereas for the light oxygen ion the partial PDOS is dis-
tributed above 360 cm−1 [41]. At low frequency, the PDOS
seems to exhibit a Debye-type parabolic frequency depen-
dence that consists mainly of the contributions of Zn and
Ga ions. We can apply the Einstein-Debye (ED) model to
obtain Clattice for MAl2O4 (M = Zn, Co, Fe, Mn) [11] and
for CoAl2O4 [16]. We followed the analytical procedures
for aluminate oxides [11] and first made a fit of Cmol/T for
ZnGa2O4 to the ED function to obtain the Debye and Einstein
temperatures (Table III). The ED function,

C = 3RaDx−3
D

∫ xD

0

x4ex

(ex − 1)2 dx + R
2∑

k=1

aEk

x2
Ek

exEk(
exEk − 1

)2 , (4)

consists of two terms and is based on the Debye-Einstein
model with the three coefficients determined experimentally,
i.e., the Debye temperature �D and Einstein temperatures �E1

and �E2. The lattice degrees of freedom (LDF) for spinel
compounds are distributed to one acoustic and two optical
modes. Here, xi = �i/T (i = D, E1, E2) are the reduced in-
verse temperatures, ai is the number of LDF, and R is the
gas constant. The Dulong-Petit rule predicts that in a three-
dimensional lattice, the molar specific heat is 3rR, which is
reproduced asymptotically by the ED function at high tem-
peratures (T � �D, �E1, and �E2), where r is the number of
atoms per formula unit [47]. The factor 3r = 21 is the number
of LDF in a cubic spinel structure. The temperature variation
of Cmol/T for ZnGa2O4 was reproduced using the ED function
with the coefficients shown in Table III. Compared with �D =
286 K for ZnAl2O4 [11], the reduction of �D for ZnGa2O4 by

FIG. 12. (a) Temperature variations of Cmol/T for CoGa2O4 and
the isostructural compound ZnGa2O4. Red and black lines repre-
sent Clattice/T obtained by least squares fitting to the Einstein-Debye
model for CoGa2O4 and ZnGa2O4, respectively. (b) Black open cir-
cles show the magnetic component 
Cmol/T = [Cmol(CoGa2O4) −
Clattice]/T . The magnetic entropy Smag is also depicted. The dashed
line represents a power law with respect to temperature 
Cmol/T =
0.054T 0.82. (c) The temperature derivative of 
Cmol as a function of
temperature. Arrow indicates the spin-glass transition point TSG. The
dashed red line shows T 2 variation above TSG.

a factor of 0.85 was in good agreement with the scaling factor
of 0.82 derived analytically for a ternary compound [48]. In
the ED function employed for the spinel compounds [11],
the Einstein modes represented by E1 and E2 had 12 and six
optical degrees of freedom, respectively, whereas the Debye
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TABLE III. Lattice degrees of freedom ai (i = D, E1, and E2)
employed in Ref. [11] and Debye and Einstein temperatures for
CoGa2O4, ZnGa2O4, and related spinel compounds.

Modea D (A) E1 (O) E2 (O)

ai 3 12 6 21 in total
Temperature �D (K) �E1 (K) �E2 (K) Reference
CoGa2O4 247b 634 301 This work
ZnGa2O4 244 672 310 This work
CoAl2O4 301 530 886 [11]
ZnAl2O4 286 543 1244 [11]

aA and O in parentheses represent acoustic and optical modes,
respectively.
bEstimated by a scaling factor of �D(CoGa2O4)/�D(ZnGa2O4) =
1.013 [48].

mode had three acoustic degrees of freedom (Table III). It is
quite reasonable to deduce for ZnGa2O4 that the E1 and E2

modes were due to oxygen and cation motions, respectively.
In other words, the results for �i and ai (i = D, E1, and E2)
shown in Table III are a coarse graining of the PDOS structure
of ZnGa2O4 [41]. In the case of ZnAl2O4, the contributions
of the motions of both the oxygen and aluminum atoms to
the PDOS are primarily above 250 cm−1, whereas the zinc
motion contributes below 250 cm−1. Above 700 cm−1 and up
to more than 1000 cm−1, the PDOS is due to the motion of
oxygen [49]. Therefore, the E1 mode with aE1 = 12 represents
both oxygen and aluminum motions, whereas the E2 mode
with aE2 = 6 is due to the motion of oxygen at high frequen-
cies above 700 cm−1. The simple ED function can reproduce
the temperature variation of the specific heat, and the ob-
tained coefficients are qualitatively consistent with the PDOS
structures.

We needed a reasonable estimate of Clattice for CoGa2O4,
because the phonon structure of CoGa2O4 was modified
by the existence of the inverted cations (i.e., the octahe-
drally coordinated Co2+ and the tetrahedrally coordinated
Ga3+), as suggested by the comparison of the IR spec-
tra of the aluminates and gallates with various degrees of
inversion. It is plausible, therefore, that the specific heat
of the nonmagnetic reference material ZnGa2O4 was not
an appropriate Clattice for CoGa2O4. Assuming that the in-
version effect on �D could be neglected for CoGa2O4,
we estimated the value of �D for CoGa2O4 using the
scaling factor �D(CoGa2O4)/�D(ZnGa2O4) = 1.013 [48].
We obtained a fairly good fit to the ED function above
90 K [Fig. 12(a)] and obtained the Einstein temperatures
(Table III). A small failure in the curve fitting for Cmol/T
was apparent at T > 200 K. It is likely that the A-site sub-
stitution from Zn to Co resulted in a considerable shift
of the phonon structure related to the motion of oxy-
gen. The magnetic specific heat component 
Cmol/T =
[Cmol(CoGa2O4) − Clattice(�D, �E1, �E2)]/T and the mag-
netic entropy

Smag =
∫ T

Tmin


Cmol

T
dT (5)

were calculated as shown in Fig. 12(b). Here, Tmin ∼ 1.9 K
was the lowest experimental temperature. 
Cmol(T ) followed

the power law 
Cmol = δT 1.82 with respect to temperature,
with δ = 54(1) mJ K−2.82 below T = 8 K [Fig. 12(b)], and it
exhibited a maximum at T = 11.5 K. The exponent 1.82(1)
was comparable to and somewhat larger than the typical value
of 1.5 observed in spin glasses [50], but it was smaller than
the reported values of 2.0 [11,13], 2.1 [18], 2.23 [15], 2.33
[8], and 2.5 [12] for lightly inverted CoAl2O4 samples. With
decreasing temperature, there was a remarkable upturn ap-
proximately proportional to T −2, and a kink was apparent in
the d
Cmol(T )/dT curve [Fig. 12(c)]. Interestingly, the kink
position coincided with TSG. With a further decrease of tem-
perature, the curve passed over a convex-upward plateau and
then decreased monotonically. It is worth noting that Smag(T )
seemed to reach a saturation value Smag of 7.5(9) J K−1 mol−1

at temperatures as high as T = 100 K (�TSG), and Smag(T )
was suppressed compared with the experimentally obtained
values of 13 at T = 150 K [11], 9.47 at T = 100 K [15], 10.2
at 60 K [18], 9.9 at 40 K [8], and 8.4 J K−1 mol−1 at 100 K [16]
for CoAl2O4 as well as for the theoretically expected value of
Sspin = Rln (2S + 1) = 11.52 J K−1 mol−1 based on the spin
degrees of freedom for S = 3/2 of Co2+.

As mentioned above, the magnetic measurement revealed
that the effective magnetic moment for the Co2+ at the B site
was considerably greater than the spin value of peff = 3.87 μB

for S = 3/2. This difference implies that an orbital moment
was not completely quenched, and an intermediate ligand field
scheme [51] was therefore appropriate for an octahedrally
coordinated Co2+; that is, the crystal field and spin-orbit cou-
pling energies seemed to be comparable. The Co2+ (3d7) state
was described using a fictitious angular moment ζ = 1 that
coupled to the spin moment S = 3/2 [51]. Spin-orbit coupling
resulted in the formation of a (2ζ+1)( 2S + 1) manifold of
J′ = ζ + S consisting of three states of J′ = 5/2, 3/2, and
1/2. The ground state was the doublet of J′ = 1/2. The energy
separation between the ground and low-lying J′ = 3/2 states
was estimated to be approximately 580 K for the octahedral
Co2+ ion. This energy difference was a result of spin-orbit
coupling λ′ (ζ·S), where λ′ is an effective spin-orbit param-
eter. Therefore, the estimated specific heat involved with the
excited states seemed to be negligibly small in the temperature
range T < 100 K. For CoGa2O4, the magnetic entropies of the
tetrahedral and the octahedral Co2+ ions were (1 − η)Rln(4)
and ηRln(2), respectively. The experimental value of Smag =
7.5 J K−1 mol−1 at T = 100 K was, within experimental er-
ror, equal to (1 − η)Rln(4) + ηRln(2) = 7.70 J K−1 mol−1.
For the octahedrally coordinated Co2+ ion, the doublet grand
state stabilized by the effective spin-orbit coupling was also
apparent in the garnet NaCa2Co2V3O12, which exhibited an
antiferromagnetic transition at TN = 6.4 K [52], as well as the
silver delafossite Ag3Co2SbO6 with TN = 21.2 K [53].

IV. DISCUSSION AND CONCLUSIONS

We demonstrated by measurements of the dc- and ac-
magnetic susceptibilities and TRM that cluster glass is
established below the transition at TSG = 8.2 K in CoGa2O4.
In addition, the realization that TRM was a macroscopic
phenomenon proved that there is a mechanism of magnetic
relaxation in the glass state. In the following discussion, we
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summarize the results for CoGa2O4 that were different from
or comparable to previously reported characteristics of other
spin and cluster glasses.

The cationic configuration in CoGa2O4 is close to that
of a random spinel characterized by a degree of inversion
η = 2/3. The Rietveld refinement revealed that the inver-
sion of our polycrystal sample was 0.664(8). The implication
is that both the A-site and B-site occupancies of the mag-
netic Co2+ ion, gA(Co) and gB(Co), respectively, were greater
than the percolation threshold xAB

c = 0.227(3), but they were
smaller than the A-site and B-site thresholds xA

c = 0.429(3)
and xB

c = 0.390(3) [54], respectively. The Co2+ ions with S =
3/2 were distributed in both the sites and form macroscopic
magnetic clusters if the nearest neighbor super-exchange in-
teractions JAB and JBB are anticipated between spins. These
circumstances eliminate the bond frustration expected to exist
in the A-site spinel antiferromagnet and also induce the cluster
glass state. The octahedrally coordinated Co2+ ion is known
to display weak Jahn-Teller activity because of the orbital
(configurational) degree of freedom. Because in CoGa2O4 the
gB(Co) is less than xB

c , it seems theoretically possible that a
cooperative Jahn-Teller transition is not realized. In actuality,
the crystal structure of CoGa2O4 is always a cubic spinel.

The relaxation rate 1/τD and the temperature derivative of
the MTRM are sensitive to the spin-glass transition at TSG.
They exhibit sharp peaks at TSG [Figs. 6 and 7(b)]. It is
worth noting that the frequency-dependent ac susceptibility
is observed below T ∼ 50 K (Fig. 4), which seems to suggest
that CoGa2O4 undergoes a short-range magnetic order. Since
the imaginary component χ ′′(T ) does not show an anomaly
at T ∼ 50 K, it is plausible that an antiferromagnetic clus-
ter embedded in paramagnetic spins is developed at T �
TSG [55]. This speculation is supported by the discrepancy
between the temperature variations of τac and τD observed
at T > TSG, as shown in Fig. 10; that is, a two-component
model can be employed for describing the magnetic state
of CoGa2O4. Therefore, more plausibly, an inhomogeneous
magnetic phase, e.g., a Griffiths phase emerges below T = |θ |
where θ is the Weiss temperature obtained in the paramagnetic
state, as speculated to be realized in CoAl2−xCoxO4 at x > 0.9
[56]. These situations for CoGa2O4 remind us that in a Co3O4

nanoparticle system a spin-glass-like transition occurs at T =
10 K, while an antiferromagnetic transition is indicated at T =
32 K close to the Néel point for a bulk sample [57]. Below the
Néel point a ferromagnetic component arises and develops
with decreasing temperature. Interparticle magnetic interac-
tions realized in the antiferromagnetic nanocrystals randomly
oriented bring about the spin-glass-like transition.

In CoGa2O4 the saturation tendency of the relaxation time
(i.e., cluster volume) observed at low temperatures T < TSG

reflects the fact that in the A-site frustrated antiferromag-
net CoAl2O4, the magnetic correlation length remains on
the order of nanometers at well below the Néel temperature
[17,18]. The absence or suppression of long-range ordering
in CoGa2O4 might be due to the large degree of inversion.
Concomitantly, the Co2+ ion occupying the octahedral B site
might have brought about the formation of the magnetic clus-
ter. In fact, MTRM is enhanced as η increases with increasing
x in CoAl2−xGaxO4 [39]. On the other hand, the suppression
of long-range magnetic ordering in CoAl2O4 seems to result

from the proximities to the NSS boundary of J2/J1 = 1/8 and
the NSG boundary of ηc = 0.08 [Fig. 1(b)]. While relaxation
time τ (T ) reflects the inherent characteristics in CoGa2O4,
apparent magnetic behaviors might be quite universal as those
expected to be observed in a spin or cluster glass as follows. At
T = TSG the nonextensive parameter is q ∼ 5/3 for CoGa2O4;
where the extensive-nonextensive transition is expected to
occur [26], we observed (i) the SG transition accompanied by
the critical slowing down of spin fluctuations, (ii) the form of
relaxation changing from a Debye to a nonexponential form,
and (iii) thermoremanent magnetization MTRM(0) emerging
rapidly. The presented comprehensive magnetic investigation
for the random spinel magnet CoGa2O4 might also provide in-
sight for understanding magnetic properties for the frustrated
antiferromagnet CoAl2O4 assigned to be in the vicinity of
the NSS and NSG boundaries and facilitates further investi-
gations.
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APPENDIX A: SPIN-GLASS TRANSITION AT TSG

AND CRITICAL EXPONENT zν′

As can be seen in Fig. 13, the relaxation time τac for
CoGa2O4 shows a conventional power-law divergence of the
critical slowing down at T = TSG,

τac(T ) = τ0

(
Tf − TSG

TSG

)−zν ′

, (A1)

where τ0 is a characteristic relaxation time. Here we ob-
tain τ0 = 2.5(6)×10−10 s, zν ′ = 9.8(1), and TSG = 8.2 K
by the least squares method. The value of τ0 corresponds
well with that obtained above by the fitting to the VF law
2.86 × 10−10 s. The power exponent of zν ′ = 9.8 is compa-
rable to the values in the range 4–12 found for canonical
spin-glass systems [16]. Generally, the correlation length ξ (T )
diverges as ∼(T − Tc)−ν ′

, and the relaxation time as τ ∼ ξ z ∼
(T − Tc)−zν ′

when the temperature approaches the transition
point, Tc.

APPENDIX B: NONEXPONENTIAL
RELAXATION FUNCTIONS

The cluster of concern here is a microscopic and meso-
scopic unit consisting of a large number of relaxing entities
which can be characterized by its volume or relaxation
time. The cluster volume is closely related to a coherence
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FIG. 13. Logarithmic plot of relaxation time τac as a function
of reduced temperature t = (Tf − TSG )/TSG. Solid line represents the
results of a least squares fit to the data.

length evaluated directly by microscopic probes, while re-
laxation time in a cluster is significantly different from its
surroundings. Relaxation in glasses, which are typical com-
plex physical systems, is a stochastic process that depends
both on the geometric characteristics of the cluster, such as
its morphology or fractal dimension, and on the collective
nature of the interaction [28]. Generally, liquid and glass
states are structurally quite similar. The most important and
representative quantity between liquid and glassy states seems
to be the degree of the relaxation time. In contrast with the
logarithmic function m0 + Sln(t) used generally for spin-glass
systems, the following relaxation functions explicitly contain
the relaxation time τ .

1. Kohlrausch (stretched exponential) function

The long-tail relaxation is well reproduced by the
Kohlrausch (stretched exponential) form

φ(t ) = exp

[
−

( t

τ

)β
]

(B1)

for 0 < β < 1. This function is asymptotically a logarithmic
and Debye function at β → 0 and 1, respectively.

2. Ogielski function

Monte Carlo calculations for a three-dimensional (3D) ± J
Ising spin-glass model were conducted by Ogielski [58], who
obtained the spin autocorrelation function of the spin-glass
state. This function is phenomenologically expressed by

φ(t ) = t−xexp

[
−

( t

τ

)β
]
, (B2)

where the exponent x is in the range 0–0.5, and the relaxation
time τ diverges at TSG.

3. Weron’s generalized probabilistic relaxation function

To describe dielectric relaxation consistent with experi-
mentally established findings and based on purely stochastic
theories, Weron proposed a universal relaxation function in a
power-law form [24]:

φ(t ) =
[

1 + k
( t

τ

)β
]− 1

k

(B3)

for k > 0 and 0 < β < 1, where k and β are mathemat-
ical macroscopic parameters. The parameter k is called the
interaction parameter and is related to the waiting time tw,
and “β represents macroscopically the ‘fractal’ geometry and
dynamic nature of the relaxation dynamics” [28]. In the case
of k → 0, the stretched exponential form, Eq. (B1), is recov-
ered. Later it was revealed that the dipolar relaxation function
φγ ,q(t ) was derived for a cluster model based on the gener-
alized maximum Tsallis nonextensive entropy principle [28],
whereas it is assumed quite generally that the relaxation time
τ of a volume v made of N relaxing elements scales as τ =
v1/γ with 0 < γ < 1. The Tsallis generalized nonextensive
entropy [26,27] is formulated as follows:

Sq = kB
1 − ∫∞

0 pq(x)dx

q − 1
. (B4)

Equation (B4) consistently encloses the Boltzmann-Gibbs
entropy SBG = −kB

∫ ∞
0 p(x)lnp(x)dx as an asymptotic form

when the nonextensive parameter q → 1. Here p(x) is a dis-
tribution function in the sense of a probabilistic point of view,
and x is, for example, a correlation length ξ in a dielec-
trically or magnetically correlated system or cluster volume
v of an aggregated cluster system. Remarkably, asymptotic
power laws of the response function fγ ,q(t ) = − dφγ , q

dt ob-
tained in both the limits t → 0 and t → ∞ are consistent

FIG. 14. Relaxation rate R(t) as a function of logarithmic time
lnt at various waiting times. Solid line is a guide to facilitate
visualization.
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with those derived from the Weron function, Eq. (B3) [28].
This coincidence brings about a simple relation between the
Tsallis parameter q in Eq. (B4) and the stochastic parameter
k in Eq. (B3), i.e., k = (q−1)/(2−q), in addition to β = γ .
Moreover, it gives physical meanings to k and β, which were
introduced as purely stochastic parameters by Weron [24].

APPENDIX C: EFFECTS OF AGING ON THE TRM
RELAXATION CURVE

It is known in spin glasses [20,36] that the relax-
ation rate with respect to logarithmic time, which is

defined as

R(t ) = −d
(MTRM

HFC

)
/dlnt, (C1)

exhibits a maximum at t ∼ tw. The exhibition of this maxi-
mum is a kind of aging behavior. In CoGa2O4, however, R(t)
does not show a maximum, and there is some tw dependence
of R(t), but the dependence is quite small in the range of
50 � tw � 600 s (Fig. 14). In the TRM relaxation curves
for CoGa2O4 taken after the waiting duration tw = 300 s, the
fitting procedure and extracted parameters seem not to be
seriously affected by aging effects.
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