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Many-body dynamical phase transition in a quasiperiodic potential
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Much has been learned regarding dynamical quantum phase transition (DQPT) due to sudden quenches
across quantum critical points in traditional quantum systems. However, not much has been explored when a
system undergoes a localization-delocalization transition. Here, we study one-dimensional fermionic systems in
presence of a quasiperiodic potential, which induces delocalization-localization transition even in one dimension.
We show signatures of DQPT in the many-body dynamics, when quenching is performed between phases
belonging to different universality classes. We investigate how the nonanalyticity in the dynamical free energy
gets affected with filling fractions in the bare system and, further, study the fate of DQPT under interaction.
Strikingly, whenever quenching is performed from the low-entangled localized phase to the high-entangled
delocalized phase, our studies suggest an intimate relationship between DQPT and the rate of the entanglement
growth: Faster growths of entanglement entropy ensures quicker manifestation of the nonanalyticities in the
many-body dynamical free energy.
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I. INTRODUCTION

Isolated out-of-equilibrium systems possess many chal-
lenges, and concurrently, offers new possibilities: Whereas
it gives rise to complex physical phenomena beyond the
reach of equilibrium statistical mechanics, it also opens door
for discerning equilibrium statistical properties in an unique
manner [1]. Dynamical quantum phase transition (DQPT)
[2] constitutes a prime example that has shed a new light
on the traditional understanding of quantum phase transition,
which is developed on the pillars of equilibrium statistical
mechanics.

DQPT is built upon by drawing parallel ideas borrowed
from equilibrium physics, where Loschmidt amplitude, L(t ),
does a similar kind of business that the partition function does
in the equilibrium physics of quantum phase transition. L(t )
quantifies the overlap between an initial state and the time-
evolved state, and is defined as L(t ) = 〈ψi| exp(−iĤt )|ψi〉,
where |ψi〉 is an initial state, and Ĥ is the driving Hamiltonian.
The signature of a dynamical phase transition is imprinted in
form of the nonanalyticities at certain time instances, t = t∗,
in the dynamical free energy, f (t ) = −2 limL→∞ ln |L(t )|/L.
The nonanalytic points in f (t ) correspond to the vanishing
L(t ) in the thermodynamic limit.

DQPT has been investigated elaborately in various con-
texts of quantum phase transitions in quantum model systems
[3–18], and also for topological transitions [19–24]. Along
with sudden quench, periodically driven systems have been
studied as well [25,26]. Although DQPT is mostly studied
with the pure ground state as an initial state, conceptual gen-
eralization has been established in the cases of degenerate
states, mixed state, Floquet dynamical phase transition or even
the open systems [27–35]. Importantly, recent experimental
advances with quantum simulators [36–38] that can mimic

real-time dynamics of isolated quantum many-body systems
justifies such theoretical investigations. DQPT has already
been experimentally verified in laboratory via ultracold atom
[39], and ion traps [40].

So far, conventional quantum phase transitions governed
by the Landau theory of spontaneous symmetry breaking
have enjoyed the bulk amount of attention. This work, in-
stead, considers localization-delocalization transition, which
cannot be described by simple Landau theory. Localization-
delocalization transition has been a subject of intense research
since the seminal work of Anderson [41], which revealed
that despite the quantum tunneling processes a quantum par-
ticle may get localized in presence of a disorder [41,42].
Many-body localization (MBL) further considers the effect of
interaction in addition to disorder, and of late, has become a
hot research topic [43–46]. Localization-delocalization tran-
sition separates the localized phase from the thermal one,
and a question that naturally arises is whether the equilibrium
physics of localization-delocalization transition leaves a trace
on the real-time dynamics, and if the progressing time would
play a role similar to the equilibrium control parameter, i.e.,
the strength of randomness.

Several of the early works with Anderson localization
and MBL were carried on disordered quantum many-body
systems, such as spin chains in presence of random field
or fermionic lattice systems with random onsite potential.
Another closely related setting considers quasiperiodic many-
body systems [47–52], also known as the Aubry-André (AA)
model, where instead of pure randomness the incommen-
surate on-site potential drives a system in the localized
phase. In this model, the localization-delocalization transi-
tion occurs for a finite incommensurate potential amplitude,
say � = �c [53–61]. This is different from the usual An-
derson localization in one dimension, which requires only
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an infinitesimal disorder strength to localize all states. It
also has been shown that by introducing the interaction
in such systems, the ergodic-MBL transition takes place
at a critical amplitude � > �c [62]. Quasiperiodic on-site
potentials can be engineered in quantum simulators via ul-
tracold atoms [63–65], polaritonic lattice [66] in a controlled
manner.

There has been a very recent effort in understanding the
fate of DQPT in the context of the single-particle localization-
delocalization transition in case of Aubry-André model [67],
where an analytical expressions of the transition times (t∗)
can be derived for a limiting situation of end-to-end quench
between two distinct phases. In order to build an in-depth
understandings of the many-body aspects of the DQPT in
localization-delocalization transition, we consider fermions
and probe the AA model at finite filling fractions. Ow-
ing to the added complexity associated with many-body
generalization, we perform time extension of density ma-
trix renormalization group (tDMRG) calculations via matrix
product state (MPS) formalism [68–70]. We investigate the
appearances of the nonanalytic points and identify their trends
for varied filling fractions, interaction strength, and initial
states. Similar to the single-particle calculation, we also find
that the nonanalytic points in dynamical free energy bear-
ing the signatures of the DQPT appear only if an sudden
quench is performed across the transition point, i.e., the sys-
tem is suddenly driven from the localized (delocalized) to
the delocalized (localized) phase. Moreover, we investigate
entanglement entropy, which often offers useful insights on
quantum many-body phenomenology [71,72]. In particular,
it has been recently suggested that the DQPTs may breed
enhanced entropy production around the transition times
[12,40]. We find this to happen whenever the system is
driven from a low-entanglement (localized) regime to high-
entanglement (delocalized) regime. In fact, our results provide
solid evidence, which suggest that occurrences of DQPTs
are intimately related to the rate of information spreading,
i.e., the entanglement growth rate. However, this may not
be univocally true, particularly, decisive statements cannot
be passed for a sudden quench occurring other way around
as highly entangled initial states are driven by low-entangled
Hamiltonians, hardly any entanglement production occurs. It
is now possible to measure entanglement entropy in cold-atom
experiments [73,74], and hence our results can be experimen-
tally verified.

Here is how the rest of the paper is organized. In Sec. II,
we introduce the model. Section III discusses DQPT in
fractionally filled noninteracting systems. In particular, we
concentrate on the situation when quenching is performed
between phases belonging to different universality classes,
i.e., the system is suddenly quenched from the (delocalized)
localized to the (localized) delocalized phase. Moreover, we
also study entanglement production associated with DQPT. In
Sec. IV, we investigate the effects of interactions. Finally, we
draw conclusions in Sec. V.

II. MODEL

We study a system of fermions in an one-dimensional
lattice of size L, which is described by the following

Hamiltonian:

Ĥ (�) = −
L−1∑
i=1

(ĉ†
i ĉi+1 + H.c.) + �

L∑
i=1

cos(2παi)n̂i

+V
∑

i

n̂in̂i+1, (1)

where ĉ†
i (ĉi) is the fermionic creation (annihilation) operator

at site i, n̂i = ĉ†
i ĉi is the number operator, and α is an irrational

number. Without loss of any generality, we choose α =
√

5−1
2

for all the calculations presented in this work. In the ab-
sence of interaction, i.e., V = 0, the Hamiltonian Ĥ is known
as Aubry-André (AA) model. It supports a delocalization-
localization transition as one tunes �. In the thermodynamic
limit, � = 2 corresponds to the transition point [47].

For the most calculations in this paper, the system initially
prepared in a ground state |ψi〉 of the Hamiltonian Ĥ for
� = �i. We study subsequent unitary dynamics of the initial
state following a sudden quench: Ĥ (�i ) → Ĥ (� f ). The time
evolved state is given by |ψ (t )〉 = e−iĤ (� f )t |ψi〉. In order to
detect DQPT, we focus on dynamical free energy, which is
described by,

f (t ) = − lim
L→∞

2

L
ln |〈ψ (t )|ψi〉|. (2)

It has been recently reported that DQPT occurs in single-
particle Aubry-André model, once the quenching is performed
from the localized phase to the delocalized phase or vice
versa [47]. Here, our interest is to understand the fate of the
DQPT when finite number of particles are loaded in such
systems. The filling fraction is identified as ν = N/L, where
N is the total number of fermions. Given that we use tDMRG
method for all our calculations, we restrict ourselves to the
open boundary condition.

III. FRACTIONALLY FILLED BARE SYSTEMS

Given that our main aim is to understand the many-body
aspects in DQPT for localization-delocalization transition, we
first focus on the Hamiltonian Ĥ in the absence of interac-
tion, i.e., V = 0. Subsequently, we study two distinct cases:
quenching the Hamiltonian from (A) the delocalized to local-
ized phase and (B) the localized to the delocalized phase.

A. Delocalized to localized case

In this section we primarily investigate the behavior of
dynamical free energy f (t ) as we quench the Hamiltonian (1)
from the delocalized phase to the deep into localized phase,
i.e., �i = 0.2 → � f = 100. Figure 1 shows the variation of
f (t ) with time for different values of the filling fractions.
Two different system sizes are studied L = 40 [Fig. 1(a)] and
L = 60 [Fig. 1(b)]. In the single-particle limit, an analytical
expression for f (t ) can be derived in the thermodynamic
limit, f (t ) = − 2

L ln |J0(� f t )|, where J0 is is the zero-order
Bessel function, for end-to-end quench with �i = 0 → � f =
∞ [67]. It implies that the nonanalytic points in the dynam-
ical free energy appear at t∗

c = xc/� f , where xc with c = 1,
2, 3 . . . are zeros of J0(x). Even for our choice of quench
parameters (where �i = 0.2 and � f = 100), it turns out that
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FIG. 1. Delocalized to localized quench; varied filling fractions.
Variation of the dynamical free energy f (t ) as a function of time
t for different values of the filling fractions, ν, for (a) L = 40 and
(b) L = 60. In the inset of (a) we benchmark our tDMRG results
with exact diagonalization calculations for L = 16 at half-filling.
Inset of (b) shows the variation of the 1st nonanalytic point t∗ with
filling fraction ν, where the triangle, circle, and diamond symbols
correspond to L = 40, 60, and 80, respectively. We choose �i = 0.2
and � f = 100.

the nonanalytic points are t∗
c � xc/� f for N = 1. However,

the nonanalytic points in f (t ) start shifting with increasing
number of particles. Given that in this work we primarily con-
centrate on the first nonanalytic point, it turns out that as we
increase the filling fraction ν, the first nonanalytic point starts
moving towards smaller values of t∗. We find that while for the
single particle case, � f t∗ � 2.41, for ν = 1/2, � f t∗ � 1.95.
In the inset of Fig. 1(b), we show the positioning of the first
nonanalytic point as a function of filling fraction for different
system sizes, L = 40, 60, and 80.

Next, we analyze finite-size effects on the first nonanalytic
point. For this, first we consider different values of �i, while
keeping the driving Hamiltonian (� f = 100), filling fraction
(ν = 1/2), and the system size (L = 40) fixed. Figure 2(a)
demonstrates variations of f (t ) with � f t for different choices
of the initial states, which are determined by setting �i = 0.1,
0.2, 0.5, 1.0, 2.5, and 5.0. It is evident that the cases with �i =
0.1 and 0.2 are characterized by presence of cusps in time
dynamics, providing clear signatures of the nonanalyticities.
However, the nonanalytic features are not very clear for other
values of �i. In contrast they appear like humps.

In Figs. 2(b) and 2(c), we show the variation of these
humps as we increase the system size L, for �i = 0.5 and
�i = 5.0, respectively. We find that while for �i = 0.5 the
hump is getting sharper as we increase L (this feature has
been observed for other values of �i as well as long as
�i � 2). On the other hand for �i = 5.0, the peak flattens
with increasing L. The trends clearly indicate that in the ther-
modynamic limit the nonanalytic behavior survives when the
quench is performed from the delocalized phase to localized
phase. However, when we quench the Hamiltonian (1) without
crossing the phase boundary, i.e., �i > 2, the signature of

FIG. 2. Delocalized to localized quench; varied initial states.
(a) shows the variation of the dynamical free energy as a function
of time for a fixed value of � f , but for different choices of �i. We
choose � f = 100, L = 40, and ν = 1/2. Analysis of the finite size
effects are presented in (b) for �i = 0.5 and in (c) for �i = 5.0,
which monitor the change in the sharpness of the first peak of
the dynamical free energy with increasing system size. The chosen
parameters are again � f = 100, and ν = 1/2.

nonanalytic behavior in f (t ) tends to wash away. Similar con-
clusions also has been achieved for N = 1 as well in Ref. [67].

B. Localized to delocalized case

Now we focus on a quench from the localized phase
to the delocalized phase. Figure 3 shows the results for a
quench from �i = 100 → � f = 0.2. For the single-particle
case, i.e., N = 1, it is straightforward to analytically track the

FIG. 3. Localized to delocalized quench. Variation of the dynam-
ical free energy f (t ) with time t is shown in (a) for different filling
fractions, ν and (b) for different initial states. Inset of (a) shows the
variation first nonanalytic point t∗ with ν, where �i = 100 and � f =
0.2. (b) shows the variation of f (t ) with t for ν = 1/2, � f = 0.2 for
different values of �i. L = 40 for all the cases.
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nonanalytic points in f (t ) corresponding to a quench from
�i = ∞ → � f = 0. The nonanalytic points in f (t ) corre-
sponds to t∗ = xc/2, where xc are zeros of J0(x) [67]. Even
for our choice of quench parameters, i.e., �i = 100 → � f =
0.2, our single-particle numerical results agrees well with the
analytical results for the transition times, t∗ � xc/2. However,
as we increase the filling fraction, t∗ starts relocating. This
is shown in the inset of Fig. 3(a). We further show, by vary-
ing �i, while keeping � f = 0.2 and filling fraction ν = 1/2
fixed, that if we quench from the deep into the localized phase
to the delocalized phase, the nonanalytic features become
much sharper, at least for our choice of system size [see
Fig. 3(b)]. On the other hand, when �i � 2, the signature
of nonanalyticity in f (t ) fades away. This is once again an
evidence of absence of the DQPT if the quench is performed
within the same phase.

C. Entanglement production

In this section, we investigate the connection between
the DQPT and the entanglement production. Given that here
we quench from extremely deep localized phase (�i = 100)
to the delocalized phase, the initial state can be approxi-
mated quite accurately by a suitable product state. We have
checked this explicitly by choosing two states, (i) the exact
ground state of the prequench Hamiltonian Ĥ (�i = 100),
and (ii) approximated product state obtained by filling de-
sired number (depends on the total number of particles in
the system) of lowest energy levels of the Hamiltonian Ĥ0 =∑L

i=1 cos(2παi)n̂i. We find that the results of f (t ) vs t for
these two states are almost indistinguishable. Hence, in Fig. 4
we do not restrict ourselves to only the ground state of the
prequench Hamiltonian. We investigate the variation f (t ) with
t for different initial product state (e.g., Neel state). Given that
all these product states have extremely high overlap with some
excited eigenstates of the prequench Hamiltonian Ĥ (�i =
100). This has been shown explicitly in the inset of Fig. 4(a),
where we have plotted the overlap (fidelity) between these
product states and an eigenstate of the Hamiltonian Ĥ (�i ) for
which the overlap is the maximum for different values of �i

for L = 12 using exact diagonalization. Indeed we find that
the fidelity is extremely close to 1 for �i = 100. Hence, the
temporal variation of f (t ) for such product states are expected
to be very similar to some highly excited energy eigenstates
of the Hamiltonian Ĥ (�i = 100). Figure 4(a) shows that for
many such states indeed one can find the clear signature of
the DQPT. However, the location of the nonanalytic points t∗
varies quite a lot as we change our initial states.

Next, we study the entanglement dynamics for the same set
of initial states once we let it evolve under the unitary evolu-
tion governed by a Hamiltonian belonging in the delocalized
phase Ĥ (� f = 0.2). Given that the dynamics is unitary, the
entire system remains in a pure state. The reduced density
matrix ρA of a finite subsystem A of length L/2 is defined
as ρA = Tr B|ψ (t )〉〈ψ (t )|, where the trace is over the degrees
of freedom of the complement B of A. Here we only restrict
ourselves to one of the most useful entanglement measures,
the von Neumann (entanglement) entropy S = Tr [ρA ln ρA].

Figure 4(b) shows the results for the entanglement growth
for the same set of initial states for which f (t ) has been

FIG. 4. Entanglement production and quasiparticle predictions.
(a) Dynamical free energy as a function of time for different initial
product states for L = 40 and � f = 0.2 at half-filling. Inset shows
the fidelity between energy eigenstate and the product state as a
function of �i for L = 12. The initial state |1010..〉 and |1100..〉
has maximum overlap with n = 506 and 447th eigenstate of the
Hamiltonian Ĥ (�i = 100) and its overlap value = 0.995398 and
0.9951758, respectively. (b) shows the entanglement entropy for the
same set of initial states and parameters. Solid lines correspond to
quasiparticle predictions. Inset shows the variation of t∗ as a function
of entanglement growth rate dS

dt .

plotted in the Fig. 4(a). We find an extraordinary correlation,
i.e., the appearance of the non-analytic point (at least the
first point) t∗ depends on the entanglement growth rate. At
least among the choices of our initial state it seems that the
entanglement growth rate for the Neel state, i.e., |ψ (0)〉 =
�

L/2
i=1ĉ†

2i|0〉 = |1010..〉 is maximum and where as, the entan-
glement growth rate of |ψ (0)〉 = |11110000..〉 is minimum.
That is also reflected in the f (t ) vs t plot in Fig. 4, i.e., the
value of t∗ for the Neel state is much smaller compare to other
states. Intuitively we would expect that as well. Given that
the nonanalytic points in f (t ) corresponds to the zero fidelity
L(t ) in the thermodynamic limit, we would expect the speed
at which the memory of the initial state will be washed away
should also depends on the entanglement growth rate. If the
propagation rate of quantum correlation is higher, fidelity is
expected to vanish in a much shorter time compared to the
case where the rate of propagation of quantum correlation is
smaller. This is precisely what has been manifested in Fig. 4.

Now given that the quench Hamiltonian Ĥ (� f ) is inte-
grable in the limit � f → 0, the entanglement dynamics also
can be described extremely efficiently within quasiparticle
picture [75]. To understand why this is the case, let us first
briefly describe the quasiparticle picture for the entanglement
spreading, which is applicable to generic integrable models.
According to this picture, the initial state acts as a source
of quasiparticle excitations, which are produced in pairs and
uniformly in space. After being created, the quasiparticles
move ballistically through the system with opposite velocities.
Only quasiparticles created at the same point in space are
entangled, and while they move far apart, they carry forward
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entanglement and correlation in the system. A pair contributes
to the entanglement entropy at time t only if one particle of the
pair is in A (of size 	) and its partner is in B. Keeping track
of the linear trajectories of the particles, it is easy to conclude
[75,76]

S(t ) =
∑

n

2t
∫

2|vn|t〈	
vn(k)sn(k)dk + 	

∫
2|vn|t〉	

sn(k)dk. (3)

Here the sum is over the species of particles n whose num-
ber depends on the model, k represents their quasimomentum
(rapidity), vn(k) is their velocity, and sn(k) their contribution
to the entanglement entropy. The quasiparticle prediction for
the entanglement entropy holds true in the space-time scaling
limit, i.e., t, 	 → ∞ with the ratio t/	 fixed. When a maxi-
mum quasiparticle velocity vM exists (e.g., as a consequence
of the Lieb-Robinson bound), Equation (3) predicts that for
t � 	/(2vM ), S grows linearly in time. Conversely, for t >

	/(2vM ), only the second term survives and the entanglement
is extensive in the subsystem size, i.e., S ∝ 	. The validity of
Eq. (3) has been tested both analytically and numerically in
free-fermion and free-boson models [75,77–89] and in many
interacting integrable models [76,90–94].

Hence, in Fig. 4(b) we also show the quasiparticle results
using solid lines for � f = 0 and for different initial product
state. Also since, our tDMRG results are for open bound-
ary condition, we replace t → t/2 in Eq. (3). It seems that
entanglement growth rate obtained within this semiclassical
picture matches reasonably well with our numerical results
even though our simulation is for finite-size system and � f =
0.2. Note that even though the correlations between the en-
tanglement growth rate [see the inset of Fig. 4(b)] and the
positioning of the nonanalytic point t∗ is extremely apparent
when we quench from the localized phase to the delocalized
phase, but entanglement dynamics is featureless when quench
is performed from the highly entangled delocalized phase to
the localized phase. However, signature of the DQPT remains
present in the temporal variation of f (t ) (see Fig. 1).

IV. EFFECTS OF INTERACTION

For all our previous calculations, we set the interaction
term in the Hamiltonian Ĥ [see Eq. (1)] to zero, i.e., V = 0.
Here we investigate the effect of interactions. While we know
the Hamiltonian in (1) exhibits localization-delocalization
transition at � = 2 in the noninteracting limit, the effect of
interaction usually tends to delocalized the system. However,
it has been shown that even in the presence of interaction for
the sufficiently large value of the disorder strength (in this
case the strength of incommensurate potential) localization-
delocalization transition takes place, which is also known as
ergodic to many-body localization transition [62].

Here, we perform a quench from the deep in to the many-
body localized phase to the delocalized ergodic phase phase
corresponding to �i = 100 → � f = 0.2 and V 
= 0. We
find that as we increase the interaction strength V , the sig-
nature of the nonanalyticity in f (t ) slowly fades way as
shown in Fig. 5(a). However, interestingly we also observe
that the value of t∗ becomes smaller with the increase of V .
These results can also be complemented by the entanglement
dynamics results in Fig. 5(b), which show that indeed the

FIG. 5. Effects of interaction. (a) Dynamical free energy, f (t ),
variation with time, t , for different interaction strengths, V , for �i =
100, and � f = 0.2. (b) shows entanglement dynamics for the same
set of interaction strengths and system parameters.

entanglement growth is comparatively faster if we increase
the interaction strength.

V. SUMMARY AND DISCUSSIONS

The primary goal of this work is to understand the many-
body aspects in the context of DQPT, for which we turned
our focus to a less explored quasiperiodic system supporting a
localization-delocalization transition. Our many-body results
indicate that DQPT is a generic feature of sudden quenches
across the localization-delocalization transition point.

First we consider the noninteracting systems with finite
particle densities, and investigate how the DQPT gets mod-
ified as a function the filling fraction when the system is
quenched from the delocalized (localized) to the localized
(delocalized) phase. Further investigation is followed in order
to understand the effects of interaction. In the presence of in-
teraction, single-particle localized phase modifies to athermal
MBL phase. Here, we find a clear signature of nonanalyticity
in the dynamical free energy, as well. Since, unlike the usual
quantum phase transition (which involves only the ground
states of the Hamiltonian), the highly excited eigenstates of
the system are also involved in MBL transition, we do not
restrict ourselves to the only ground state of the prequench
Hamiltonian: We find that the signature of DQPT persists even
for the highly excited states.

While quenching from a low-entangled localized phase
to high-entangled delocalized phase, we find that DQPT is
accompanied with entanglement production. Crucially, fol-
lowing the trends of entanglement growth, we conclude that
the positioning of the nonanalytic points t∗ intrinsically de-
pend on the rate of entanglement growth.

However, the rate of entanglement growth does not solely
determines the positions of t∗. Clearly, the onsets of t∗ do not
require the quasiparticles to travel across the entire system
and coming back to the initial point in the space. The time re-
quired for quasiparticles to do so is given by, [trev ∼ nL/(vM )]
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with n as positive integers [95], which is much larger
(also scales linearly with system size L) than the transition
times.

This is even more clear for the case when quenching is
performed from the delocalized phase (initial state is highly
entangled) to the deep into localized phase, which is only
associated with a negligible entanglement growth. However,
even there the values of t∗ changes with the filling fraction.
Hence, further investigations are required to understand the
correlation between the entanglement growth and the DQPT.
It will be interesting to explore the roles of local entanglement

or global genuine multiparty entanglement. Even identifying
the relations between quantum scrambling and DQPT is also
another potential future direction [96].
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