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We study the spin dynamics of a classical Heisenberg antiferromagnet with nearest-neighbor interactions on
a quasi-two-dimensional kagome bilayer. This geometrically frustrated lattice consists of two kagome layers
connected by a triangular-lattice linking layer. By combining Monte Carlo with precessional spin dynamics
simulations, we compute the dynamical structure factor of the classical spin liquid in the kagome bilayer
and investigate the thermal and dilution effects. While the low-frequency and long-wavelength dynamics of
the cooperative paramagnetic phase is dominated by spin diffusion, weak magnon excitations persist at higher
energies, giving rise to the half-moon pattern in the dynamical structure factor. In the presence of spin vacancies,
the dynamical properties of the diluted system can be understood within the two-population picture. The spin
diffusion of the “correlated” spin clusters is mainly driven by the zero-energy weather-vane modes, giving rise
to an autocorrelation function that decays exponentially with time. On the other hand, the diffusive dynamics
of the quasifree “orphan” spins leads to a distinctive longer-time power-law tail in the autocorrelation function.
We discuss the implications of our work for the glassy behaviors observed in the archetypal frustrated magnet
SrCr9pGa12−9pO19 (SCGO).
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I. INTRODUCTION

SrCr9pGa12−9pO19 (SCGO) is one of the most in-
tensely studied frustrated magnets [1–14]. Thermodynami-
cally, SCGO does not exhibit any signs of magnetic ordering
down to temperatures Tg = 3.5–7 K, depending weakly on the
vacancy concentration x = 1 − p. Below Tg, the magnet enters
an unconventional spin-glass phase. A cooperative paramag-
netic regime, also known as a classical spin liquid, emerges at
temperatures below the Curie-Weiss constant �CW ≈ 500 K.
Geometrically, SCGO belongs to a class of frustrated Heisen-
berg antiferromagnets on the so-called bisimplex lattices
[15–18]. These are networks of corner-sharing simplexes such
as triangles and tetrahedra. Canonical examples include the
pyrochlore [15,16] and kagome [19–22] antiferromagnets. In
SCGO, the Cr3+ ions with spin S = 3/2 reside on a two-
dimensional lattice consisting of corner-sharing tetrahedra
and triangles, known as the kagome bilayer or pyrochlore slab,
as shown in Fig. 1. The strong short-range spin correlations in
the low-temperature liquid phase result from the constraints
of zero total spin in every simplex, a condition that minimizes
the nearest-neighbor exchange interactions on such units.

Considerable experimental efforts have been devoted to un-
derstanding the unusual spin-glass phase in SCGO [2–6,11–
14]. Despite the characteristic field-cooled and zero-field-
cooled hysteresis in the bulk susceptibility, several dynam-
ical properties of its glassy phase are distinctly different
from those of conventional spin glasses. These include the
quadratic T 2 behavior of the specific heat [2,3], the linear
ω-dependent dynamical susceptibility χ ′′ [6], and a signif-
icantly weaker memory effect [23]. Taken together, these
features suggest that SCGO belongs to a new state of glassy
magnets, dubbed the spin jam [14,23], that includes several

other magnetic compounds [24,25]. The source of this unusual
dynamical phase in SCGO, however, remains to be clarified.
One plausible scenario is that quantum fluctuations transform
the macroscopic degeneracy associated with the classical spin
liquid of the kagome bilayer into the rugged energy landscape
of the spin jam [14,26]. It remains to be shown how the
unusual glassy behaviors of the spin jam evolve from the spin
dynamics of the cooperative paramagnet.

Toward this goal, we present in this paper the system-
atic study of the dynamical properties of the bilayer-kagome
classical spin liquid. By combining Monte Carlo simulations
with energy-conserving Landau-Lifshitz dynamics, we com-
pute the dynamical structure factor of the liquid regime. At
the energy scales of the exchange interaction, we find signals
of spin-wave excitations in the form of a half-moon pattern,
replacing the pinch-point singularity of the static structure fac-
tor. On the other hand, the low-energy dynamics is dominated
by spin diffusion driven mostly by the zero-energy modes.
The diffusion constant is found to depend weakly on tem-
perature but decreases significantly with increasing vacancy
densities.

Our results will also serve as an important benchmark
against which dynamical behaviors induced by other per-
turbations can be compared. Of particular interest are those
perturbations, such as quantum order by disorder, that give
rise to glassy dynamics characteristic of either the conven-
tional spin-glass or the exotic spin-jam states. It is also
worth noting that the dynamical properties of a classical spin
liquid have been extensively studied for Heisenberg antiferro-
magnets on both pyrochlore [15,16,27] and kagome lattices
[28–31]. Another aim of this paper is thus to compare the
spin dynamics of the kagome bilayer against these two well-
studied bisimplex frustrated magnets.
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FIG. 1. Top: Lattice structure of kagome bilayer. It can be viewed
as a quasi-two-dimensional network of corner-sharing simplexes.
There are two kinds of simplexes, tetrahedron and triangles; each
comes with two (opposite) orientations, as shown in the bottom
panel. Spins in the ground state satisfy the constraint that total spin
in both types of simplexes is zero: L� = L� = 0.

The rest of the paper is organized as follows. In Sec. II,
we discuss the ground-state manifold of a Heisenberg an-
tiferromagnet on the kagome bilayer. We also outline the
numerical framework that combines Monte Carlo simulation
with the energy-preserving Landau-Lifshitz dynamics method
for computing the dynamical structure factor of a classical
spin liquid. Magnetic excitations revealed from the dynam-
ical structure factor are discussed in Sec. III. In particular,
half-moon features, which are the dynamical manifestation
of the famous pinch-point structure at finite energies, are
highlighted. Systematic analysis of the low-energy spin dy-
namics, which is dominated by diffusive modes, is presented
in Sec. IV. We present in Sec. V dynamical features due to
quenched disorder introduced by vacancies. Of particular in-
terest is the emergence of quasifree orphan spins that interact
with each other through a weak effective interaction mediated
by the background spin liquid. We conclude in Sec. VI with a
brief summary and outlook on future work.

II. MODEL AND METHOD

We consider the classical Heisenberg model with nearest-
neighbor interactions on the kagome bilayer:

H = J
∑
〈i j〉

Si · S j . (1)

Here J > 0 is the antiferromagnetic exchange, 〈i j〉 denotes
nearest-neighbor pairs, and the classical spins Si are unit
vectors. The kagome bilayer has a Bravais triangular lattice
with a unit cell consisting of two corner-sharing tetrahedra
of opposite orientation. The bases of the tetrahedra in the two
kagome layers are connected by triangle units (see Fig. 1). The
triangle and tetrahedron are the regular simplexes with q = 3
and q = 4 corners, respectively. Importantly, because of this

corner-sharing simplex structure, the exchange interaction can
also be expressed as a sum of the squared total spin of both
types of simplexes:

H = J

2

∑
�

L̃2
� +

∑
�

L2
� + const. (2)

Here L� = ∑
i∈� �Si denotes total spin in a tetrahedron, L� =∑

i∈� Si denotes total spins of a triangle, and
∑

� and
∑

� in-
dicate summation over tetrahedra and triangles, respectively,
in the kagome-bilayer lattice. One can immediately see that
the exchange energy is minimized by the condition that total
spin of every simplex is zero:

L� = L� = 0. (3)

The ground-state condition is confirmed by our Monte Carlo
simulations. The fact that a macroscopic number of spin con-
figurations satisfy the minimum energy condition leads to a
classical spin liquid regime at temperatures T � J . Indeed,
our Monte Carlo simulations show no signs of phase transition
down to temperatures T ≈ 0.001J , consistent with previous
studies [32–35]. Instead, a spin-disordered phase with strong
short-range correlation is obtained at low temperatures.

In general, there are two types of spin dynamics in the
liquid regime. At short time scales, or high frequencies (ω ∼
J), there are spin-wave excitations corresponding to small-
amplitude deviations from the ground-state manifold. These
excitations are similar to the magnons in unfrustrated mag-
nets. On the other hand, the macroscopic number of zero
modes, or the weather-vane modes, that connect different
ground states dominate the long-time dynamical behaviors of
the frustrated bisimplex antiferromagnet. The resultant drift-
ing of the system in the ground-state manifold gives rise to
spin-diffusion behaviors and an exponential decaying spin
autocorrelation. In the following, we discuss our simulation
results within this general picture.

The equation of motion for classical spins is given by the
Landau-Lifshitz equation

dSi

dt
= −Si × ∂H

∂Si
= −J

∑
j

′ Si × S j, (4)

where the prime indicates summation is restricted to the
nearest neighbors of the ith spin. Here we numerically inte-
grate the Landau-Lifshitz equation to compute the dynamical
structure factor of the classical spin liquid. Low-temperature
Monte Carlo simulations are first used to obtain spin con-
figurations in equilibrium of a specified temperature. These
are then used as the initial states for the energy-conserving
precession dynamics simulations. An efficient semi-implicit
integration algorithm [36] is employed to integrate the above
Landau-Lifshitz equation. The high efficiency of the algo-
rithm comes from fact that it preserves the spin length at
every time step and the energy values are well conserved
with time irrespective of the step size or the time span of the
simulation. From the numerically obtained spin trajectories
Si(t ), we compute the dynamical correlation function S (q, t ),

S (q, t ) = 〈Sq(t ) · S∗
q(0)〉, (5)
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FIG. 2. Temperature-scaled dynamical structure factor β S(q, ω)
of the classical spin liquid in the bilayer kagome antiferromagnet at
four different temperatures: (a) T/J = 0.01, (b) 0.05, (c) 0.1, and
(d) 0.6; here β = 1/T . The linear size of the simulated lattice is L =
30, with number of spins N = 7L2.

where Sq(t ) ≡ ∑
i Si(t ) exp(iq · ri )/

√
N is the spatial Fourier

transform of the instantaneous spin configuration, and 〈· · · 〉
denotes the ensemble average over independent initial states
of a given temperature. The dynamical structure factor is then
given by

S (q, ω) =
∫

S (q, t )e−iωt dt

= 1

N

∑
i j

∫
dt〈Si(t ) · S j (0)〉e−iωt dt, (6)

which is essentially the space-time Fourier transform of the
spin-spin correlator Ci j (t ) ≡ 〈Si(t ) · S j (0)〉.

III. MAGNONS AND HALF-MOON PATTERNS

The intensity plot of the scaled dynamical structure factor
β S (q, ω), where β = 1/T , is shown in Fig. 2 for four differ-
ent temperatures. The spin excitations are clearly dominated
by the low-energy quasistatic fluctuations that extend over
most of the Brillouin zone; also see Fig. 3 for the density plots
of S (q, ω) in the reciprocal space at constant energies. At low
temperatures, the similar patterns of the quasistatic excitations
indicating nontrivial scaling behaviors to be discussed below.
Moreover, the relatively weak excitations at higher energies
ω � J result from the magnon fluctuations in the vicinity
of an instantaneous ground state. Contrary to the kagome
antiferromagnets [29,30], no sharp propagating modes can be
seen in the dynamical structure factor of the kagome bilayer.

The static structure factor, corresponding to Fig. 3(a) with
ω = 0, exhibits sharp pinch points which are a hallmark of
a highly correlated spin liquid in bisimplex frustrated mag-
nets. The source of these singularities can be attributed to
the ground-state constraints in Eq. (3), which translates into
a solenoid condition ∇ · B = 0 for an emergent “magnetic”
or flux field that is a coarse-grained representation of the spin
configuration. This in turn gives rise to an anisotropic dipolar-

qx

qy

qx qx

(a) (b) (c) ω = 2Jω = Jω = 0

×× 2( )10−4 ×10−4

FIG. 3. Density plots of the dynamical structure factor S(q, ω)
at T = 0.005J in the reciprocal space: (a) ω = 0, (b) ω = J , and (c)
2J . The system size is L = 30. The dashed circles indicate the pinch
point at ω = 0, and the half-moon pattern at higher energies.

like correlation of the flux field, which manifests itself as the
pinch-point singularity in the reciprocal space [20,37,38].

At finite temperatures, the width of the pinch point is
roughly proportional to

√
T [39]. Interestingly, the pinch point

is also smeared with increasing ω, and is replaced by the
so-called half-moon pattern at ω � J , as shown in Figs. 3(b)
and 3(c). Similar features, called the “excitation rings,” have
been observed in the finite-energy dynamical structure factor
of the coplanar spin liquid phase of the kagome bilayer [29].
It has been pointed out that the half moon can be viewed as
the pinch point with a dispersive dynamical flux field [40].
These crescent patterns at high energies are the remnants of
the propagating magnons mentioned above. Compared with
the coplanar phase in kagome, the half-moon feature is much
weaker in the liquid phase of the kagome bilayer, indicating
less rigid local structures in the instantaneous ground state.

IV. SPIN DIFFUSION

The relatively weak half-moon excitations also indicate a
dominating spin diffusive dynamics in the kagome bilayer.
In general, spin diffusion dominates the excitation spectrum
of disordered Heisenberg systems in the hydrodynamic limit
[41,42]. In frustrated magnets, this diffusion results from the
macroscopic number of zero-energy modes in the instanta-
neous ground state, causing the system to wander around
the degenerate manifold. One particular manifestation of this
diffusion is the decay of the spin autocorrelation function

A(t ) = 1

N

∑
i

〈Si(t ) · Si(0)〉 =
∑

q

S (q, t ), (7)

where again 〈· · · 〉 is the thermal average, which is achieved
through averaging over independent initial states from Monte
Carlo simulations. Figure 4(a) shows A(t ) as a function of
time for various temperatures obtained from an L = 30 sys-
tem. The decay of the autocorrelation function is found to
be exponential, A(t ) ∼ exp(−t/τ ), in the low-temperature
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FIG. 4. (a) The ensemble-averaged spin autocorrelation function
A(t ) = ∑

i〈Si(t ) · Si(0)〉/N on an L = 30 lattice for varying tem-
peratures. (b) Extracted relaxation time τ of A(t ) = exp(−t/τ ) as
a function of temperature. The dashed line shows the power-law
τ ∼ T −0.924 dependence.

regime, and the numerically extracted time constant τ is
shown in Fig. 4(b) as a function of temperature.

The nearly linear segment in the log-log plot suggests
a power-law dependence τ ∼ T −ζ , where the numerically
obtained exponent ζ = 0.924 ± 0.015, which is close to 1
as predicted by a soft-spin Langevin dynamics model for
frustrated magnets with macroscopic ground-state degeneracy
[27]. The exponential decay with τ ∼ 1/T is consistent with
the zero-mode driven spin-diffusion scenario [15,27], since
the zero modes have no intrinsic energy scales, and the only
relevant one is set by the inverse temperature. This result is
also in stark contrast to the high-T conventional paramagnet
in which the spin-diffusion is shown to produce a power-law
tail in the autocorrelation function [42–46].

While the microscopic mechanisms of spin diffusion could
be thermal or quantum fluctuations, or the large number of
zero modes in frustrated systems, fundamentally the diffusive
spin dynamics is related to the fact that the total spin density
m = ∑

i Si/N is a constant of the equation of motion. By
combining the continuity equation ∂m/∂t + ∇ · j = 0 with
a phenomenological Fick’s law for local spin current j =
−D∇m, one arrives at the familiar diffusion equation for
the magnetization density. In the hydrodynamic regime, this
introduces a diffusion time scale τd = 1/Dq2 for perturbations
characterized by wave vector q. This is indeed confirmed
by our dynamical simulations. Figure 5(a) shows the time
dependence of the dynamical correlation function S (q, t ) for
various wave vectors. Each curve is obtained after averaging
over 500 independent initial states from Monte Carlo simula-
tions. The correlation function is found to decay exponentially
with time: S (q, t ) ∼ exp(−t/τd ), where the numerically ex-
tracted relaxation time, shown in Fig. 5(b), is isotropic in
the reciprocal space and follows nicely the expected behavior
τ−1

d = Dq2 for wave vectors close to the Brillouin zone center.
More generally, here we try to understand our re-

sults using the hydrodynamic theory of the paramagnetic
state, which suggests a generalized dynamical susceptibil-
ity: χ (q, ω) = −χ (q) Dq2/(Dq2 − iω) [41,47], where χ (q)
is the static susceptibility at wave vector q and D is the spin
diffusion coefficient. The dynamical structural factor is ob-
tained through the fluctuation-dissipation theorem: S (q, ω) ≈
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FIG. 5. (a) Time dependence of the normalized dynamical corre-
lation function S(q, t )/S(q, 0) at T = 0.5J for various wave vectors
close to the zone center. The simulated system size is L = 60. (b) The
inverse relaxation time τ−1

d extracted from (a) as a function of |q|.
For each wave vector the data are fitted to an exponentially decaying
function.

2[nB(ω) + 1] Imχ (q, ω), where nB(ω) = 1/(eβω − 1). In the
ω � T regime, assuming χ (q) ≈ χ is a constant for small q,
the dynamical structure factor can be expressed in a scaling
form

βq2S (�q, ω) = χ
2D

(ω/q2)2 + D2
. (8)

A similar result can be obtained from the Langevin soft-spin
model [27]. By plotting βq2S versus ω/q2, we find nice data
collapsing from curves of different wave vectors, as shown
in Figs. 6(a) and 6(b), indicating a static susceptibility that
indeed weakly depends on q for wave vectors close to the zone
center. On the other hand, we find that the collapsing of data
points from different temperatures is not very satisfactory.
Instead, we fit the collapsed data points from each temperature
with the Lorentzian scaling function in Eq. (8) and extract
both the spin diffusion coefficient D and static susceptibility
χ . The temperature dependence of these two quantities is
shown in Figs. 6(c) and 6(d). The spin-diffusion coefficient
decreases quite appreciably with temperature, while the sus-
ceptibility remains roughly the same within the error bars.

V. DILUTION EFFECTS

We next investigate the effect of dilution on the spin dy-
namics of the liquid phase. Previous studies have indicated
that dilution with nonmagnetic vacancies does not induce the
spin-glass behavior of SCGO [17,48]. In fact, the condition
in Eq. (3) is satisfied for every simplex, for both tetrahedron
and triangle, in the ground states even for strong dilution
[17]. Consequently, a macroscopic degeneracy remains and
the low-T phase seems well approximated by a Coulom-
bic classical spin liquid. To demonstrate this, we compute
the dynamical structure factor of the diluted kagome bi-
layer using a combination of Monte Carlo simulations with
the energy-conserving Landau-Lifshitz dynamics simulations.
Figure 7 shows the computed S (q, ω) at T = 0.01J for four
different vacancy concentrations. In addition to the thermal
average over independent initial states, the S (q, ω) of the
diluted system is computed with a further average over the
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FIG. 8. Data points collapsing of the scaled dynamical structure
factor βq2S versus ω/q2 for diluted kagome bilayer with (a) x = 0.2
and (b) x = 0.3 vacancy concentrations at a temperature T = 0.01J .
The dashed lines correspond to the Lorentzian scaling function in
Eq. (8). The extracted diffusion coefficient D and static susceptibility
χ (normalized with respect to x = 0) as functions of the vacancy
concentration are shown in (c) and (d), respectively.

disorder, or different vacancy configurations. Interestingly, we
find no dramatic change to the calculated S (q, ω) even for
vacancy density as high as x = 0.5. The quasistatic excitations
show similar patterns for all concentrations, although both
the energy of spin-wave-like excitations at large ω and the
bandwidth of the quasistatic excitations are slightly reduced
with increasing vacancy concentrations.

Focusing on the small-ω and q regime, we found that the
dynamical structure factor is still well approximated by the
scaling function of Eq. (8), as shown in Figs. 8(a) and 8(b),
indicating a dominating spin diffusion behavior. The diffusion
coefficient D extracted from the data-point collapsing is plot-
ted in Fig. 8(c) as a function of x. The reduced diffusivity with
increasing vacancy concentration indicates a longer relaxation
time τd = 1/Dq2, or a slower dynamics, caused by the disor-
der, although the system remains liquidlike. Figure 8(d) shows
the extracted static susceptibility χ in the q → 0 limit versus
vacancy concentration x. This trend is consistent with the two-
population picture since the quasifree orphan spins dominate
the low-T static susceptibility, and hence χ increases with the
vacancy concentration.

Since the presence of vacancies does not change the liquid
nature or the frustrated spin interactions in the kagome bilayer,
it is unclear whether the nonmagnetic impurities introduce
any new dynamical effect. On the other hand, the so-called
orphan spins due to the dilution are known to induce nontrivial
effects on the equilibrium properties of the kagome bilayer
[49]. The orphan spin corresponds to a defect triangular
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FIG. 9. Orphan spin (red arrow) induced by vacancies in the
kagome bilayer. An orphan spin resides in a defective triangular
simplex, in which two of the spins are removed, in either of the
kagome layers. From the viewpoint of the simplex, two adjacent
vacancies in a triangle remove one triangle simplex, but produce a
q = 1 (point) simplex, which is the orphan spin itself and transforms
two neighboring tetrahedral into triangular simplexes.

simplex with only one surviving spin and two nonmagnetic
sites [17,50]. An example of the orphan spin is shown in
Fig. 9. One can also think of the orphan spin as connecting
a q = 3 triangular simplex and a q = 1 point simplex, which
is the spin itself. The orphan spin behaves as a quasifree spin
with a fractionalized length S/2 when perturbed by a magnetic
field [34,35]. Experimentally, these seemingly isolated free
spins in diluted SCGO produce a Curie-like component in
the static susceptibility even at temperatures well below �CW

[49,50]. Detailed Monte Carlo simulations uncover a complex
spin texture surrounding the defect simplex whose total spins
indeed sum to S/2 [34,35]. The fractionalized spin texture also
provides a natural explanation for the short-range oscillating
signal observed in nuclear magnetic resonance [51].

An intuitive argument for the fractionalized S/2 orphan
spins was originally given by Henley from the viewpoint of
bisimplex structure [17]. Because each spin is shared by two
simplexes in the bisimplex lattices such as the kagome bilayer,
the total magnetization can be written as Mtot = 1

2

∑
α Lα ,

where α now runs over tetrahedral, triangular, and q = 1
simplexes in the presence of orphan spins. In the ground
states, total spin of each tetrahedron and triangle simplex
remains zero, as evidenced by Monte Carlo simulations [17].
As a result, the total magnetization of the system becomes
Mtot = 1

2

∑q=1
α Lα , where now the summation is restricted to

q = 1 single-point simplexes. As shown above, such a q = 1
simplex is just the orphan spin itself, so we have Mtot =
1
2

∑
i∈orphan Si, which also means that each orphan spin can

be viewed as a quasifree spin with a fractionalized length S/2
when in a magnetic field [17].

A natural question then is to determine the dynamical
manifestation of these orphan spins. To this end, we examine
the spin-spin autocorrelation function A(t ) defined in Eq. (7).
Figure 10 shows the semilogarithmic plot of autocorrela-
tion functions with and without vacancies obtained from our
dynamical simulations. In both cases, the initial decay of
the autocorrelation can be well described by an exponential
function, i.e., A(t ) ∼ e−t/τ for small t . However, while the ex-
ponential decay persists to longer time scales in the nondiluted

FIG. 10. Semilogarithmic plot of autocorrelation function A(t ) at
T = 0.01 without vacancies (red) and with 20% (green) and 30% va-
cancies (blue), obtained from Landau-Lifshitz dynamics simulations
of a L = 48 system. The black dashed line indicates an exponential
decay A(t ) ≈ e−t/τ at small t .

system, the autocorrelation function of the diluted magnet
exhibits a long-time tail, indicating a significantly reduced
decline rate of the spin autocorrelation.

This two-stage relaxation of the autocorrelation function
can be understood in the framework of the two-population
picture [49] discussed previously, namely, the classical spin
liquid of the kagome bilayer can be viewed as consisting of
the “correlated” population which forms momentless clus-
ters (L� = L� = 0) and the population of quasifree “orphan”
spins that weakly interact with each other [35]. Of course, at
very strong dilution, the set of free spins also includes those
completely isolated magnetic ions [17]. Dynamically, these
two populations of spins are expected to behave differently. As
discussed in Sec. IV, spin diffusion in the classical spin liquid,
which is mainly driven by the zero-energy modes, results in
an autocorrelation function A(t ) which decays exponentially
with time. On the other hand, since the vacancy-induced or-
phan spins can be viewed as nearly free spins, one expects
their dynamical behavior to be similar to that of an uncor-
related paramagnet. Earlier works have shown that diffusion
of Heisenberg spins in an uncorrelated paramagnet leads to
a power-law tail in the autocorrelation function, i.e., A(t ) ∼
1/tα [42–46], where the exponent α depends strongly on
the dimensionality. For a two-dimensional (2D) Heisenberg
magnet, it is estimated to be α ≈ 1.05 ± 0.025 [42].

To verify the above picture, we present a detailed examina-
tion of both the short-time and long-time behaviors of the spin
autocorrelation function for a diluted kagome bilayer with
a vacancy density x = 0.3. We performed extensive Monte
Carlo and Landau-Lifshitz dynamics simulations on an L =
48 lattice (with total number of spins N = 7L2 = 16 128).
Over 50 independent realizations of the disorder were con-
structed, and for each vacancy configuration, 100 independent
initial spin states are prepared at the simulation temperatures.
Figure 11(a) shows a semilogarithmic plot of spin autocor-
relation at various temperatures. At the short time scale, the
decrease of A(t ) can be reasonably approximated by an expo-
nential decay A(t ) ∼ e−t/τ (T ), similar to the undiluted case,
with a temperature-dependent decay time constant τ . The
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FIG. 11. (a) Semilogarithmic plot of the spin autocorrelation
function A(t ) = ∑

i〈Si(t ) · Si(0)〉/N of L = 48 kagome bilayer with
30% vacancy at varying temperatures. The dashed lines correspond
to the initial exponential decay of the autocorrelation function, i.e.,
A(t ) ∼ exp(−t/τ ) for small t . (b) The log-log plot of the same
autocorrelation functions, with the asymptotic value at large time
subtracted, at varying temperatures. The dashed lines indicate power-
law long tails A(t ) ∼ C/tα , with an exponent α = 2.18.

numerically extracted relaxation time τ , shown in Fig. 12(a),
again exhibits a power-law dependence on temperature, τ ∼
1/T ζ , with an exponent ζ ∼ 0.952 ± 0.017, which is similar
to the undiluted case. As discussed in the previous section, the
spherical approximation for the classical spin liquid predicts
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FIG. 12. (a) The decay-time constant τ as a function of temper-
ature T in log-log plot. The solid line corresponds to a power-law
dependence τ ∼ 1/T 0.953. (b) The amplitude C of the power-law
long tail versus the temperature. The straight line of the log-log plot
indicates a power-law relationship C ∼ 1/T 2.123.

an exponent ζ = 1. It is unclear whether the deviation here is
due to finite-size effect or the soft-spin approximation.

At longer time scales, the decay of the autocorrelation
function slows down and turns into a power-law tail, A(t ) ∼
A∞ + C(T )/tα , with the same exponent α for different tem-
peratures. Interestingly, as shown in Fig. 12(b), the amplitude
of this power-law tail also exhibits a power-law dependence
C ∼ 1/T η, with an exponent η = 2.123 ± 0.021. It is also
worth noting that the decay of spin autocorrelation saturates
to a small but nonzero value at large times, as shown in
Fig. 12(a). Similar results, which can be attributed to finite-
size effects, have been reported in the spin dynamics of
uncorrelated classical Heisenberg chains [45,46].

To better understand the power-law decay and the origin
of the nonzero asymptotic A∞ in the diluted systems, we
consider the dynamics of an orphan spin. At any finite temper-
atures, the total spin of the individual simplex does not vanish
identically; hence the ground-state condition in Eq. (3) is not
strictly satisfied. Indeed, the fluctuation of simplex magneti-
zation is given by 〈L2

α〉 ∼ T/J [15,35]. This also indicates a
nonzero coupling between orphan spins and the background
correlated spin liquid. This residual coupling leads to incoher-
ent precession of orphan spins and the exponential decay of
the orphan-spin autocorrelation function. On the other hand,
as shown in Ref. [35], there is an emergent effective interac-
tion between the orphan spins. At low enough temperatures,
their collective dynamics induced by this residual interaction
thus slows down the exponential decay of the autocorrelation
function that is caused by coupling to the background spin
liquid, and turns it into a power-law decay, similar to the
anomalous spin diffusion in classical Heisenberg magnets at
high temperatures [42].

Interestingly, the exponent α ≈ 2.1 obtained from our nu-
merical fitting is significantly different from that of the 2D
paramagnet. This unusual result could be attributed to the
complex interaction between the orphan spins. As demon-
strated in Ref. [35], there is an emergent Heisenberg exchange
interaction between the orphan spins that is determined by
the charge-charge correlator of the underlying Coulomb spin
liquid. Moreover, the sign (ferromagnetic versus antiferro-
magnetic) depends on whether the two orphan spins belong to
the same kagome layer or not. It has been speculated whether
this complex and potentially frustrated interaction might lead
to glassy dynamics at low temperatures. Indeed, although
it is believed that the autocorrelation function of spin glass
exhibits a stretched exponential decay at temperatures above
the glass transition Tg, general scaling rules near the glass
transition point imply a cutoff power law [52–56], such as the
Ogielski form A(t ) ∼ t−α exp[−(λt )β], where the parameter
λ → 0 as T → Tg. If the kagome bilayer can be viewed as
exhibiting a glass transition at T = 0, as conventional 2D spin
glasses, the autocorrelation function might be dominated by
a power-law behavior at an intermediate time scale before it
is cut off by the stretched exponential. Further larger-scale
simulations are required to investigate this scenario.

The power-law tail and the associated collective behav-
iors also depend strongly on the density x of orphan spins.
The effective interaction between two such defects separated
by a distance r is given by Jeff (r) ∼ TJ (r/ξ (T )), where
ξ ∼ 1/

√
T is the temperature-dependent correlation length
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of the background spin liquid, and the function J (r) ∼
exp(−r) decays exponentially at large distances [35]. The
T -linear prefactor here indicates the entropic origin of the
effective interaction; namely, Jeff arises from conformational
entropy of the fluctuating background correlated spins. Since
the average distance between orphan spins scales as  ∼
1/

√
x, one thus obtains an average interaction Jeff ∼ Jeff () ∼

T exp(−√
T/x), which becomes exponentially weak at small

vacancy percentages. Despite this weakened interaction, the
collective behavior of orphan spins would set in at a tempera-
ture that is of the order of the effective interaction. This gives
the condition T ∗ ∼ Jeff (T ∗). Using the expression for Jeff

above, one thus obtains a characteristic temperature T ∗ ∼ x
that decreases linearly with the reduced defect density. Phys-
ically, the thermal correlation length at this T ∗ is comparable
to inter-orphan-spin distance.

VI. DISCUSSION AND OUTLOOK

To summarize, we have extensively characterized the spin
dynamics in the liquid phase of a Heisenberg antiferromagnet
on the kagome bilayer, which is relevant for the frustrated
magnet SCGO. By computing the dynamical structure fac-
tor at different temperatures and dilutions, we show that the
spin excitations are dominated by spin diffusion in the low-
energy, long-time regime. The spin diffusion constant depends
weakly on temperature, but decreases with dilution. Another
interesting result is the half-moon pattern of the dynamical
structure factor with energy ω � J . Similar features have
recently been observed in some pyrochlore compounds; it
remains to be seen whether these remnants of the propagating
spin waves can be observed in SCGO. Our simulations on
diluted kagome bilayers shows that spin diffusion remains the
dominant process in the presence of site disorder. This result
further confirms, from the dynamical viewpoint, that site dis-
order itself does not immediately cause glassy behaviors in
the classical spin liquid, although the diffusion relaxation time
becomes longer with increasing disorder. However, for disor-
der due to nonmagnetic vacancies, the presence of so-called
orphan spins results in an intriguing power-law tail in the
spin autocorrelation function. This power-law slow dynamics
indicates that the system might be on the verge of a glass
transition, which could be induced by other perturbations.

As discussed above, our work offers an important bench-
mark for future dynamics studies of kagome bilayers that
include other perturbations. Of particular interest are those

perturbations that might transform the classical spin liquid
into either the conventional spin glass or the more exotic
spin jam. Indeed, since the diffusive spin dynamics in highly
frustrated magnets is mainly driven by the zero-energy modes,
one expects a diminishing diffusivity when the number of such
zero modes is significantly reduced. For example, the entropic
barrier in the coplanar phase of the kagome bilayer reduces
the continuous weather-vane modes to discrete zero modes
defined on closed loops. It has been proposed that the much
slower relaxation of these discrete loops might give rise to
glassiness without intrinsic disorder in kagome [57,58]. How-
ever, the coplanar phase induced by thermal order by disorder
seems to remain a classical spin liquid [30]. A transition into
the glassy regime might still occur at a lower temperature
when the dynamics is dominated by quantum tunneling of
loops [57].

Contrary to kagome Heisenberg antiferromagnets, there
is no thermally induced coplanar or collinear phase in the
kagome bilayer. On the other hand, it has been proposed by
one of us and co-authors in Ref. [26] that a coplanar regime,
in which spins in each tetrahedron are collinear, can be in-
duced by quantum fluctuations. Moreover, different coplanar
ground states can be mapped to discrete hexagonal tilings.
Importantly, there is no continuous weather-vane mode in
this coplanar regime, and the only zero-energy modes are
system-wide extended strings [26]. As jamming transition
often occurs in such constrained discrete models, the resultant
coplanar phase is dubbed the spin jam [14,26]. It is argued
that quantum fluctuations transform the degenerate classical
ground-state manifold into a rugged landscape that is different
from that of conventional spin glass. While this spin-jam
picture seem to explain some properties of SCGO and other
similar glassy magnets, such as the much weaker memory
effect [23,25], an important open question is to see how dy-
namical behaviors characteristic of the spin jam evolve from
the classical spin liquid, which will be left for future study.
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