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Critical properties of the prethermal Floquet time crystal
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The critical properties characterizing the formation of the Floquet time crystal in the prethermal phase are
investigated analytically in the periodically driven O(N ) model. In particular, we focus on the critical line
separating the trivial phase with period synchronized dynamics and the absence of long-range spatial order
from the nontrivial phase where long-range spatial order is accompanied by period-doubling dynamics. In the
vicinity of the critical line, with a combination of dimensional expansion and exact solution for N → ∞, we
determine the exponent ν that characterizes the divergence of the spatial correlation length of the equal-time
correlation functions, the exponent β characterizing the growth of the amplitude of the order parameter, as well
as the initial-slip exponent θ of the aging dynamics when a quench is performed from deep in the trivial phase to
the critical line. The exponents ν, β, θ are found to be identical to those in the absence of the drive. In addition,
the functional form of the aging is found to depend on whether the system is probed at times that are small or
large compared to the drive period. The spatial structure of the two-point correlation functions, obtained as a
linear response to a perturbing potential in the vicinity of the critical line, is found to show algebraic decays that
are longer ranged than in the absence of a drive, and besides being period doubled are also found to oscillate in
space at the wave vector ω/(2v), v being the velocity of the quasiparticles, and ω being the drive frequency.
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I. INTRODUCTION

Floquet time crystals (FTCs) are systems that show sponta-
neous breaking of discrete time-translation symmetry (TTS),
accompanied by the breaking of another internal symmetry of
the system such as an Ising symmetry [1–3]. Simply broken
Ising symmetry would imply the well known transition from a
paramagnetic to a ferromagnetic Ising phase [4]. However, the
appearance of broken TTS adds a new flavor to this problem.
Thus natural questions that arise are: Is there any universality
associated with the transition from a trivial phase where there
is no long-range Ising order, and the dynamics is synchro-
nized with the drive, to a FTC phase? If yes, what are the
critical exponents of the transition? Are they related to those
encountered at the Ising transition in the absence of drive,
or are they different? This question is particularly relevant
due to the numerous microscopically different experimental
platforms that have realized this phenomenon [5–10].

Some of these questions have been addressed in spatial
dimension d = 1 (1d) [11–13]. In particular, in the presence
of disorder, the system can become many-body localized in
1d making the FTC, also known as the discrete time crys-
tal, stable even at long times [3]. For a many-body-localized
Floquet Ising chain, it was shown that the critical behavior
near the FTC critical point belongs to the infinite random-
ness universality class [11,12,14]. Thus, although driven, the
underlying critical behavior could be related to an undriven
problem, namely that of a static Ising model with disorder
[15–20].

In the absence of disorder, the critical point associated with
the FTC of free fermion Floquet chains, in which exactly one
band is occupied and the others empty, was shown to exhibit
a central charge, which was extracted from the scaling of the
entanglement entropy [12,13]. As in equilibrium, this central
charge counts the number of Fermi points appearing at the
critical point. With driving, however, new Fermi points can
appear at the Floquet zone boundaries, and the central charge
for Floquet chains was found to keep track of these additional
Fermi points [13].

The nature of the transition from a trivial phase to a FTC
phase is also a very interesting question for periodically driven
Hamiltonian systems coupled to a reservoir, where dissipation
and noise make the dynamics effectively classical. For the
particular case of the 1d driven-dissipative model studied in
Ref. [21], the transition was mapped to the locked-to-sliding
transition of a d.c.-driven charge density wave.

The question of universality of the FTC critical point has
not been addressed in spatial dimension d > 1, for driven
but otherwise isolated quantum systems. For d > 1, even
with disorder, one is more likely to encounter a prethermal
FTC as the fate of many-body localization above d = 1 is
unknown. The subject of the current paper is the universality
associated with prethermal FTC phases in d > 2. Since any
Floquet system has a time-independent Floquet Hamiltonian
associated with it, it is expected [22] that its critical proper-
ties may have some relation to those of an undriven model.
Generically the undriven model is not the same as the original
one with the driving switched off. This is because the Floquet
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driving affects nontrivially the parameters of the system, for
example, by making the coupling constants more long ranged.
In addition, Floquet driving can also change the underlying
symmetries.

Nonperturbative approaches such as the large-N limit have
proven to be very useful in understanding diverse systems
ranging from impurity models [23–25], Kondo lattice models
[26], and strange metals [27,28]. In this paper, we address the
question of universality in the context of the transition to a
FTC by studying the periodically driven O(N ) model. In the
absence of the drive, and depending on the value of N , this
model is a textbook example for studying the transition to var-
ious broken symmetry phases both in equilibrium [29,30] and
out of equilibrium, due to, e.g., a quantum quench [31–44]. In
addition, the model can be exactly solved in the limit N → ∞,
providing access to equilibrium and nonequilibrium collective
behaviors and critical properties beyond perturbation theory
[30,39,43].

This paper is organized as follows. In Sec. II we present the
model, outline the setup of the problem, and summarize the
Gaussian results. In Sec. III we present the perturbative one-
loop calculation and discuss its effect on the phase diagram
and on the correlation length. In Secs. IV and V we determine
the exact expressions of the exponents ν and β in the limit
N → ∞ and to O(ε) where ε = 4 − d , d being the spatial
dimension. In Sec. VI we present results for aging following
a quench, also in the limit N → ∞ and to O(ε). In Sec. VII
we investigate the spatial structure of the correlation functions
that are obtained as a linear response to a perturbing potential.
We present our conclusions in Sec. VIII. Intermediate details
of the calculations are reported in several Appendices.

II. MODEL AND SET-UP

The periodically driven O(N ) model we consider is

H=
N∑

i=1

∫
dd x

1

2

[
(r−r1 cos (ωt ))φ2

i (x)+( �∇φi )
2+�2

i (x)
]+V,

(1)

where φi and �i are N-component bosonic fields that obey the
canonical commutation relation

[φ j (x),�l (y)] = iδ jlδ
(d )(x − y). (2)

V is the interaction term

V = u

4N

∫
dd x

(
N∑

i=1

φ2
i

)2

. (3)

In Eq. (1), ω = 2π/T is the frequency of the drive with
period T , r1 is the drive amplitude, and we also define the
dimensionless drive amplitude

q = 2r1

ω2
. (4)

In addition, r is a detuning parameter which, for negative
values, causes an instability in the free, undriven model (i.e.,
with V = r1 = 0). Note that the Hamiltonian in Eq. (1) has a
Z2 symmetry under φ → −φ and it also has a discrete TTS,

FIG. 1. Stability phase diagram of the periodically driven O(N )
model in the a-q plane where a = 4(r + k2)/ω2 and q = 2r1/ω

2.
Compared to the Gaussian approximation reported in the diagram
on the left [45], interactions shift the critical line from a1 ≈ 1 + q
[black line between regions (2) and (b) in the left diagram] to a1 ≈
1 + q − 3B̃4/ω

2 (yellow line on the right diagram), for q � 1, where
B̃d is defined in Eq. (21) and given in Eq. (A8) for d = 4.

i.e., H (t + T ) = H (t ). While a conventional Ising ferromag-
net corresponds to broken Z2 symmetry, we are interested
in the FTC phase where both Z2 and the discrete TTS are
spontaneously broken.

For later convenience, we represent the fields Oi ∈ {φi,�i}
in momentum space according to

Oi(x) =
∫ � dd k

(2π )d
eik.xOi,k, (5)

where � is the large-momentum cutoff of the model, which
will be implemented as specified further below. In the absence
of interactions, i.e., within the Gaussian approximation V =
0, each mode k is independent of the others and its dynamics
is given by the Mathieu equations [46–48]. The solutions of
these equations is characterized by the dimensionless drive
amplitude q introduced in Eq. (4) and by another dimension-
less quantity

a = 4
r + k2

ω2
. (6)

The solutions of the Mathieu equation result in the stability
diagram reported in Fig. 1, consisting of allowed bands (green
regions) and band gaps (red regions). In the limit of weak drive
q → 0, the band edges are determined by the condition of
parametric resonance for the longest wavelength mode [45],
i.e., integer multiples of the drive frequency ω should equal
the energy for creating a pair of excitations at k = 0, i.e.,
nω = 2

√
r, where n is an integer and

√
r + k2 is the excitation

energy of a mode of wavelength k in the undriven system.
For generic values of q, the band edges are given by the
Mathieu characteristic values [46–48] an(q) and bn(q), where
the former corresponds to the upper boundaries and the latter
to the lower boundaries of the unstable red regions of Fig. 1.
Note that an(q → 0) = n2 with a1(q) = 4rc/ω

2, rc being the
critical value of r that tunes the system to the upper edge of
the unstable region (b) in Fig. 1.

In the presence of interactions, the phase diagram of the
model, before the onset of heating (which is controlled by
N and �), was discussed in Refs. [45,49]. In the q-a plane,
it comprises a trivial phase with no spatial long-range order
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and no period doubling, separated by a series of critical lines
to either period synchronized ferromagnetic phases [regions
(a) and (c) in Fig. 1, for V = 0] or to period-doubled FTC
phases [region (b), for V = 0]. Here we discuss the critical
properties in the vicinity of one of the FTC critical lines
[line separating regions (2) and (b)] which corresponds to the
Mathieu characteristic value a1(q) when V = 0.

With drive, the emerging critical properties of Eq. (1) were
discussed in Ref. [45] for V = 0, i.e., within the Gaussian
approximation. It was shown that algebraic behaviors may
appear in two-point correlation functions as a prelude to uni-
versality. Here we explore the effect of interactions on them.
In particular, we combine a perturbative approach with an ex-
act solution in the limit N → ∞, finding that these algebraic
behaviors are robust, that the associated exponents are indeed
universal and that they turn out to be identical to those which
emerge in the undriven model when tuned to its critical point.

For a weak drive q � 1, and within the Gaussian approxi-
mation, the value rc(q) of the parameter r corresponding to the
critical line is given by rc = (ω/2)2a1(q) with a1(q) ≈ 1 + q
[45], and it is therefore convenient to introduce the parameter

y = r − rc ≈ r −
(ω

2

)2
(1 + q), (7)

which controls the detuning away from criticality.
In our analysis, we consider a quantum quench [50,51]

in which the initial state is the thermal equilibrium state of
the undriven O(N ) model (i.e., r1 = 0) with a positive initial
value r0 > 0 of the detuning r from the corresponding critical
line. This state is subsequently evolved under the periodically
driven O(N ) model in Eq. (1). We choose the initial value
r0 
 r > 0 so that the initial state is deep in the paramagnetic
phase with short-range spatial correlations. We also choose
r0 
 u〈φ2〉, where 〈φ2〉 is the average in the initial state. This
condition ensures that interactions do not modify this initial
state.

Central objects in our study are the two-point correlation
functions of the φ fields, defined by the retarded and Keldysh
Green’s functions [52] GR and GK , respectively,

δl jδk,−qiGK (k, t, t ′) = 〈{φl,k(t ), φ j,q(t ′)}〉, (8)

δl jδk,−qiGR(k, t, t ′) = ϑ (t − t ′)〈[φl,k(t ), φ j,q(t ′)]〉, (9)

where ϑ (t ) is the step function which is nonvanishing only for
t > 0 and equals one. Above, since we will be approaching
the critical line from the symmetric phase where all the N
components of the order parameter behave equivalently, for
notational brevity, we do not indicate the field components
which GK,R refer to. The Green’s functions obtained within
the Gaussian approximation will be denoted below by G0K

and G0R.
It is instructive to write the Keldysh path integral in

terms of the N-component classical (φi,c) and quantum
fields (φi,q). In terms of the vectors φb = (φ1,b, φ2,b, ..., φN,b)
with b ∈ {c, q}, the Keldysh action S turns out to

be

S = Sinitial +
∫

x,t>0
{φ̇q · φ̇c − �∇φq · �∇φc

− [r − r1 cos(ωt )]φq · φc} + Sint, (10)

where
∫

x,t ≡ ∫
dd xdt and all information about the pre-

quench Hamiltonian enters in Sinitial. Since the quench takes
place at t = 0, all time integrals run over t > 0. The contribu-
tion Sint of the interactions is

Sint = − u

2N

∫
x,t>0

φc · φq(|φc|2 + |φq|2). (11)

A. Correlations in the Gaussian approximation

Under the initial conditions mentioned above, and for the
Gaussian theory in which the fields at different wave vectors
decouple, the Green’s functions are given by [45]

iG0K (k, t, t ′) = q2
√

r0

2ωk
2 cos

(ω

2
t
)

cos
(ω

2
t ′
)

× [cos(ωk (t − t ′)) − cos(ωk (t + t ′))], (12)

G0R(k, t, t ′) = −ϑ (t − t ′)q cos
(ω

2
t
)

cos
(ω

2
t ′
)

× sin(ωk (t − t ′))
ωk

, (13)

where

ωk =
√

k̄2 + qy/2, with k̄ =
√

q/2 k. (14)

As expected, on approaching the FTC phase, the unequal
time correlators G0R,0K above show period doubling due to
the cos(ωt/2) prefactors. On the critical line y = 0, algebraic
prefactors k̄−1 and k̄−2 appear in G0R and G0K , respectively,
which imply an emerging light cone with quasiparticle veloc-
ity v = √

q/2.
The spatial Fourier transform of GR,K is

GR,K (x, t, t ′) = 1

(2π )d/2xd/2−1

∫ �

0
dk kd/2

× Jd/2−1(kx) GR,K (k, t, t ′), (15)

where Jα is the Bessel function of the first kind which emerges
because of the rotational invariance of the integrand around
the direction of �x. Equation (15) reveals that in spatial dimen-
sion d = 4, G0K (x, t, t ) has the following behavior [45]

iG0K (x 
 2vt ) ≈ 0, (16a)

iG0K (x = 2vt ) ∝ cos2
(ω

2
t
) 1

x3/2
, (16b)

iG0K (x � 2vt ) ∝ cos2
(ω

2
t
) 1

x2
. (16c)

Accordingly, G0K decays algebraically as 1/x3/2 upon increas-
ing x on the light-cone x = 2vt , as 1/x2 inside the light-cone
2vt 
 x, while it rapidly vanishes outside the light-cone x 

2vt . Note also that G0K (k, t, t ′) at equal times t = t ′ does not
show period doubling, but it is synchronized with the drive.

The response function G0R(x, t, t ′), on the other hand, has
an almost delta-function weight on the light cone [45], as
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it vanishes both inside and outside the light cone while it
features an algebraic decay upon increasing x along the light
cone x = v|t − t ′|:

G0R(x 
 v|t − t ′|) ≈ 0, (17a)

G0R(x = v|t − t ′|) ∝ cos
(ω

2
t
)

cos
(ω

2
t ′
) 1

x3/2
, (17b)

G0R(x � v|t − t ′|) ≈ 0. (17c)

III. PERTURBATIVE CORRECTION AT ONE LOOP

In this section we determine the perturbative one-loop cor-
rection to GR,K and discuss its effect on the phase diagram of
the model and on its exponent ν. In particular, the predictions
presented here are derived at the lowest order in the coupling
constant u and they can be easily extended to account for
a generic value of the number N of the components of the
field. However, we will be eventually interested in the limit
N → ∞ and therefore we focus directly on this case. As the
fixed-point value u∗ of the coupling constant u is expected
to be of order ε = 4 − d for spatial dimensionality d � 4, the
final expression of the quantities analyzed here will eventually
take the form of a dimensional expansion in ε, where terms of
order u2 and uε are neglected. In order to simplify the notation
we will explicitly indicate the order of approximation only in
the final expressions.

The one-loop corrections δGR,K to GR,K can be written as
[38,42]

δGR(k, t, t ′) =
∫ ∞

0
dτ G0R(k, t, τ ) iT (τ ) G0R(k, τ, t ′), (18a)

δiGK (k, t, t ′) =
∫ ∞

0
dτ G0R(k, t, τ ) iT (τ ) iG0K (k, τ, t ′)

+ (t ↔ t ′), (18b)

where iT (t ) is the tadpole integral given by

iT (t ) = u〈φ2〉 = u

2
iG0K (x = 0, t, t )

= u

2

∫
dd k

(2π )d
iG0K (k, t, t ) fc(k/�), (19)

for N → ∞. In the expression above fc(x) is a cutoff function
with fc(0) = 1. This function is also assumed to be smooth
and to vanish for x 
 1 in order to reduce the effects of
microscopic oscillations in the dynamical quantities and ex-
pose possible underlying universal behaviors [38,39,42]. In
Appendix A we show that the tadpole in Eq. (19) takes the
form

iT (t ) = B̃d cos2(ωt/2) + iT ′(t ), (20)

where B̃d is the constant determined by the leading be-
havior iT (t ) ∝ cos2(ωt/2) for t → ∞ while iT ′ is the
time-dependent transient part of the tadpole, which vanishes
as t increases. In d spatial dimension, B̃d is given in Eq. (A7)
in Appendix A, which we report here for convenience

B̃d (y) = ad
qu

2

√
r0

∫ ∞

0
dk kd−1 fc(k/�)

k2 + y
, (21)

where ad = 2/[(4π )d/2�(d/2)]. For convenience we choose
fc(x) = e−x but a different choice does not affect the large-
distance behavior as long as fc(0) = 1 and fc(x) vanishes
sufficiently fast as x increases. As the tadpole above is ∝
u—and since the fixed-point value of u, denoted by u∗, is
proportional to ε = 4 − d ,—the expression multiplying u can
be evaluated directly at d = 4. With this observation, the
transient part of the tadpole evaluated at d = 4 turns out to
be

iT ′(t ) ≈ 8θ

3qt2
cos2(ωt/2) with θ = 3qu

√
r0

(16π )2
, (22)

at times t 
 �̄−1 which are longer than the microscopic scale
set by �̄ = √

q/2�.
Before considering the effects of the transient contribution

to the tadpole on the resulting GR,K , we discuss below the

effect of the long-time part ∝B̃d in Eq. (20). In particular, in
Sec. III A we discuss the perturbative correction it provides to
the critical line while in Sec. III B we focus on the correction
to the correlation length ξ which characterizes the spatial
decay of the equal-time correlation functions at long times.

A. Perturbative correction to the critical line

The Keldysh action of the model is given by Eq. (10)
and, in the absence of interactions, i.e., with Sint �→ 0, the
part of it which is proportional to the fields φq · φc is [r −
r1 cos(ωt )]φq · φc. In the presence of Sint, this term is cor-
rected as follows at one loop

[r − r1 cos(ωt )]φq · φc �→[
r − r1 cos(ωt ) + u〈φ2〉]φq · φc. (23)

Using Eqs. (19) and (20) this expression implies the following
correction at long times

[r − r1 cos(ωt )]φq · φc �→[
r − r1 cos(ωt ) + B̃4 cos2(ωt/2)

]
φq · φc. (24)

Writing cos2(ωt/2) = [1 + cos(ωt )]/2, it is clear that the ef-
fect of the long-time part of the tadpole is to shift

r �→ r + B̃4

2
and r1 �→ r1 − B̃4

2
, (25)

with the resulting effective action, after these shifts, being still
Gaussian at this order in perturbation theory.

Recall that the critical line for the Gaussian model is given
by the condition y = 0 in Eq. (7), i.e., the critical value rc of r
for q � 1 is determined by

rc ≈ ω2

4
+ r1

2
. (26)

The shifts in Eq. (25) imply that the critical value rc of r is
now determined by the condition above imposed on the shifted
parameters, i.e.,

rc + B̃4

2
= ω2

4
+ r1

2
− B̃4

4
. (27)

Accordingly, in terms of the parameters r and r1 of the original
model and of the associated dimensionless quantities a and q
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[see Eqs. (4) and (6)], the critical line is shifted compared to
that in the absence of interaction (i.e., with B̃4 �→ 0) as

a1(q) = 4rc

ω2
= 1 + q − 3

B̃4

ω2
. (28)

The critical line is therefore shifted downwards, i.e., the stable
green disordered region, due to the interaction, widens locally
at the expense of the red unstable (ordered) region, as usually
occurs also in equilibrium. This fact is shown schematically
in Fig. 1.

B. Perturbative correction to the exponent ν

We now discuss the perturbative correction to the corre-
lation length ξ which characterizes the spatial decay of the
equal-time correlation function at long times. This then allows
us to determine perturbatively the associated critical exponent
ν to O(u), which will eventually yield an estimate at the lowest
order in the dimensional expansion ε = 4 − d . In Sec. IV
we will then determine the exact dependence of ν on the
dimensionality d for N → ∞ beyond the perturbative result
presented here.

The shifts in Eq. (25) caused by the long-time limit of the
tadpole imply a shift

y �→ y + 3B̃4(y)/4 (29)

in the detuning from the critical line introduced in Eq. (7).
Based on the dependence of G0R on k in Eq. (13) [which
is not altered by the contribution of the tadpole beyond the
shifts in the parameters in Eq. (25)], one can easily identify the
spatial correlation length ξ of the field as being determined by
y = ξ−2. Accordingly, the correlation length accounting for
the one loop correction is [see Eq. (29)]

ξ−2 = y + 3
4 B̃4(y). (30)

Let us denote by yc the critical value of y, which is shifted
by the interaction and is determined by the condition that,
correspondingly, ξ diverges, i.e., from Eq. (30),

0 = yc + 3
4 B̃4(yc). (31)

Subtracting Eq. (31) from Eq. (30) one finds

ξ−2 = y − yc + 3

4
[B̃4(y) − B̃4(yc)]

= y − yc + 3
u

8
a4q

√
r0

×
∫ ∞

0
dk k3

[
1

k2 + y
− 1

k2 + yc

]
fc(k/�), (32)

where, in the last equality, we used Eq. (21). Denoting by δy =
y − yc the distance from the actual critical line, the previous
equation can be written as

ξ−2 = δy

[
1 − 3

u

8
a4q

√
r0

×
∫ ∞

0
dkk3 fc(k/�)

(k2 + δy + yc)(k2 + yc)

]
. (33)

Note that, from Eq. (31), we expect yc to vanish in perturba-
tion theory as the interaction strength u vanishes and therefore
we may set yc = 0 in the denominator of the integrand in

Eq. (33) as the prefactor of the integral is already of order u
and the calculation is done at the lowest order in perturbation
theory. By choosing the exponential cutoff function intro-
duced after Eq. (21) [see also Eq. (A10)] and after performing
the momentum integral, one finds

ξ−2 = δy

[
1 − 3

u

16
a4q

√
r0 ln

∣∣∣∣�2

δy

∣∣∣∣ + O(u2)

]
, (34)

for δy � �2. At this order in the perturbative expansion, this
logarithmic correction can be exponentiated in order to obtain

ξ−2 = δy

[
1 + quA ln

∣∣∣∣ δy

�2

∣∣∣∣ + O(u2)

]
≈ �2

∣∣∣∣ δy

�2

∣∣∣∣1+Aqu

+ O(u2), (35)

where we introduced

A ≡ 3

16
a4

√
r0 = 3

128π2

√
r0. (36)

This analysis reveals that the exponent ν, defined by the
algebraic singularity of ξ ≈ |δy|−ν , is modified by the inter-
action compared to its Gaussian value ν = 1/2. The latter is
recovered here by setting u = 0. Although in Eq. (35) the
coupling constant u is determined by the microscopic value
entering the model, in order to determine the leading scaling
behavior close to the critical line, u is effectively replaced by
its renormalization-group fixed-point value u∗; we later argue
that in the limit N → ∞ this value can be determined and
is given by, c.f., Eq. (54). Accordingly, from Eq. (35), we
conclude that the resulting exponent ν takes the value

ν = 1 + Aqu∗

2
= 1

2

[
1 + ε

2
+ O(ε2)

]
, (37)

where ε = 4 − d .
So far we have considered the effects of introducing the in-

teractions within a perturbative expansion at the lowest order
in the coupling constant u, eventually leading to expressions
which are perturbative in the actual expansion parameter ε.
While the expansion in u can be easily generalized to the case
of finite N , and may also be used also to analyze the effects of
the transient part of the tadpole, the fixed-point value u∗ of u
is easily determined only for N → ∞, as shown below. This
is the reason why we primarily focus on the limit N → ∞.
In the next section, we determine the exact exponents ν and
β for N → ∞ as functions of the spatial dimensionality d . In
particular, the expansion of the expression of ν for d = 4 − ε

at the first order in ε renders, as expected, Eq. (37).

IV. EXACT SOLUTION FOR ν

In the N → ∞ limit, the evolution equation of GK derived
from the action in Eq. (10) becomes exact and can be solved
self-consistently. Noting that 〈φ2

q〉 = 0 [52] we obtain[
∂2

t + k2+r−r1 cos(ωt )+ u

2
iGK (x = 0, t, t )

]
iGK (k, t, t ′) = 0.

(38)

Motivated by Eqs. (19) and (20), which show that iG0K (x =
0, t, t ) ∝ cos2(ωt/2), we make the ansatz that in the equation
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above one has

r − r1 cos(ωt ) + u

2
iGK (x = 0, t, t )

= r + δr − (r1 + δr1) cos(ωt ), (39)

where iGK is the Keldysh function of the Gaussian model (u =
0) but calculated with the renormalized parameters r + δr and
r1 + δr1 instead of r and r1, respectively. These new parame-
ters also imply that the effectively Gaussian detuning from the
critical line, determined from Eq. (7), takes the form

y = r + δr − r1 + δr1

2
− ω2

4
. (40)

Substituting Eq. (12) in Eq. (39), and using the long-time limit
of the tadpole in Eq. (20), we find that the self-consistency
condition requires

δr = B̃d/2 and δr1 = −B̃d/2, (41)

where B̃d is given in Eq. (21). Accordingly, the detuning in
Eq. (40) becomes

y = r − r1

2
− ω2

4
+ 3

4
B̃d (y). (42)

This equation provides the implicit relationship between the
Gaussian detuning y and the control parameters r and r1. We
also note here that within this effective Gaussian model with
renormalized parameters, the spatial correlation length ξ is
still related to y as y = ξ−2. Since the critical line corresponds
to y = 0, the critical values rc and r1c of the parameters r and
r1, respectively, satisfy Eq. (42) with y = 0 (equivalently ξ =
+∞), i.e., 0 = rc − r1c/2 − ω2/4 + (3/4)B̃d (0). Subtracting
this condition from Eq. (42), and using Eq. (21), we find the
self-consistency condition in terms of the correlation length ξ ,
i.e.,

ξ−2 = r − rc − r1 − r1c

2
+ g�d−2[ωd (�−1/ξ ) − ωd (0)],

(43)

where we introduced

g = 3
8 qu

√
r0, (44)

and the function ωd (z) which captures the scaling behavior of
B̃d (ξ−2) as∫

dd k

(2π )d

fc(k/�)

k2 + ξ−2
= �d−2ωd (�−1/ξ ). (45)

We emphasize here that Eq. (43) turns out to be independent of
the driving frequency ω which influences, instead, the location
of the critical line. In fact, Eq. (43) has the same structure
as the equation which controls the correlation length ξ in the
undriven model, both after the quench [42] and in equilibrium
[30]. In the latter context it was shown in Ref. [30] that

ωd (z) = ωd (0) − Kd zd−2 + cd z2 + h.o., (46)

where cd is a constant that depends on the cutoff function fc

in Eq. (45), while Kd is a universal constant given by

Kd = ad

∫ ∞

0
dz

zd−1

z2(1 + z2)
= −ad

π/2

sin(πd/2)
, (47)

with Kd > 0 for 2 < d < 4. When d < 4, the contribution
from cd z2 is subleading compared to Kd zd−2 for z → 0. Ac-
cordingly, for ξ 
 �−1, the term in brackets on the r.h.s.
of Eq. (43) is more relevant than that on the l.h.s. and the
equation implies that

ξ ∝
(

r − rc − r1 − r1c

2

)−ν

, (48)

with

ν = 1

d − 2
. (49)

This exponent ν controls the divergence of the spatial cor-
relation length of the fluctuations within the system as r −
r1/2 → rc − r1c/2, i.e., as the critical line in Fig. 1(b) is
approached. For d > 4, instead, the term ∝z2 in Eq. (46) is
the dominant one for z → 0 and therefore in Eq. (43) the con-
tributions ∝ξ−2 on the l.h.s. and r.h.s. are the relevant ones.
Accordingly, one finds the same expression as in Eq. (48) with

ν = 1
2 . (50)

The predictions presented above for the leading scaling
behavior and for the exponent ν are actually independent of
the coupling constant g of the model which can take any (pos-
itive) value. However, among these values, there is a specific
one g∗ for which the leading corrections to the scaling behav-
ior discussed above do vanish. In the renormalization-group
framework, g∗ correspond to the fixed-point value of g, see,
e.g., Ref. [30]. In particular, for 2 < d < 4, the corrections to
the scaling in Eq. (48) come from the term ∝z2 in Eq. (46) and
from the analogous one on the l.h.s. of Eq. (43). Taking them
into account, the consistency condition in Eq. (43) can then be
written as

ξ−2 [1 − gcd�
d−4] = r − rc − r1 − r1c

2
− gKdξ

2−d . (51)

The expression of ξ which can be derived from this equation
matches the scaling behavior in Eq. (48), i.e., with no leading
corrections to scaling, only if the l.h.s. of the equation van-
ishes, i.e., for g = g∗, where

g∗ = �4−d/cd . (52)

While cd is a nonuniversal constant which depends on the
cutoff function fc [see Eqs. (46) and (45)], it turns out [30]
that its limit for d → 4, i.e., ε → 0, is universal and given by
c4−ε = 1/(8π2ε) + O(ε0), which renders

g∗ = 8π2ε + O(ε2), (53)

in agreement with what is expected from renormalization-
group arguments. This fixed-point value g∗ of the coupling
constant g in the dimensional expansion can now be used
in the perturbative expansions discussed in Sec. III to set
the fixed-point value of the coupling constant u which, using
Eq. (44), is given by

u∗ = (8π )2

3q
√

r0
ε + O(ε2). (54)

In particular, as anticipated in Sec. III B, the perturbative
prediction for ν can be recovered from the expression in
Eq. (35) if we substitute u by its fixed point value u∗ and
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assume ε � 1. This leads to Eq. (37), which indeed coincides
with the dimensional expansion of Eq. (49) for d = 4 − ε at
the first order in ε. This is also similar to what happens in
equilibrium. In Sec. VI the perturbative fixed-point value u∗ of
u determined here will be used to provide a prediction for the
scaling exponents which emerge in perturbation theory when
studying the short-time behavior of GR,K .

V. EXACT SOLUTION FOR β

In order to extract the exponent β that governs the be-
havior of the order parameter close to criticality, we assume
that the symmetry of the model is (spontaneously) broken
along one spatial direction, i.e., that 〈φi(t )〉 = √

NM(t )δi,1 for
i = 1, . . . , N . Then for N → ∞, the equations of motion for
M and GK are as follows [42,49]:[

∂2
t + r − r1 cos(ωt ) + uM2(t )

+ u

2
iGK (x = 0, t, t )

]
M(t ) = 0, (55a)[

∂2
t + k2 + r − r1 cos(ωt ) + uM2(t )

+ u

2
iGK (x = 0, t, t )

]
iGK (k, t, t ′) = 0. (55b)

Assuming that the magnetization M shows period doubling,
we make the ansatz M(t ) = M0 cos(ωt/2) and find that
the self-consistent equations written above imply that (see
Appendix B for details)

|M0| ∝
√

rc − r + r1c/2 − r1/2, (56)

and therefore

β = 1/2, (57)

as for the model in equilibrium [30].

VI. AGING FOLLOWING A QUENCH

In this section we discuss how the correlation functions
behave in the transient regime following a quantum quench.
For this, we consider the transient part of the tadpole given
in Eq. (22) and we substitute it into Eqs. (18a) and (18b),
which are derived at the lowest order in perturbation theory.
We recall that in Secs. III B, IV, and V we focused on the
long-time behavior by neglecting this transient. A key quantity
that turns out to characterize this early-time regime is the
constant θ , defined perturbatively on the basis of the transient
behavior iT ′(t ) of the tadpole in Eq. (22). As discussed below,
this constant is eventually the exponent which appears in the
scaling of GR,K . By using the perturbative fixed-point value u∗
of the coupling u in Eq. (54), θ in Eq. (22) takes the value

θ∗ = ε

4
+ O(ε2). (58)

This exponent θ∗ is identical to the one obtained for the
undriven model [38,39,42], in which the higher-order cor-
rections O(ε2) turn out to vanish as N → ∞ for 2 < d < 4,
providing an exact exponent [39]. In this section we discuss
how this θ appears in the driven problem.

In the transient regime, for k = 0 and t 
 t ′, but with both
times longer than the drive period T = 2π/ω, we find that
GR = G0R + δGR becomes (see Appendix C for details)

GR(k = 0, t 
 t ′, ωt 
 ωt ′ 
 1)

= −qt cos(ωt/2) cos(ωt ′/2)[1 − θ ln(t/t ′)]

≈ −qt cos(ωt/2) cos(ωt ′/2)(t ′/t )θ . (59)

Using Eq. (58), this implies that at the fixed point, the univer-
sal exponent θ∗ governs the aging dynamics, which manifests
itself via the dependence of GR on (t ′/t )θ

∗
. On the other hand

for t 
 t ′, but with one time being smaller than the drive
period T , and the other longer, i.e., for ωt 
 1 
 ωt ′, one
finds (see Appendix C for details)

GR(k = 0, t 
 t ′, ωt 
 1 
 ωt ′)

= −qt cos(ωt/2) cos(ωt ′/2)
[
1 − θ ln (ωt ) + 8

3θ ln (ωt ′)
]

≈ −qt cos(ωt/2) cos(ωt ′/2)(ωt ′)8θ/3/(ωt )θ . (60)

Equations (59) and (60) show that, due to the appearance
of two exponents, θ and 8θ/3, the functional form of the
observed aging, and the exponents which control it, are mod-
ified depending on whether the system is probed at longer
or shorter times compared to the drive period. The resumma-
tion of the leading logarithmic behavior done in the previous
equation, leading to an algebraic dependence, is consistent
within perturbation theory but it certainly needs to be put
on a firmer ground by an analytic solution or a full-fledged
renormalization-group analysis of the problem, as was done
in the absence of driving [38,39,42].

In a similar manner, the Keldysh Green’s function in per-
turbation theory at one loop, when probed at times longer than
the drive period, turns out to be (see Appendix D for details)

iGK (k = 0, ωt 
 1, ωt ′ 
 1)

= q2√r0 cos(ωt/2) cos(ωt ′/2) tt ′[1 − θ ln(�̄2tt ′)]

∝ q2√r0 cos(ωt/2) cos(ωt ′/2)(�̄2tt ′)1−θ . (61)

On the other hand, for ωt 
 1 
 ωt ′, one finds (see Ap-
pendix D)

iGK (k = 0, ωt 
 1 
 ωt ′)

= q2√r0 cos(ωt/2) cos(ωt ′/2)tt ′

× [
1 − θ ln(�̄t ) − 8

3θ ln(�̄t ′)
]

∝ q2√r0 cos(ωt/2) cos(ωt ′/2)(�̄t )1−θ (�̄t ′)1−8θ/3. (62)

Thus here too—with the same proviso as the one spelled
out after Eq. (60) on the resummation of the logarithmic
dependence—the perturbative expressions indicate that the
aging behavior changes depending on whether the time is
small or large compared to the period of the drive.

Now we discuss the behavior of iGK (k, t, t ) for kt 
 1.
Within the Gaussian approximation in Eq. (12) this quantity
decays as 1/k̄2 upon increasing k̄. The one loop corrections
slow down this decay to 1/k̄2−3θ . In particular we have (see
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Appendix E for details)

iGK (k, t, t ) ≈ q2 cos2(ωt/2)
√

r0

k̄2−2θ
sin2(k̄t ). (63)

The expressions above indicate that, for a quantum quench
to the FTC critical line, the correlators at long wavelengths
k̄ � ω and with one of the times longer than the drive period,
i.e., ωt 
 1, can be cast in the following scaling forms, valid
within the prethermal regime and reminiscent of what was
found in the undriven model [38,39,42],

GK (k, t, t ′) = cos(ωt/2) cos(ωt ′/2)
1

k2−2θ
GK (kt, kt ′, ωt ′),

(64)

GR(k, t, t ′) = cos(ωt/2) cos(ωt ′/2)
(t ′/t )θ

k
GR(kt, kt ′, ωt ′).

(65)

In order for these expressions to render the behaviors dis-
cussed above, we assume GR,K (x, y, z) ∼ 1 for x, y, z 
 1. For
x, y � 1, instead, GK (x, y, z) ∼ (xy)1−θ f −1(z), with f (z) ∼ 1
for z 
 1 and f (z) ∼ z5θ/3 for z � 1. In the remaining case
y � x � 1, one has GR(x, y, z) ∼ x f (z).

VII. SPATIAL STRUCTURE DUE TO RESONANCES

We now discuss the effects on the dynamics of adding a
perturbing potential of the form

Vp(t ) = ap[1 − 2 cos(ωt )], (66)

with ap/ω
2 � 1. This particular choice of Vp does not change

the value of r − r1/2 compared to the unperturbed case Vp =
0 and thus, from Eq. (7), the detuning from the critical line is
not affected. Accordingly, the Floquet quasimodes for ap �= 0
will lead to a behavior which is still described by the Gaussian
correlators in Eqs. (12) and (13). However, here we address
a different question: Assuming that the perturbation Vp was
switched on suddenly at time t = 0, what is the linear re-
sponse to this perturbation of a state which is initially at
the critical line and therefore described by the correlators in
Eqs. (12), (13) with y = 0?

Treating Vp perturbatively, the one-loop correction to the
correlators, given by Eqs. (18a) and (18b), with iT (τ ) �→
Vp(τ ), are found to be

G(1)
R (k, t, t ′) = − cos(ωt/2) cos(ωt ′/2)

q2ap

8k̄2

∑
m=±1,±2

IR
mω,

(67a)

iG(1)
K (k, t, t ) = cos2(ωt/2)

q3√r0ap

8k̄3

∑
m=±1,±2

IK
mω, (67b)

where G(1)
R,K are the one-loop corrections to the Gaussian parts

already reported in Eqs. (12), (13), and

IR
mω(k, t, t ′) = cos(mω(t + t ′)/2) sin((k̄ − mω/2)(t − t ′))

k̄ − mω/2

− cos(k̄(t − t ′))
[

sin(mωt ) − sin(mωt ′)
mω

]
,

(68a)

FIG. 2. One-loop correction G(1)
R (x, τ + t ′, t ′) arising from the

perturbation in Eq. (66) in d = 4, in the (τ, x) plane for fixed value
of t ′ = 0.1, r0 = 1, and dimensionless drive amplitude q = 0.22. We
take the strength of the perturbation to be ap = 1, while τ and x are
measured in units of the drive period T . The dashed line indicates
the light cone with quasiparticle velocity v = √

q/2 � 0.33 while
the dot-dashed line corresponds to v = 1 [45], which characterizes
the light cone in the absence of the drive. The spatial oscillations
occur with a characteristic wave vector ω/(2v), while the asymptotic
decay of G(1)

R (x, τ + t ′, t ′) at large distances is described by Eq. (69).

IK
mω(k, t ) = [1 + cos(mωt )][1 − cos(2k̄t )]

2k̄ − mω

− sin(2k̄t ) sin(mωt )

[
1

mω
+ 1

2k̄ − mω

]
.

(68b)

Although G(1)
R,K have the same form as the Gaussian correlators

in Eqs. (12) and (13), for long wavelengths k̄/ω � 1, the spa-
tial Fourier transform in Eq. (15), which we perform for d =
4, is sensitive to the presence of resonances for k = mω/(2v),
with m = ±1,±2. These resonances modify drastically the
dependence of G(1)

R,K on space, as shown in Figs. 2 and 3. As

expected, a light cone is visible in G(1)
R (x, t, t ′) for x = v|t −

t ′| and in the equal-time correlator iG(1)
K (x, t, t ) for x = 2vt .

However, the one-loop corrections to G(1)
R,K upon increasing

the distance x are characterized by a decay in space which is
slower compared to the Gaussian correlators. Moreover, G(1)

R,K
are found to oscillate in space with the wave-vector mω/2v

with m = 1, 2. The spatial oscillations are clearly visible in
Figs. 2 and 3 for G(1)

R and G(1)
K , respectively.

The asymptotic form of G(1)
R,K on the light cone and inside

it turn out to be (see Appendix F for details)

G(1)
R (x � v|t − t ′|)

∝ cos(ωt/2) cos(ωt ′/2)
∑

m=1,2

cos

(
m

ω(t + t ′)
2

)

× sin(mωx/(2v) + δ)

x3/2
, (69a)

224311-8



CRITICAL PROPERTIES OF THE PRETHERMAL FLOQUET … PHYSICAL REVIEW B 103, 224311 (2021)

FIG. 3. One-loop correction G(1)
K (x, t, t ) in the (t, x) plane, for

the same values of the parameters as in Fig. 2. Both space x and time
t are expressed in units of the period T of the drive. The light cone
(dashed line) is located at x = 2vt , with v = √

q/2 � 0.33. For com-
parison, we also report the line corresponding to v = 1 (dot-dashed
line), which characterizes the light cone in the absence of the driving.
The correlator decays as x−3/2 upon increasing x both on and inside
the light cone and it oscillates in space with the typical wave-vector
ω/(2v). This correlator, like all the equal-time correlators does not
show period doubling.

G(1)
K (x � 2vt, t, t ) ∝ cos2(ωt/2)

∑
m=1,2

cos(mωx/2v + δ′)
x3/2

,

(69b)

where δ and δ′ are phase shifts. These expressions should
be compared with the corresponding ones in the unperturbed
state (i.e., with ap = 0), which are given in Eqs. (16) and (17).
In particular, on the light cone one finds that the correlators
G(1)

R,K decay as x−3/2 upon increasing x, which is also the case
for the Gaussian correlators on the light cone. However, the
spatial decay of G(1)

R,K is also accompanied by oscillations in
space, as is clearly visible in Figs. 2 and 3 when looking along
the light cone (dashed lines).

Inside the light cone, the difference between the behavior
of G(1)

R,K and the Gaussian correlators G0R,0K , are more
pronounced. For example while G0R vanishes inside the light
cone, the one loop correction to it, G(1)

R , is nonzero, and
decays as x−3/2. In a similar manner while G0K decays as x−2

inside the light cone, the one-loop correction to it, G(1)
K decays

more slowly, as x−3/2. All these decays are also accompanied
by spatial oscillations at the wave-vectors mω/(2v), with
m=1, 2.

VIII. CONCLUSIONS

In this paper we have studied the physics of a prethermal
Floquet time crystal (FTC) in the vicinity of the critical line
that separates it from a trivial phase. The results are derived
for the periodically driven O(N ) model with N → ∞. Exact
results for the exponents ν and β are derived in the long-time
(but still prethermal) regime. Results are also obtained in

the transient regime following a quantum quench where the
system shows aging dynamics controlled by an exponent θ .
The results in this transient regime are obtained to the leading
order in ε = 4 − d .

The critical exponents ν [see Eq. (49)], β [see Eq. (57)],
and θ [see Eq. (58)] are found to be the same as those of the
undriven problem, provided that the system is probed at times
longer than the drive period T [see Eqs. (59), (61)]. At times
shorter than T , a perturbative treatment reveals that a different
scaling behavior possibly emerges [see Eqs. (60), (62)].

FTCs always arise when the drive is resonant with some
microscopic scale of the undriven problem. We showed that
this leads to certain peculiarities such as the linear response of
the system to a time-dependent perturbing potential can lead
to spatial oscillations controlled by the drive frequency and
the quasiparticle velocity.

Our study leaves a number of open questions for further in-
vestigations. Solving numerically the dynamics of the system
near the FTC critical line and extracting from these solutions
the exponents would be a useful exercise. Carrying out a com-
plete renormalization-group analysis which not only renders
the exponents predicted here but generalizes them to finite N
is a direction worth pursuing together with an exact analysis
of the short-time behavior for N → ∞.

Finally, exploring other universality classes of FTCs, es-
pecially those where the exponents ν, β, and θ may be
different from the undriven situation, is an exciting direction
of research. Investigating critical properties even of undriven
systems [53–55], or non-Hermitian systems [56], which can
nevertheless show time-crystal behavior [2,3,22,57–64] de-
spite no-go theorems [65–68], is also an important open
question.
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APPENDIX A: TADPOLE CORRECTION

In this section we outline the derivation of Eq. (20). Note
that the Green’s functions within the Gaussian approximation,
in the long wavelength limit k � √

qω � ω, and along the
critical line y = 0 are obtained from Eqs. (12) and (13) by
setting ωk = k̄, see Eq. (14),

iG0K (k, t, t ′) = q2
√

r0

2k̄2
cos

(ω

2
t
)

cos
(ω

2
t ′
)

× [cos(k̄(t − t ′)) − cos(k̄(t + t ′))], (A1)

G0R(k, t, t ′) = −ϑ (t − t ′)q cos
(ω

2
t
)

cos
(ω

2
t ′
)

× sin(k̄(t − t ′))
k̄

. (A2)

It is interesting to note that the above Green’s functions can
be written in terms of the Green’s functions of the undriven
problem following a quantum quench [45], as follows

G0R(k, t, t ′) = q cos(ωt/2) cos(ωt ′/2) G0R,u(k̄, t, t ′), (A3a)

iG0K (k, t, t ′) = q2 cos(ωt/2) cos(ωt ′/2) G0K,u(k̄, t, t ′),

(A3b)
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where [38,42] we denote the undriven Green’s functions fol-
lowing a quantum quench as G0R,u, G0K,u

G0R,u(k, t, t ′) = −ϑ (t − t ′)
sin(k(t − t ′))

k
, (A4a)

iG0K,u(k, t, t ′) =
√

r0

2k2
[cos(k(t − t ′)) − cos(k(t + t ′)].

(A4b)

Using Eq. (A1), the tadpole in Eq. (20) can be written as

iT (t ) = u

2

∫
dd k

(2π )d
iG0K (k, t, t ) fc(k/�)

= q2 cos2(ωt/2)
u

2

√
r0

×
∫

dd k

(2π )d

fc(k/�)

2k̄2
[1 − cos(2k̄t )] (A5)

= B̃d cos2 (ωt/2) + iT ′(t ). (A6)

The first term in the last line corresponds to the long-time
behavior of the tadpole

B̃d (y) = ad
qu

2

√
r0

∫ ∞

0
dk kd−1 fc(k/�)

k2 + y
, (A7)

with ad = 2/[(4π )d/2�(d/2)]. The second term iT ′(t ) in
Eq. (A6) denotes the transient behavior of the tadpole.

We discuss the long-time behavior first. For spatial dimen-
sion d = 4, and restoring a small detuning y, the coefficient
B̃4 in Eq. (A7) is given by

B̃4(y) = a4
qu

2

√
r0

∫ ∞

0
dk k3 fc(k/�)

k2 + y
, (A8)

where a4 = 1/(8π2).
Now we turn to the leading transient behavior. Removing

the contribution from the long-time part, and keeping track of
the cutoff �, we have

iT ′(t ; �) = u

2

∫
dd k

(2π )d
iG0K (k, t, t ) fc(k/�)

− B̃d cos2(ωt/2). (A9)

We use an exponential cutoff function,

fc(x) = e−x. (A10)

Note that the long time and long distance behavior is inde-
pendent of the precise details of the cutoff function. Using
Eq. (A3b), and at spatial dimension d = 4, we obtain

iT ′(t ; �) = −B̃4 cos2(ωt/2) + q2 cos2(ωt/2)
u

16π2

×
(

4

q2

)[ ∫ ∞

0
dk̄k̄3 exp(−k̄/�̄)iG0K,u(k̄, t, t )

]
= 8θ

3q
cos2(ωt/2)

{
(2�̄)2 (2�̄t )2 − 1

[(2�̄t )2 + 1]2

}
, (A11)

where

θ = 3qu
√

r0

256π2
. (A12)

In the long-time limit �̄t 
 1, one obtains

iT ′(t,�)
�̄t→∞−−−−→ 8θ

3qt2
cos2(ωt/2), (A13)

i.e., Eq. (22) in the main text.

APPENDIX B: EXACT CALCULATION OF β

Let us denote the nonzero magnetization along a certain
direction i to be 〈φi〉 = √

NM. The equations of motion in the
N → ∞ limit are in Eq. (55). The self-consistent equations
are equivalent to the coefficient before the φq · φc term in the
Keldysh action Eq. (10) having the following form

r − r1 cos(ωt ) + uM2(t ) + u

2
iGK (x = 0, t, t ). (B1)

Let us make the ansatz for period doubling

M(t ) = M0 cos(ωt/2) ⇒ M2(t ) = M2
0

2
[1 + cos(ωt )]. (B2)

In addition, as for the case of M = 0 discussed in Sec. IV,
we assume that iGK is the Keldysh function of the Gaussian
model (u = 0) but calculated with renormalized parameters
r + δr and r1 + δr1. Thus, substituting for iGK from Eq. (20),
and for M2 from Eq. (B2), we obtain the self-consistent equa-
tion

r − r1 cos(ωt ) + uM2
0

2
[1 + cos(ωt )] + B̃d

2
[1 + cos(ωt )]

= r + δr − (r1 + δr1) cos(ωt ). (B3)

Matching the coefficients on both sides gives

r + 1

2
B̃d (y) + uM2

0

2
= r + δr, (B4)

r1 − 1

2
B̃d (y) − uM2

0

2
= r1 + δr1. (B5)

The self-consistent equation for the detuning y follows from
Eq. (40):

y = r − r1

2
− ω2

4
+ 3

4
B̃d (y) + 3

4
uM2

0 . (B6)

When y → 0, the above becomes

0 = r − r1

2
− ω2

4
+ 3

4
B̃d (0) + 3

4
uM2

0 . (B7)

Recall that the critical couplings rc, r1c are such that y = 0
when M0 = 0, corresponding to the condition

−ω2

4
+ 3

4
B̃d (0) = r1c

2
− rc. (B8)

Substituting the above condition in Eq. (B7), we obtain

0 = r − r1

2
+ r1c

2
− rc + 3

4
uM2

0 . (B9)

On solving for M0, we arrive at Eq. (56) in the main text,

|M0| ∝
√

rc − r −
(

r1c − r1

2

)
⇒ β = 1/2. (B10)
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APPENDIX C: RETARDED GREEN’S FUNCTION: TRANSIENT BEHAVIOR

We now study the one-loop correction to the retarded Green’s function in Eq. (18a) taking into account the transient part of the
tadpole Eq. (A11). Using the relation between the driven and the undriven Green’s functions Eq. (A3), the one-loop contribution
to δGR is given by

δGR(k, t, t ′) = q2 cos(ωt/2) cos(ωt ′/2)
∫ ∞

0
dτ cos2(ωτ/2)G0R,u(k̄, t, τ )[iT ′(τ )]G0R,u(k̄, τ, t ′). (C1)

We will discuss the behavior in the limit k̄t, k̄t ′ � 1, but with both times long as compared to the cutoff �̄t, �̄t ′ 
 1. In order
to access these limits, we set k = 0, and use the expression Eq. (A13) for the tadpole. We also use the identity, cos4(ωτ/2) =
3/8 + cos(ωτ )/2 + cos(2ωτ )/8. This leads to

δGR(k = 0, t, t ′) = 8q

3
cos(ωt/2) cos(ωt ′/2)

∫ t

t ′
dτ

[
3

8
+ 1

2
cos(ωτ ) + 1

8
cos(2ωτ )

]
(t − τ )(τ − t ′)

θ

τ 2
. (C2)

Now we show that logarithmic corrections begin to emerge when t 
 t ′. In this limit, the dominant term corresponds to
approximating τ − t ′ → τ . Following this, of the two remaining terms, the one that dominates at long times is

δGR(k = 0, t 
 t ′) = 8θ

3
q cos(ωt/2) cos(ωt ′/2)t

∫ t

t ′
dτ

1

τ

[
3

8
+ 1

2
cos(ωτ ) + 1

8
cos(2ωτ )

]
= −G0R(k = 0, t 
 t ′)

8θ

3

{
3

8
ln (t/t ′) + 1

2
[Ci(ωt ) − Ci(ωt ′)] + 1

8
[Ci(2ωt ) − Ci(2ωt ′)]

}
, (C3)

where Ci(x) = − ∫ ∞
x dt cos t

t is the cosine integral, and we have used that G0R(k = 0, t 
 t ′) = −qt cos(ωt/2) cos(ωt ′/2). Note
that Ci(x) = γ + ln x + O(x) for x � 1 where γ is Euler’s constant, an observation which will be used below. At long-times
ωt 
 1, two different limits arise depending on whether ωt ′ � 1 or ωt ′ 
 1. In fact for ωt ′ 
 1, the terms in Eq. (C2) containing
the cosine integral Ci(x) do not contribute to any logarithmic corrections, and we find

δGR(k = 0, t 
 t ′, ωt 
 ωt ′ 
 1) = −G0R[θ ln (t/t ′) + finite], (C4)

implying that the leading logarithmic singularity of the correction modifies the full Green’s function as

GR(k = 0, t 
 t ′, ωt 
 ωt ′ 
 1) = −qt cos(ωt/2) cos(ωt ′/2)[1 − θ ln(t/t ′)]

≈ −qt cos(ωt/2) cos(ωt ′/2)(t ′/t )θ . (C5)

The above corresponds to Eq. (59) in the main text.
On the other hand for ωt ′ � 1, but with still ωt 
 1, the cosine-integral terms in Eq. (C3) do provide logarithmic

contributions and therefore give

δGR(k = 0, t 
 t ′, ωt 
 1 
 ωt ′) = −G0R(k = 0, t 
 t ′)
8θ

3

[
3

8
ln (t/t ′) − 1

2
ln(ωt ′) − 1

8
ln(2ωt ′)

]
, (C6)

implying that the leading logarithmic singularity of the correction modifies the full Green’s function as

GR(k = 0, t 
 t ′, ωt 
 1 
 ωt ′) = − qt cos(ωt/2) cos(ωt ′/2)

[
1 − θ ln (ωt ) + 8θ

3
ln (ωt ′)

]
≈ − qt cos(ωt/2) cos(ωt ′/2)(ωt ′)8θ/3/(ωt )θ . (C7)

The above corresponds to Eq. (60) in the main text.

APPENDIX D: KELDYSH GREEN’S FUNCTION: TRANSIENT BEHAVIOR

Now we discuss the one loop correction to the Keldysh Green’s function Eq. (18b) in the transient regime. Using Eq. (A3)
and Eq. (A11), we may write the one loop correction Eq. (18b) as

δiGK (k, t, t ′) = q3 cos(ωt/2) cos(ωt ′/2)
∫ ∞

0
dτ cos2(ωτ/2)G0R,u(k̄, t, τ )[iT ′(τ )] iG0K,u(k̄, τ, t ′) + (t ↔ t ′) (D1)

= −8θ

3
q2

√
r0

k̄3
cos(ωt/2) cos(ωt ′/2)

∫ t

0
dτ cos4(ωτ/2) sin(k̄(t − τ ))(2�̄)2 (2�̄τ )2 − 1

[(2�̄τ )2 + 1]2 sin(k̄t ′) sin(k̄τ )

+ (t ↔ t ′), (D2)

where (t ↔ t ′) indicates the same expression but with t and t ′ exchanged.
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We will now use the relation

(2�̄)2 (2�̄τ )2 − 1

[(2�̄τ )2 + 1]2 = − d

dτ

[
4�̄2τ

1 + (2�̄τ )2

]
, (D3)

in order to integrate by parts, further below, in the integral above. Thus,

δiGK (k, t, t ′) = 8θ

3
q2

√
r0

k̄3
cos(ωt/2) cos(ωt ′/2)

∫ t

0
dτ cos4(ωτ/2) sin(k̄(t − τ )) sin(k̄t ′) sin(k̄τ )

d

dτ

[
4�̄2τ

1 + (2�̄τ )2

]
+ (t ↔ t ′).

(D4)

As we did for the one loop correction to the retarded Green’s function, we first consider k = 0 as we are interested in the
behavior at k̄t, k̄t ′ � 1. Further, we will explore the same two conditions considered for the retarded Green’s functions, i.e.,
either ωt, ωt ′ 
 1, or ωt 
 1 
 ωt ′. We use the identity cos4(ωτ/2) = 3/8 + cos(ωτ )/2 + cos(2ωτ )/8 to write,

δiGK (k = 0, t, t ′) = 8θ

3
q2√r0 cos(ωt/2) cos(ωt ′/2)

∫ t

0
dτ

[
3

8
+ 1

2
cos(ωτ ) + 1

8
cos(2ωτ )

]
(t − τ )t ′τ

× d

dτ

[
4�̄2τ

1 + (2�̄τ )2

]
+ (t ↔ t ′). (D5)

Integrating by parts, we obtain

δiGK (k = 0, t, t ′) = − 8θ

3
q2√r0 cos(ωt/2) cos(ωt ′/2)

∫ t

0
dτ

[
3

8
+ 1

2
cos(ωτ ) + 1

8
cos(2ωτ )

]
(tt ′ − 2t ′τ )

× 4�̄2τ

1 + (2�̄τ )2
+ (t ↔ t ′) + 8θ

3
q2√r0 cos(ωt/2) cos(ωt ′/2)

×
∫ t

0
dτ

[
ω

2
sin(ωτ ) + ω

4
sin(2ωτ )

]
(tt ′τ − t ′τ 2)

4�̄2τ

1 + (2�̄τ )2
+ (t ↔ t ′). (D6)

At times which are large as compared to �̄−1, the dominant terms are those which give logarithmic corrections. These in
particular arise from the first and second lines above. Among them, it is the second term in the numerator ∝2t ′τ, 2tτ that
dominates. Keeping only these dominant terms, and approximating 4�̄2τ

1+(2�̄τ )2 ≈ 1/τ 2 we obtain

δiGK (k = 0, t, t ′) ≈ − 8θ

3
q2√r0tt ′ cos(ωt/2) cos(ωt ′/2)

∫ t

�̄−1
dτ

[
3

8
+ 1

2
cos(ωτ ) + 1

8
cos(2ωτ )

]
1

τ
+ (t ↔ t ′). (D7)

Performing the integrals, one obtains

δiGK (k = 0, t, t ′) ≈ − 8θ

3
q2√r0tt ′ cos(ωt/2) cos(ωt ′/2)

{
3

8
ln(tt ′�̄2) + 1

2
[Ci(ωt ) − Ci(ω/�̄)]

+ 1

8
[Ci(2ωt ) − Ci(2ω/�̄)] + 1

2
[Ci(ωt ′) − Ci(ω/�̄)] + 1

8
[Ci(2ωt ′) − Ci(2ω/�̄)]

}
. (D8)

For ωt 
 1, ωt ′ 
 1 the terms involving the cosine-integral Ci(x) do not give any logarithmic corrections. Noting that the
Green’s function at the Gaussian level is

iG0K (k = 0, t, t ′) = q2√r0 cos(ωt/2) cos(ωt ′/2) tt ′, (D9)

the leading logarithmic singularities and the correction discussed above modify the interacting Green’s function at one loop as

iGK (k = 0, ωt 
 1, ωt ′ 
 1) = q2√r0 cos(ωt/2) cos(ωt ′/2)tt ′[1 − θ ln(�̄2tt ′)] (D10)

∝ q2√r0 cos(ωt/2) cos(ωt ′/2)(�̄2tt ′)1−θ . (D11)

The above is Eq. (61) in the main text.
On the other hand if ωt 
 1 
 ωt ′, then some of the cosine integrals do contribute with a logarithm singularity, giving

δiGK (k = 0, ωt 
 1 
 ωt ′) ≈ − 8θ

3
q2√r0tt ′ cos(ωt/2) cos(ωt ′/2)

[
3

8
ln(�̄t ) + ln(�̄t ′)

]
, (D12)

where we have used that Ci(ω/�̄) ≈ ln(ω/�̄) for ω � �̄. Thus

iGK (k = 0, ωt 
 1 
 ωt ′) = q2√r0 cos(ωt/2) cos(ωt ′/2)tt ′
[

1 − θ ln(�̄t ) − 8θ

3
ln(�̄t ′)

]
(D13)

≈ q2√r0 cos(ωt/2) cos(ωt ′/2)(�̄t )1−θ (�̄t ′)1−8θ/3. (D14)

The above is Eq. (62) in the main text.
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APPENDIX E: KELDYSH GREEN’S FUNCTION: LONG-TIME BEHAVIOR

At the Gaussian level, the equal-time Keldysh Green’s function is

iG0K (k, t, t ) = q2 cos2(ωt/2)
√

r0

k̄2
sin2(k̄t ). (E1)

We will now study the one-loop correction to this quantity in the limit of k̄t 
 1. Using Eq. (18b) and Eq. (A11) along with the
identity Eq. (D3), we obtain

δiGK (k, t, t ) = 16θ

3
q2

√
r0

k̄3
cos2(ωt/2)

∫ t

0
dτ cos4(ωτ/2) sin(k̄(t − τ )) sin(k̄t ) sin(k̄τ )

d

dτ

[
4�̄2τ

1 + (2�̄τ )2

]
. (E2)

Above when we expand sin(k̄(t − τ )) we only keep the sin(k̄t ) cos(k̄τ ) term as this is the term that is proportional to the Gaussian
Green’s function G0K . Thus

δiGK (k, t, t ) ≈ 8θ

3
q2

√
r0

k̄3
sin2(k̄t ) cos2(ωt/2)

∫ t

0
dτ cos4(ωτ/2) sin(2k̄τ )

d

dτ

[
4�̄2τ

1 + (2�̄τ )2

]
= 8θ

3
q2

√
r0

k̄3
sin2(k̄t ) cos2(ωt/2)

[
cos4(ωt/2) sin(2k̄t )

4�̄2t

1 + (2�̄t )2

− 2k̄
∫ t

0
dτ cos4(ωτ/2) cos(2k̄τ )

4�̄2τ

1 + (2�̄τ )2
+ 2ω

∫ t

0
dτ cos3(ωτ/2) sin(ωτ/2) cos(2k̄τ )

4�̄2τ

1 + (2�̄τ )2

]
.

(E3)

For �̄t 
 1, i.e., for times that are long as compared to the microscopic scale �̄−1, the first term falls off at long times as 1/t ,
and therefore we drop it. Collecting the remaining terms, we obtain

δiGK (k, t, t ) ≈ 8θ

3
q2

√
r0

k̄3
sin2(k̄t ) cos2(ωt/2)

{
− 2k̄

∫ t

�̄−1
dτ

[
3

8
+ 1

2
cos(ωτ ) + 1

8
cos(2ωτ )

]
cos(2k̄τ )

1

τ

+ ω

∫ t

�̄−1
dτ

[
1

2
+ 1

2
cos(ωτ )

]
sin(ωτ ) cos(2k̄τ )

1

τ

}
. (E4)

Note that the second term does not give any logarithmic contributions. We then define T (α) for α � �̄

T (α) =
∫ t

�̄−1
dτ

cos(ατ )

τ
= Ci(αt ) − Ci(α/�̄) ≈ −γ − ln(α/�̄) + Ci(αt ), (E5)

to write

δiGK (k, t, t ) ≈ −16θ

3
q2

√
r0

k̄2
sin2(k̄t ) cos2(ωt/2)

[
3

8
T (2k̄) + 1

4
T (2k̄ + ω) + 1

4
T (2k̄ − ω) + 1

16
T (2k̄ + 2ω) + 1

16
T (2k̄ − 2ω)

]
.

(E6)

Now at times longer than α−1, where α = 2k̄, |2k̄ ± ω|, and |2k̄ ± 2ω|, the Ci(αt ) terms can be dropped because they decrease
as a power law in αt . Thus at long times we obtain

δiGK (k, t, t ) ≈ iG0K (k, t, t )
16θ

3

[
3

8
ln(k̄/�̄) + 1

4
ln((2k̄ + ω)/�̄) + 1

4
ln((2k̄ − ω)/�̄)

+ 1

16
ln((2k̄ + 2ω)/�̄) + 1

16
ln((2k̄ − 2ω)/�̄)

]
. (E7)

In the long wavelength limit k̄ � ω, only the first logarithm dominates in the correction above. Therefore the resulting GK can
be written as

iGK (k, t, t ; k̄ � ω) ≈ q2
√

r0

k̄2−2θ
sin2(k̄t ) cos2(ωt/2). (E8)

The above is Eq. (63) in the main text.

APPENDIX F: DERIVATION OF EQ. (69)

In order to determine the asymptotic behavior of the Green’s functions discussed in Sec. VII, it is sufficient to study the terms
with m = ±1 in Eq. (68), as the behavior for m = ±2 follows in a straightforward manner. In addition, Eqs. (68) have terms that
are resonant due to their denominators being proportional to k̄ − mω/2. In doing the Fourier transform in space for highlighting
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the structure of the spatial correlations, these resonant terms dominate over the nonresonant terms. Accordingly, the analysis
below focuses only on the resonant contributions.

Using Eq. (15), the spatial Fourier transform in d = 4 requires computing

IR,K (x, t, t ′) = 1

4π2x

∫ �

0
dkk2J1(kx)IR,K (k, t, t ′), (F1)

where IR,K (x, t, t ′) contribute to the one loop corrections G(1)
R,K and

IR(k, t, t ′) =
∑

m=±1

cos(mω(t + t ′)/2)
sin((k − mω/2)(t − t ′))

k2(k − mω/2)
, (F2)

IK (k, t, t ) =
∑

m=±1

1

k3(2k − mω)
{[1 + cos(mωt )][1 − cos(2kt )] − sin(2kt ) sin(mωt )}. (F3)

Above we have kept only the resonant terms in Eq. (68). For notational convenience, we have also set v = 1, so that k̄ = k.

1. Evaluation of IR

In order to evaluate IR, we perform a shift of variables k − mω/2 → k and obtain

IR(x, t, t ′) = cos(ω(t + t ′)/2)
1

4π2x

[ ∫ �−ω/2

−ω/2
dk

sin(k(t − t ′))
k

J1(kx + ωx/2) +
∫ �+ω/2

ω/2
dk

sin(k(t − t ′))
k

J1(kx − ωx/2)

]
≈ cos(ω(t + t ′)/2)

1

4π2x

{∫ 0

−ω/2
dk

sin(k(t − t ′))
k

J1(kx + ωx/2) +
∫ 0

ω/2
dk

sin(k(t − t ′))
k

J1(kx − ωx/2)

+
∫ �

0
dk

sin(k(t − t ′))
k

[J1(kx + ωx/2) + J1(kx − ωx/2)]

}
, (F4)

where in the last term we have used that � 
 ω. In the first term of Eq. (F4), we perform the transformation k → −k and use
that J1(−x) = −J1(x) to write

IR(x, t, t ′) = cos(ω(t + t ′)/2)
1

4π2x

{
− 2

∫ ω/2

0
dk

sin(k(t − t ′))
k

J1(kx − ωx/2)

+
∫ �

0
dk

sin(k(t − t ′))
k

[J1(kx + ωx/2) + J1(kx − ωx/2)]

}
. (F5)

Following this, we use that J1 may be replaced by its asymptotic value J1(kx + ωx/2) = −
√

2
π (kx+ωx/2) cos(kx + ωx/2 + π/4)

for ωx 
 1. This gives

IR(x, t, t ′) ≈ cos(ω(t + t ′)/2)

√
2

π

1

4π2x3/2

{
2

∫ ω/2

0
dk

sin(k(t − t ′))
k

cos(kx − ωx/2 + π/4)√
k − ω/2

−
∫ �

0
dk

sin(k(t − t ′))
k

[
cos(kx + ωx/2 + π/4)√

k + ω/2
+ cos(kx − ωx/2 + π/4)√

k − ω/2

]}
. (F6)

We now discuss the two nontrivial cases, i.e., the behavior on the light cone and the behavior inside it.
On the light cone, since x = t − t ′ (and t > t ′ due to the causal structure of the retarded Green’s function) we write

IR(x = t − t ′) ≈ cos(ω(t + t ′)/2)

√
2

π

1

4π2x3/2

{
2

∫ ω/2

0
dk

sin(kx)

k

cos(kx − ωx/2 + π/4)√
k − ω/2

−
∫ �

0
dk

sin(kx)

k

[
cos(kx + ωx/2 + π/4)√

k + ω/2
+ cos(kx − ωx/2 + π/4)√

k − ω/2

]}
≈ cos(ω(t + t ′)/2)

√
2

π

1

4π2x3/2

{
2 sin(ωx/2 − π/4)

∫ ω/2

0
dk

sin2(kx)

k

1√
k − ω/2

−
∫ �

0
dk

sin2(kx)

k

[
− sin(ωx/2 + π/4)√

k + ω/2
+ sin(ωx/2 − π/4)√

k − ω/2

]}
. (F7)
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In the last equality of the previous equation we have only kept terms that oscillate in phase. Since this expression is dominated
by k away from ±ω/2 we may write

IR(x = t − t ′) ≈ cos(ω(t + t ′)/2)

√
2

π

x1/2

4π2x3/2

{
2 sin(ωx/2 − π/4)

∫ ωx/2

0
dy

sin2(y)

y

1√
y

−
∫ �x

0
dy

sin2(y)

y

[
− sin(ωx/2 + π/4)√

y
+ sin(ωx/2 − π/4)√

y

]}
. (F8)

Performing the y integral we find

IR(x = t − t ′) ∝ cos(ω(t + t ′)/2) sin(ωx/2 + δ)
1

x3/2
, (F9)

where δ stands for a constant phase shift that originates from the π/4 phase in the asymptotic expansion of the Bessel function.
For studying the behavior of IR at points away from the light cone, let us introduce y = k(t − t ′). Then Eq. (F6) becomes

IR(x, t, t ′) = cos(ω(t + t ′)/2)
1

4π2x

{
− 2

∫ ω(t−t ′ )/2

0
dy

sin(y)

y
J1(yx/(t − t ′) − ωx/2)

+
∫ �(t−t ′ )

0
dy

sin(y)

y
[J1(yx/(t − t ′) + ωx/2) + J1(yx/(t − t ′) − ωx/2)]

}
. (F10)

When x � t − t ′, and since ω(t − t ′),�(t − t ′) 
 1, the upper limits of integration in the expression above can be set to ∞. We
can also approximate J1(yx/(t − t ′) + ωx/2) ≈ J1(ωx/2). Moreover, in the second term above, the two Bessel functions cancel
each other giving

IR(x � t − t ′) = cos(ω(t + t ′)/2)
1

4π2x
J1(ωx/2)

(
2

∫ ∞

0
dy

sin y

y

)
. (F11)

Accordingly, inside the light cone, we obtain

IR(x � t − t ′) = cos(ω(t + t ′)/2)
1

4πx
J1(ωx/2)

∝ cos(ω(t + t ′)/2) sin(ωx/2 + δ̃)
1

x3/2
, (F12)

where in the last line we have used the asymptotic form of J1(ωx/2) and δ̃ denotes a constant phase, which as before, originates
from the π/4 phase coming from the asymptotic expansion of the Bessel function. Thus, together with Eq. (F9) and Eq. (F12),
we have recovered the asymptotic form reported in Eq. (69) for the retarded Green’s function.

2. Evaluation of IK

We now derive the asymptotic behavior of the equal-time Keldysh Green’s function at one loop. Using Eq. (F2) and assuming
� 
 ω, we obtain

IK (x, t, t ) = 1

4π2x

∫ �

−ω/2
dk

1

2k
{sin(2kt ) sin(ωt ) + [1 − cos(2kt )][1 + cos(ωt )]}J1(kx + ωx/2)

k + ω/2

+ 1

4π2x

∫ �

ω/2
dk

1

2k
{− sin(2kt ) sin(ωt ) + [1 − cos(2kt )][1 + cos(ωt )]}J1(kx − ωx/2)

k − ω/2
. (F13)

As before, we split the integral as follows:

IK (x, t, t ) = 1

4π2x

∫ 0

−ω/2
dk

1

2k
{sin(2kt ) sin(ωt ) + [1 − cos(2kt )][1 + cos(ωt )]}J1(kx + ωx/2)

k + ω/2

+ 1

4π2x

∫ ω/2

0
dk

1

2k
{sin(2kt ) sin(ωt ) − [1 − cos(2kt )][1 + cos(ωt )]}J1(kx − ωx/2)

k − ω/2

+ 1

4π2x

∫ �

0
dk

1

2k

{
J1(kx + ωx/2)

k + ω/2
[sin(2kt ) sin(ωt ) + (1 − cos(2kt ))(1 + cos(ωt ))]

+ J1(kx − ωx/2)

k − ω/2
[− sin(2kt ) sin(ωt ) + (1 − cos(2kt ))(1 + cos(ωt ))]

}
. (F14)
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Performing the transformation k → −k in the first term and noting that J1(−x) = −J1(x), we obtain

IK (x, t, t ) = 1

2π2x

∫ ω/2

0
dk

1

2k
{sin(2kt ) sin(ωt ) − [1 − cos(2kt )][1 + cos(ωt )]}J1(kx − ωx/2)

k − ω/2

+ 1

4π2x

∫ �

0
dk

1

2k

{
J1(kx + ωx/2)

k + ω/2
[sin(2kt ) sin(ωt ) + (1 − cos(2kt ))(1 + cos(ωt ))]

+ J1(kx − ωx/2)

k − ω/2
[− sin(2kt ) sin(ωt ) + (1 − cos(2kt ))(1 + cos(ωt ))]

}
. (F15)

We now separately discuss the behavior on the light cone and inside the light cone. On the light cone, since x = 2t , we write
Eq. (F15) as

IK (x = 2t ) = 1

2π2

∫ ωt

0
dy

1

2y
{sin y sin(ωt ) − (1 − cos y)[1 + cos(ωt )]}J1(y − ωx/2)

y − ωx/2

+ 1

4π2

∫ �x

0
dy

1

2y

{
J1(y + ωx/2)

y + ωx/2
[sin y sin(ωt ) + (1 − cos y)(1 + cos(ωt ))]

+ J1(y − ωx/2)

y − ωx/2
[− sin y sin(ωt ) + (1 − cos y)(1 + cos(ωt ))]

}
. (F16)

Replacing J1 by its leading asymptotic form we obtain

IK (x = 2t ) = − 1

2π2

√
2

π

∫ ωt

0
dy

1

2y
{sin y sin(ωt ) − (1 − cos y)[1 + cos(ωt )]}cos(y − ωx/2 + π/4)

(y − ωx/2)3/2

− 1

4π2

√
2

π

∫ �x

0
dy

1

2y

{
cos(y + ωx/2 + π/4)

(y + ωx/2)3/2
[sin y sin(ωt ) + (1 − cos y)(1 + cos(ωt ))]

+ cos(y − ωx/2 + π/4)

(y − ωx/2)3/2
[− sin y sin(ωt ) + (1 − cos y)(1 + cos(ωt ))]

}
. (F17)

This equation implies

IK (x = 2t ) ∝ cos(ωx/2 + α′′)
x3/2

, (F18)

where α′′ is a constant phase shift originating from the π/4 phase in the asymptotic expansion of the Bessel function.
Now we discuss the behavior inside the light cone, corresponding to having 2t 
 x. Here we may replace 1 − cos(2kt ) ≈ 1,

obtaining

IK (2t 
 x) ≈ 1

4π2

∫ �x

1
dy

1

2y

[
J1(y + ωx/2)

y + ωx/2
+ J1(y − ωx/2)

y − ωx/2

]
− 1

2π2

∫ ωx/2

1
dy

1

2y

J1(y − ωx/2)

y − ωx/2
. (F19)

Let us assume ωx 
 1, so that we can set both the upper limits of integration �x = ωx = ∞. Then

IK (2t 
 x) ≈ 1

4π2

∫ ∞

1
dy

1

2y

[
J1(y + ωx/2)

y + ωx/2
− J1(y − ωx/2)

y − ωx/2

]
∝ cos(ωx/2 + α′′′)

x3/2
. (F20)

Above α′′′ is a constant phase shift, which as before can be traced back to the π/4 phase in the asymptotic form of the Bessel
function. Equations (F18) and (F20) together summarize the asymptotic behavior of the Keldysh Green’s function at one loop
and yield Eq. (69) anticipated in the main text.
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