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Breaking of Coulomb blockade by macrospin-assisted tunneling
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A magnet with precessing magnetization pumps a spin current into adjacent leads. As a special case of
this spin pumping, a precessing macrospin (magnetization) can assist electrons in tunneling. In small systems,
however, the Coulomb blockade effect can block the transport of electrons. Here, we investigate the competition
between macrospin-assisted tunneling and the Coulomb blockade for the simplest system where both effects
meet; namely, for a single tunnel junction between a normal metal and a metallic ferromagnet with precessing
magnetization. By combining Fermi’s golden rule with magnetization dynamics and charging effects, we show
that the macrospin-assisted tunneling can soften or even break the Coulomb blockade. The details of these
effects—softening and breaking of the Coulomb blockade—depend on the macrospin dynamics. This allows us,
for example, to measure the macrospin dynamics via a system’s current-voltage characteristics. It also allows us
to control a spin current electrically. From a general perspective, our results provide a platform for the interplay
between spintronics and electronics on the mesoscopic scale. We expect our work to provide a basis for the study
of Coulomb blockade in more complicated spintronic systems.
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I. INTRODUCTION

To compete with modern electronics, systems of
spintronics—the spin analog of electronics—are becoming
smaller. In turn, mesoscopic effects become more important.
On the one hand, this complicates the description of spintronic
effects. On the other hand, however, it opens up new ways
to investigate and manipulate spintronic systems. Here,
we demonstrate how the Coulomb blockade—a prominent
effect of mesoscopic physics—can be used to measure
magnetization dynamics via a system’s current-voltage
characteristics.

We consider a single tunnel junction between a normal
metal and a metallic ferromagnet (see Fig. 1). A tunnel
junction is a thin insulating layer which separates two metal-
lic systems (leads) from each other. Classically, a tunnel
junction forms a capacitor, as the insulating layer separates
the two metallic systems by a small distance. Quantum
mechanically—as the name “tunnel junction” suggests—
electrons can tunnel through the insulating layer. The classical
and quantum perspectives are related: when an electron tun-
nels through the junction, it changes the charge on the
capacitor and, in turn, it changes the electrostatic Coulomb
energy stored in the capacitor [1,2]. If an electron does not
have enough energy to compensate the cost in Coulomb
energy, then the tunneling is blocked; this is the Coulomb
blockade [1,2].

The energy to overcome the Coulomb blockade can come
from thermal fluctuations, from the voltage source, or—in
the present case—from the magnetization dynamics. To fo-
cus on the role of the magnetization dynamics, we consider
the limit of zero temperature. For simplicity, we assume
that the magnetization precesses in a steady state and, we

use the macrospin approximation; that is, we describe the
magnetization as a single vector M. A precessing macrospin
(magnetization) acts as a time-dependent magnetic field for
electrons and—as a special case of adiabatic pumping [3,4]—
pumps spin-polarized electrons into adjacent leads [5–7]. For
a tunnel junction, this means that a precessing macrospin can
assist electrons in tunneling [8] (see also [9,10]).

In this paper, we study the competition between Coulomb
blockade and macrospin-assisted tunneling. This places our
work into the emerging field of mesoscopic spintronics.
Other topics in this field include, for example, the study of

FIG. 1. We consider a single tunnel junction between a normal
metal (left lead) and a metallic ferromagnet (right lead) with a
magnetization in a steady-state precession. Separating two metallic
systems, the tunnel junction forms a capacitor (capacitance C). For
R � RK = h/e2, an electron, when tunneling, changes the charge
on the capacitor by e and, in turn, it loses the charging energy
(Ec = e2/2C) to its electrostatic environment [1,2]. For low voltage
(eV < Ec) and low temperature (kbT � Ec), this energy loss usually
forbids charge transport (Coulomb blockade). However, we show
that the precessing magnetization can break the Coulomb blockade
by assisting electrons in tunneling.
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noise in spintronics [8,11–17], the mesoscopic Stoner insta-
bility [18–21], and spintronics with quantum dots [22–27],
which is closely related to our work. Here, we show that the
macrospin-assisted tunneling can provide enough energy to
overcome the Coulomb blockade. Therefore, the macrospin-
assisted tunneling softens or even breaks the Coulomb
blockade and, as a result, the system’s current-voltage char-
acteristics reveal the macrospin dynamics.

For slow precession, the macrospin-assisted tunneling soft-
ens the Coulomb blockade (see Fig. 2). For strong precession,
the macrospin-assisted tunneling breaks the Coulomb block-
ade (see Fig. 3). In both cases, the macrospin dynamics
governs the flow of the charge current. Read in reverse,
the charge current can be used to measure the magnetiza-
tion dynamics (see Figs. 2 and 3). To be more explicit,
we choose the macrospin’s precession axis as the z direc-
tion. The precessing macrospin is then described by M =
M(sin θ cos φ, sin θ sin φ, cos θ ), where polar angle θ and pre-
cession frequency φ̇ are constant. Roughly speaking, the polar
angle θ can be inferred from the tunnel junction’s differen-
tial conductance, while the precession frequency φ̇ can be
inferred from the combined information of conductance and
differential conductance. Alternatively, one can infer θ and φ̇

from the position of kinks in the current-voltage characteris-
tics (see Figs. 2 and 3).

We close the Introduction by relating our work to Ref. [28],
where the effect of an electromagnetic environment was
studied for a magnetic tunnel junction with one precessing
magnetization. Using P(E ) theory, they derived a general
expression for the charge current which should also cover
our result [29]. However, their focus was on open circuits,
where no charge current can flow and a voltage buildup is
predicted instead. In open circuits—with always vanishing
charge current—the Coulomb blockade and its breaking can-
not be seen directly. In contrast to their work, we use a simple
Fermi’s golden rule approach, treat the electrical environment
classically, and focus on closed circuits. While less general,
our simple approach makes the physics particularly transpar-
ent. So we can easily see how macrospin-assisted tunneling
breaks the Coulomb blockade. In retrospect, we can even
identify the results of Ref. [28] as important indirect signs
of the breaking of Coulomb blockade by macrospin-assisted
tunneling.

II. THE MODEL

The breaking of the Coulomb blockade by macrospin-
assisted tunneling can be found within a simple model: the
electrons are described quantum mechanically by single-
particle Hamiltonians, whereas the Coulomb energy is taken
into account on the classical level.

The magnetic right lead is described by Hr =∑
ρσσ ′ |ρσ 〉hσσ ′

r,ρ 〈ρσ ′|, where σ and σ ′ denote the spin in
the z direction (the magnetization’s precession axis), ρ

denotes the right-lead states with corresponding energy ερ ,
and hr,ρ = ερ − Mσ/2, with the vector of Pauli matrices
σ and, for simpler notation, the magnetization length M
includes all constants [30]. The left lead is described by
Hl = ∑

λσ |λσ 〉ελ〈λσ | , where λ denotes the left-lead states
with the corresponding energy ελ. We assume spin-conserved

tunneling, described by Ht = ∑
λρσ |ρσ 〉t0〈λσ | + H.c.,

where t0 are the tunneling amplitudes between states ρ and λ;
for simplicity, we disregard the state dependence of t0.

In addition to the Hamiltonian, we need to specify the dis-
tribution functions. We assume the tunneling events are rare,
such that local equilibrium is reestablished before each tunnel-
ing event. Then, the electrons are distributed according to the
Fermi distribution f (ε) = 1/{exp[(ε − μ)/T ] + 1}, where
we assume the chemical potential μ and the temperature T
are equal in both leads. We emphasize, however, that μ is only
the chemical potential, not the electrochemical potential.

III. THE COULOMB BLOCKADE REGIME

The (electrostatic) Coulomb energy is taken into account
in addition to the single-particle contributions. In the circuit
(Fig. 1), there are two different scales for the electrostatic
energy: first, there is eV , which is the work done by the
voltage source when one electron is pumped from one side to
the other; second, there is Q2/(2C), which is the energy stored
in the capacitor with capacitance C and charge Q. Which of
these energy scales is relevant for the tunneling of electrons?
As discussed in Ref. [1], the answer strongly depends on the
tunnel junction’s environment. In particular, it depends on the
environmental resistance R: for a small resistance R � RK ,
the (ideal) voltage source fixes the charge on the capacitor to
Q = CV , such that the energy stored in the capacitor remains
fixed and, the tunneling is governed by the voltage source;
for large resistance R � RK , in contrast, the voltage source
cannot immediately restore the charge on the capacitor, such
that the capacitor’s energy governs the tunneling. The natural
scale separating these two cases is the resistance quantum
(von Klitzing constant) RK = h/e2 [1]. In the following, we
focus on R � RK and the limit of zero temperature T = 0,
which puts the system into the Coulomb blockade regime.

An electron can tunnel only if it has enough energy avail-
able. When one electron tunnels, the charge on the capacitor
Q is changed by −e for left-to-right tunneling and by +e for
right-to-left tunneling. So the change in electrostatic energy
is �Eel = Q2/2C − (Q ∓ e)2/2C. Assuming tunneling events
are rare, the capacitor is recharged to Q = CV before each
tunneling event [31]. In turn, we find �Eel = ±eV − Ec with
the charging energy Ec = e2/2C. If the applied voltage is too
small (�Eel < 0), we enter the regime of Coulomb blockade,
where electrons cannot tunnel unless the missing electrostatic
energy is supplied in a different way [1,2]. At T = 0, the miss-
ing energy cannot come from thermal activation. However, the
precessing macrospin can assist electrons in tunneling [8] and,
thereby, it provides the missing energy.

IV. MACROSPIN-ASSISTED TUNNELING

As a first step, we determine the tunneling rate between
states in the left lead and states in the right lead. We assume
the tunnel coupling is a weak perturbation, such that we can
use Fermi’s golden rule.

Before Fermi’s golden rule can be applied, we have
to change to the magnetization’s rotating frame of
reference, such that the leads’ Hamiltonians become time
independent. So following Ref. [8], we apply a transformation
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U (t ) = ∑
ρσ |ρσ ; M(t )〉〈ρσ | + ∑

λσ |λσ 〉〈λσ |, where
|ρσ ; M(t )〉 is an instantaneous eigenstate of M(t )σ̂;
formally, M(t )σ̂|ρσ ; M(t )〉 = Mσ |ρσ ; M(t )〉, with
M = |M|. This transformation does not affect the left lead’s
Hamiltonian H̃l := UHlU † = Hl . But it diagonalizes the
right lead’s Hamiltonian H̃r := UHrU † = ∑

ρσ |ρσ 〉ξρσ 〈ρσ |,
where ξρσ = ερ − Mσ/2. The magnetization’s time
dependence is transferred to the tunneling Hamiltonian
H̃t := UHtU † = ∑

ρλσσ ′ |ρσ 〉[R†(t )]σσ ′t0〈λσ ′| + H.c. That
is, the tunneling amplitudes become time dependent and
nontrivial in spin space,

t0 → R†(t ) t0. (1)

The spin-space rotation R(t ) is defined by its elements
[R(t )]σσ ′ := 〈ρσ ; M(t )|ρσ ′〉. Note, however, that this defini-
tion is not unique, as a rotation around the magnetization
direction (spin quantization axis) has no physical effect. This
gives rise to a gauge freedom which can be used to simplify
the calculation [15].

Due to its time dependence, the transformation not only
rotates the Hamiltonian but it also generates a new term,
−iUU̇ † = −i

∑
ρσσ ′ |ρσ 〉[R†Ṙ]σσ ′ 〈ρσ ′|, in the rotating-frame

Hamiltonian. The spin-off-diagonal part of −iR†Ṙ induces
transitions, also known as Landau-Zener transitions, between
spin-up and spin-down states. However, we assume a large
magnetization length M, such that we can disregard these
transitions [32]; this is also known as adiabatic approxima-
tion [15]. The remaining spin-diagonal part of −iR†Ṙ gives an
additional time-evolution phase, also known as Berry phase,
which is different for spin-up and spin-down states. However,
we eliminate the spin-diagonal part of −iR†Ṙ by fixing the
gauge analog to Ref. [15]; that is, we explicitly choose

R(t ) =
(

cos θ
2 e−iω−t − sin θ

2 e−iω+t

sin θ
2 eiω+t cos θ

2 eiω−t

)
, (2)

with ω± = φ̇(1 ± cos θ )/2, where ω− is the rate at which the
Berry phase is acquired. Even though this choice eliminates
the spin-diagonal part of −iR†Ṙ, it does not eliminate the
Berry phase. Instead, the Berry phase is transferred to the
tunneling elements, Eq. (1). To summarize, for the specific
choice, Eq. (2), the newly generated term −iR†Ṙ can be disre-
garded in an adiabatic approximation.

Now, in the rotating frame, it is straightforward to apply
Fermi’s golden rule. Treating the tunneling Hamiltonian H̃t as
perturbation, we obtain the golden-rule rate,

�λσ ′�ρσ = 2π

h̄
|t0|2 1 + σσ ′ cos θ

2

× δ(ξρσ − ελ + σ ′h̄ωσσ ′ − eV ± Ec), (3)

where +Ec and −Ec correspond to left-to-right tunnel-
ing λσ ′ → ρσ and right-to-left tunneling ρσ → λσ ′, re-
spectively. The macrospin orientation governs the spin-
projection factor (1 + σσ ′ cos θ )/2, which is cos2 θ

2 for equal
spins σ = σ ′ and sin2 θ

2 for opposite spins σ 	= σ ′. The
macrospin dynamics enters through the frequency ωσσ ′ =
φ̇(1 − σσ ′ cos θ )/2, which is ω− for equal spins σ = σ ′
and ω+ for opposite spins σ 	= σ ′. In the rotating frame,
the macrospin dynamics translates into the time dependence

of the perturbation [tunneling Hamiltonian; see Eqs. (1)
and (2)]. Consequently, the macrospin dynamics induces the
energy shift σ ′h̄ωσσ ′ in the golden-rule rate. In other words,
the precessing macrospin gives energy to—or takes energy
from—the tunneling electrons; that is, it can assist electrons
in tunneling [8].

Now, knowing the golden-rule rate, Eq. (3), we can deter-
mine the charge current.

V. CHARGE CURRENT

The net charge current I = Il→r − Ir→l is the difference
between the left-to-right current Il→r and the right-to-left
current Ir→l .

First, we focus on the left-to-right current Il→r ; that
is, we consider only electrons that are tunneling from the
left lead to the right lead. Formally, it is given by Il→r =
e
∑

ρλσσ ′ �λσ ′→ρσ f (ελ)[1 − f (ξρσ )], where the golden-rule
rate, Eq. (3), is summed over all states and—since electrons
can tunnel only from filled states into empty states—it is
weighted by the filling factor f (ελ) and the Pauli-blocking
factor [1 − f (ξρσ )]. More explicitly,

Il→r = gt

2e

∑
σσ ′

1 + σσ ′ cos θ

2

×
∫

dεl

∫
dεr f (εl − eV )[1 − f (εr )]

× δ(εr − εl + Ec + σ ′h̄ωσσ ′ ), (4)

where we shifted the integrals εl → εl − eV and εr → εr +
Mσ/2. Furthermore, we assumed the densities of states ρl and
ρr were constant on all scales smaller than M and independent
of the spin [33]. The tunneling conductance gt is defined
by gt = 8π2|t0|2ρlρr e2/h. From Eq. (4), it becomes clear
that eV is just the electrical part of the electrochemical po-
tential: f (εl − eV ) = 1/{exp[(εl − μl )/T ] + 1} , where μl =
μ + eV is the electrochemical potential of the left lead.

For infinite capacitance (Ec = 0) and without magnetiza-
tion dynamics (ωσσ ′ = 0), the δ function in Eq. (4) ensures the
conservation of energy for the tunneling electrons. For finite
capacitance, however, a tunneling electron loses the charging
energy Ec to the electrostatic environment (capacitor) [1,2];
see Fig. 1. The energy shift σ ′h̄ωσσ ′ accounts for the effect of
the macrospin dynamics on the tunneling electron; namely,
it describes the energy gain or loss due to the macrospin
precession. Performing the integrals in Eq. (4), we obtain

Il→r = gt

2e

[
cos2 θ

2
�(eV −Ec− h̄ω−)

+ sin2 θ

2
�(eV −Ec+ h̄ω+)

+ sin2 θ

2
�(eV −Ec− h̄ω+)

+ cos2 θ

2
�(eV −Ec+ h̄ω−)

]
, (5)

where �(x) is the ramp function; that is, �(x) = 0 for x � 0,
and �(x) = x for x > 0. The four terms in Il→r arise from the
different combinations of spins in left-to-right tunneling.
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The right-to-left current Ir→l can be found analogously
to the left-to-right current Il→r ; only the roles of the leads
are exchanged [34]. Combining both, we find that the charge
current, I = Il→r − Ir→l , is antisymmetric in the voltage; that
is, I (−V ) = −I (V ). This is a consequence of assuming the
densities of states are spin independent.

To gain a better understanding of the charge current,
let us consider a situation with static macrospin (φ̇ = 0)
at first. In the limit of infinite capacitance (Ec = 0), the
tunnel junction behaves as a resistor; that is, the current-
voltage relation is described by Ohm’s law I = gtV . For
finite capacitance (Ec > 0), in contrast, the tunneling elec-
trons lose the energy Ec to the electrostatic environment.
This loss effectively reduces the voltage by Ec/e. Conse-
quently, we obtain I = gt [(V − Ec/e) �(V − Ec/e) − (−V −
Ec/e) �(−V − Ec/e)], which is the standard Coulomb block-
ade result [1,2]: if the voltage is too low (|eV | < Ec), the
charge transport is blocked (I = 0). However, when the
macrospin precesses (φ̇ 	= 0), it can assist electrons in tun-
neling; therefore, it softens the Coulomb blockade, or if the
precession is strong enough, it can even break the Coulomb
blockade.

VI. BREAKING OF THE COULOMB BLOCKADE

When the macrospin precesses slowly (h̄|φ̇| < Ec), the
Coulomb blockade is softened: electrons can tunnel through
the junction, even if the applied voltage is smaller than,
but close enough to, the charging energy (see Fig. 2). The
missing energy is provided by the precessing macrospin.
So the macrospin dynamics governs the softening of the
Coulomb blockade. In turn, a measurement of the charge
current can reveal the macrospin dynamics. For example in
the voltage regime Ec − h̄|ω+| < eV < Ec − h̄|ω−| (compare
Fig. 2), the current is given by I = gt sin2(θ/2)[eV − Ec +
h̄|φ̇| cos2(θ/2)]/2e. Thus, a measurement of the differen-
tial conductance dI

dV = sin2(θ/2)gt/2 gives information about
the polar angle θ . Then, knowing sin2(θ/2), the precession
frequency |φ̇| can be inferred from the current I itself. A
shortcoming of this method is that one has to know in which
regime the voltage is. A simpler way would be to measure
the current-voltage characteristics (Fig. 2) and get information
about the magnetization dynamics from the position of the
kinks at Ec ± h̄|ω+| and Ec ± h̄|ω−|—or, analogously, from
the position of jumps in the differential conductance.

While only softened for slow precession, the Coulomb
blockade is completely broken for strong macrospin pre-
cession (h̄|ω+| > Ec and/or h̄|ω−| > Ec). In this case, the
precessing macrospin gives enough energy to the tunneling
electrons, such that tunneling is possible even if there is no
other source of energy. In turn, even at low voltages, we find
a linear relation between current and voltage (see Fig. 3). So
the macrospin dynamics governs the breaking of the Coulomb
blockade. Again, a measurement of the charge current can
reveal the macrospin dynamics. However, in contrast to the
softening of the Coulomb blockade, the (differential) con-
ductance can reveal the polar angle θ even at zero voltage.
For example, in the low-voltage regime (Ec − h̄|ω+| < eV <

−Ec + h̄|ω+|), as shown in Fig. 3, the current is given by
I = gtV sin2(θ/2), which gives information about the polar

FIG. 2. The softening of the Coulomb blockade for slow pre-
cession (h̄|φ̇| < Ec) with 0 < θ < π/2. While charge transport is
still blocked for low voltages, due to macrospin-assisted tunneling
a current flows already for eV > Ec − h̄|ω+|. The details of the
current flow depend on the macrospin dynamics. Thus, the macrospin
dynamics can be measured (indirectly) by the charge current. The
standard Coulomb blockade is included as a reference (blue dashed
line).

angle θ but not about the precession frequency |φ̇| [35]. To
determine the precession frequency, one has to go to higher
voltages again.

VII. DISCUSSION

We have found that macrospin-assisted tunneling can
break the Coulomb blockade. More explicitly, we considered
a tunnel junction between a normal metal and a metallic
ferromagnet where the macrospin (magnetization) is in a
steady-state precession. The precessing macrospin creates a
time-dependent field for electrons, which can assist them in
tunneling [8]. As we have shown, this macrospin-assisted
tunneling shrinks the regime of the Coulomb blockade (see
Fig. 2). When the macrospin precession is strong enough, the
regime of the Coulomb blockade vanishes completely (see
Fig. 3). In other words, the macrospin-assisted tunneling can
soften or even break the Coulomb blockade. The details of
the softening or breaking of Coulomb blockade depend on
the macrospin dynamics. Thus, a measurement of the charge
current can reveal the macrospin dynamics.

To get a better understanding of the scales involved, let
us consider a specific system. For example, in Ref. [36],
the authors reported on a magnetic tunnel junction with an
elliptical shape (minor axis of 40 nm, major axis of 80 nm)
and a MgO tunnel barrier with a thickness of 0.9 nm. This
geometry (and material) leads to a capacitance of C ≈ 0.25 fF
for the tunnel junction [37]. In turn, we find a charging energy
of Ec ≈ 0.32 meV which corresponds to a temperature of Tc =
Ec/kB ≈ 3.7 K and a frequency of fc = Ec/h ≈ 78 GHz. To
enter the regime of Coulomb blockade, the temperature must
be well below Tc. Then, the precessing macrospin could break
the Coulomb blockade if it precesses at frequencies above fc.
While the precession frequency reported in Ref. [36] is only
of the order of 10 GHz, it is still close enough to the critical
frequency fc, such that one can expect a clear softening of the
Coulomb blockade, analogous to Fig. 2. For a tunnel junction
of larger dimensions and with a thinner barrier, the critical
frequency fc can fall below 10 GHz such that one might also
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FIG. 3. The breaking of the Coulomb blockade for strong
macrospin precession (h̄|ω+| > Ec) with 0 < θ < π/2. The standard
Coulomb blockade is included as a reference (blue dashed line).
Because of the macrospin-assisted tunneling, the Coulomb block-
ade disappears; that is, a charge current flows at arbitrary low (but
nonzero) voltages. Yet the details depend on the macrospin dynam-
ics. In turn, measuring the charge current can reveal the macrospin
dynamics.

observe the breaking of the Coulomb blockade, analogous to
Fig. 3.

Also beyond the specific setup considered here, the break-
ing of the Coulomb blockade by macrospin-assisted tunneling
might be interesting, in particular, for scanning tunneling mi-
croscope (STM) setups [28]. In STM setups, the capacitance
is harder to estimate (see Ref. [38], for example). However, in
Ref. [39], where the authors also used the Coulomb blockade
to investigate a system in a scanning tunneling spectroscopy

setup, they found a junction capacitance of C = 21.7 fF.
This capacitance corresponds to a charging energy of Ec ≈
3.7 μeV, a temperature of Tc = Ec/kB ≈ 42 mK, and a fre-
quency of fc = Ec/h ≈ 0.9 GHz. So in this case, a macrospin
precession frequency of roughly 10 GHz would be well above
fc, such that the macrospin-assisted tunneling can easily break
the Coulomb blockade. This effect might be particularly in-
teresting for resonant-state-STM setups [40,41], where the
charging energy Ec can be tuned, because of the large variabil-
ity in the distance between the STM tip and probe material.

While we focused on a passive use (indirect measurement
of magnetization dynamics), we can also think of more active
uses of the interplay between the Coulomb blockade and
macrospin-assisted tunneling. It could be used to control a
spin current electrically [42]. Or when the magnet’s density
of states is spin dependent, it could be used to pump a charge
current [43]. Because it can be used to control spin and charge
currents, it might also open up new ways to control the mag-
netization dynamics. From a more general perspective, the
interplay between Coulomb blockade and macrospin-assisted
tunneling provides a new platform for the interplay between
electronics and spintronics. From this perspective, magnon-
assisted tunneling (as considered in [9,10,44–46]) is a natural
candidate for the generalization of our results.
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elements −i[R†Ṙ]σ σ̄ = φ̇ sin θ

2 e−iσ φ̇ cos θ t , where σ̄ denotes the
spin opposite to σ . To disregard these spin-off-diagonal terms,
they must be small compared to the spin-diagonal elements. In
more physical terms, the magnetization must be slow compared
to its length.

[33] Formally, the spin independence means ρr (ε − M/2) = ρr (ε +
M/2) = ρr .

[34] Formally, we have Ir→l = e
∑

ρλσσ ′ �ρσ→λσ ′ f (ξρσ )[1 − f (ελ)].
Explicitly, we obtain Ir→l = gt

2e [cos2 θ

2 �(−eV −Ec+ h̄ω−) +
sin2 θ

2 �(−eV −Ec− h̄ω+) + sin2 θ

2 �(−eV −Ec+ h̄ω+) + cos2

θ

2 �(−eV −Ec− h̄ω−)].
[35] Note, however, that this works only if either |h̄ω+| > Ec and

|h̄ω−| < Ec or |h̄ω+| < Ec and |h̄ω−| > Ec. If |h̄ω+| > Ec and
|h̄ω−| > Ec, then we would simply find Ohm’s law, I = gtV , at
low voltages.

[36] J. P. Cascales, D. Herranz, U. Ebels, J. A. Katine, and
F. G. Aliev, Detection of spin torque magnetization dynamics
through low frequency noise, Appl. Phys. Lett. 107, 052401
(2015).

[37] To estimate the capacitance, we used the formula for paral-
lel plates C = ε0εrA/d , with the dielectric constant ε0 ≈ 9 ×
10−12 F

m , the relative permittivity for MgO (which is εr ≈ 10),
the ellipsis area A = π

4 40 × 80 nm2, and the barrier thickness
d = 0.9 nm.

[38] J. De Voogd, M. Van Spronsen, F. Kalff, B. Bryant, O. Ostojić,
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