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Bilayer Haldane system: Topological characterization and adiabatic
passages connecting Chern phases
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We present a complete topological characterization of a bilayer composite of two Chern insulators
(specifically, Haldane models) and explicitly establish the bulk-boundary correspondences. We show that an
appropriately defined Chern number accurately maps out all the possible phases of the system and remains well
defined even in the presence of degeneracies in the occupied bands. Importantly, our result paves the way for
realizing adiabatic preparation of monolayer Chern insulators. This has been a major challenge to date, given
the impossibility of unitarily connecting inequivalent topological phases. We show that this difficulty can be
circumvented by adiabatically varying the interlayer coupling in such a way that the system remains gapped at
all times. In particular, complete knowledge of the phase diagram of the bilayer composite immediately allows
one to identify all such adiabatic passages which may connect the different Chern inequivalent phases of the

individual monolayers.

DOLI: 10.1103/PhysRevB.103.224304

I. INTRODUCTION

The Haldane model is a paradigmatic model of two-
dimensional noninteracting Chern insulators and has been
subjected to extensive theoretical and experimental stud-
ies [1-8]. In its commonly studied form, the model is realized
on a monolayer graphene honeycomb lattice with broken
sublattice and time-reversal symmetries (see Appendix A
for a short discussion on the Haldane model). The topo-
logical phases of the model are characterized by an integer
quantized Chern invariant; furthermore, a topological bulk-
boundary correspondence (BBC) in the form of chiral edge
states emerges in the nontrivial Chern phases. In recent years,
several works have explored composite systems of coupled
Haldane layers, in particular, bilayer systems [9—16]. Despite
several intriguing attempts [9-12], it has remained unclear
whether the topological structure of the monolayer Haldane
system is carried over to a bilayer composite. In this regard,
it was recently shown that a “topological proximity effect”
results from the gap induced in the graphene monolayer in a
coupled Haldane-graphene system [9,10]. Similarly, bilayer
composites of Haldane systems are known to host topo-
logical “corner states,” although the edge states are gapped
out [13-16].

In parallel, the unitary preparation or tuning of Chern insu-
lating phases [17-24] of the (monolayer) Haldane model has
remained a major challenge to date. While there has been a
fair amount of success with respect to the experimental prepa-
ration of materials hosting Chern nontrivial phases [5-8],
dynamical tuning or switching across the different Chern
phases in a given Chern insulator is altogether a different chal-
lenge. To elaborate, the difficulty is twofold. First, one needs

X . .
bsourav @iitk.ac.in

2469-9950/2021/103(22)/224304(9)

224304-1

to engineer the effective Hamiltonian generating the time evo-
lution of the system in such a way that the ground state of the
engineered Hamiltonian is in the desired topological phase.
For example, this can be achieved simply through a sudden
quench or a periodic modulation of the Hamiltonian. In this
regard, it has been demonstrated that the effective Floquet
Hamiltonian driving the stroboscopic dynamics of a peri-
odically modulated system can host topologically nontrivial
phases, despite the ground state of the undriven Hamiltonian
being in a trivial/nontopological phase. This idea has also
been exemplified through the application of circularly polar-
ized radiation on graphene (see Refs. [25,26]).

Second, in generic out-of-equilibrium systems, the time-
evolved many-body state is not an eigenstate of the effective
Hamiltonian generating the dynamics. Thus, the time-evolved
state may not exhibit a topological BBC, as expected from the
nontrivial effective Hamiltonian. An immediate and apparent
solution to the problem is to maintain adiabaticity throughout
the dynamics, at least in incommensurate finite-size systems,
i.e., systems in which the gapless point is excluded from
the Brillouin zone (see Ref. [27]). This ensures that the
out-of-equilibrium state closely follows the ground state of
the effective Hamiltonian. It has, indeed, been shown that
by maintaining adiabaticity in finite-size systems, the lattice
Chern number or the Bott topological index [17] can capture a
dynamical topological phase transition in the nonequilibrium
state of the system. This is, nevertheless, a difficult task to
achieve experimentally as the dynamics needs to be extremely
slow for sufficiently large systems and therefore requires a
long coherence time of the system.

It is also important to realize that a topological BBC holds
in only the thermodynamic limit, i.e., when the conducting
edge states decaying exponentially [28] into the bulk do not
hybridize. One therefore must address the dynamical prepa-
ration or tuning of nontrivial Chern states not just in finite
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systems but also in the thermodynamic limit. However, main-
taining adiabaticity in dynamics to tune the system across
different Chern phases is impractical for thermodynamically
large systems, as the minimum energy gap vanishes for such
systems at the critical points separating inequivalent topo-
logical sectors. In fact, it has already been established [27]
that neither the Chern number nor the Bott invariant can be
changed under unitary dynamics in thermodynamically large
or commensurate (i.e., systems in which the gapless point is
included within the Brillouin zone) translationally invariant
monolayer Chern insulators (see Ref. [29] for a deeper dis-
cussion of the problem).

In this work, we address the aforementioned obstacle in the
dynamical preparation and tuning of nontrivial Chern states
in the thermodynamic limit. To this end, we consider the
possibility of adiabatically tuning the phase of a thermody-
namically large Chern insulator when coupled to a similar,
but not necessarily identical, Chern insulating system. To
elaborate, we first analyze the topological characterization of
a bilayer Haldane system in its ground state and the associated
BBCs. We find that even in the presence of a finite coupling
between the layers, the bilayer system is capable of hosting
topologically nontrivial phases, although the topology of the
individual layers ceases to be well defined. In particular, we
make use of the total Chern number, calculated from the non-
Abelian Berry curvature [30-35], to identify the topological
phases of the bilayer system. As our main result, we show
that such bilayer composites facilitate unitary preparation or
tuning of Chern phases in commensurate and incommensurate
monolayer Chern insulating lattices.

To this end, complete knowledge of the topological phases
of the bilayer composite is crucial to identify adiabatic pas-
sages, which can be traversed to tune the Chern phases
(defined in the absence of interlayer coupling) of the indi-
vidual layers. The adiabaticity ensures that the bulk-boundary
correspondence is restored at the end of the tuning process.
Importantly, the adiabatic passages persist even in the ther-
modynamic limit, a finding which is highly significant in the
context of unitarily tuning the phases of Chern insulators.
As we discuss in the conclusion, the dynamical coupling to
such an ancillary layer also allows one to search for optimal
adiabatic pathways aiding the experimental realization of such
protocols.

II. MODEL

In our model we make the simplifying assumption that the
two layers have identical sets of values of the Semenoff mass
M as well as the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hopping amplitudes, #; and f,, respectively.
However, they may differ with respect to the phase of the
complex NNN hoppings. We will denote the corresponding
phases of the “lower” and the “upper” layers as ¢; and ¢,,

J

FIG. 1. (a) The bilayer Haldane model realized by two vertically
stacked and perfectly aligned honeycomb lattices. The red and blue
spheres correspond to the two sublattices, and the black dashed
lines indicate that each lattice point is coupled only with the one
directly above or below it. (b) Top view: In a semi-infinite system
with armchair edges, the lower (upper) layer can be divided into M
“strips” of chains, each indexed by the letter m;,y =1, 2, 3,..., M.

respectively. In addition, the interlayer interaction is chosen
so that within the translationally invariant bulk, modes with
different lattice momenta k in the Brillouin zone (BZ) do not
couple. This retains the integrability of the composite system.

Assuming periodic boundary conditions for the bulk, the
Hamiltonian is decoupled as H = P, c;H (k)c,, where ¢ =
(Cha» Chops Gt a- €t p) is @ vector of the annihilation operators,
with {A, B} and {/, u} being the sublattice and layer indices,
respectively. The single-particle Hamiltonian H (k) assumes

the form
Hk) = P (H’F(f ) Hur(k)) M
k

where H;,) is the Haldane Hamiltonian corresponding to the
lower (upper) layer and I" denotes the interaction potential
between the layers. We recall the Bloch form of the Hal-
dane Hamiltonians (see Appendix A), Hj,)(k) =d W) o,
where d'" = {d,, dy, dé(“)} and o is a vector of pseudospin
operators. Note that only dzl(“) depends on the complex phase
and is therefore annotated with distinct superscripts for each
layer. In what follows, we consider a staggered interlayer
coupling of the form I' = y t,, where 7, is another pseudospin
operator. Physically, such a situation may arise when the two
graphene sheets are perfectly aligned with each other and sat-
isfy the following two conditions: (i) each lattice point in the
upper layer interacts only with the lattice point directly below
it in the lower layer [see Fig. 1(a)], and (ii) the interaction
is attractive or repulsive depending on which of the two sub-
lattices a given point belongs to. We emphasize here that the
staggered nature of the interaction [condition (ii)] simplifies
only the analysis of the topological phases and our results
remain qualitatively unaltered for more general interactions,
as discussed in Sec. III.

Analyzing the spectrum of the Hamiltonian in Eq. (1), the
energy bands assume the form

1
Ef (k) = i\/ di(k) + 3 (k) +  {dl (k) + d2 ) + / [dl (k) — du(k)]2 + 42}, (2a)

Ef(k) = :i:\/df(k) + d2(k) + %{dzl(k) + du(k) — \/[dzl(k) —d (k)2 + 4)/2}2, (2b)
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FIG. 2. (a) The four dispersion bands of the bilayer Haldane model corresponding to the Hamiltonian in Eq. (1). Topological phases of the
bilayer Haldane model in the ¢;-¢, plane with (b) y = 0 and (c) y = 0.8. The black solid lines represent the critical boundaries between the
different phases at which the bulk gap vanishes. The colors indicate the values of the total Chern number which acquire only integer quantized
values, ranging from —2 to 2. Note that points A and B are no longer separated by critical lines when y # 0. The other parameter values

chosen for the plots are t; = 1,1, = 1/3,and M = 0.5.

where E; (k) < E; (k)<O<E; (k)<E; (k) [see Fig. 2(a)].
In the ground state, only E|” and E, are completely occupied,
while the rest are completely empty. Clearly, a finite gap
between the occupied and empty band ensures that the bulk
of the system remains insulating. Note that the efficacy of
choosing a staggered interaction, as manifested in Egs. (2),
is that the bulk gap can vanish only at the Dirac points K, K’,
where d.(K,K') = d,(K, K') = 0. Hence, it suffices to ana-
lyze the spectrum only in the vicinity of the Dirac points. In
particular, the critical points are found by setting E2i K)=0
and E2i (K") = 0, leading to the conditions
d/(K)d!(K) = y?,  dl(K)d!(K') = y>. 3)
In the limiting case y = 0, the conditions in Eq. (3) are
satisfied when dg(”)(K) =0 and/or dé(”)(K’) = 0, implying
that at least one of the independent Haldane layers undergoes
a topological phase transition. This is trivially expected since
the topological properties of the composite system can be
deduced from those of the individual layers in terms of the
Chern numbers G,y = 0, £1 of the lower (upper) layers.
The situation is, however, not trivial for y # 0 since the
finite interaction between the layers no longer guarantees
particle number conservation of the individual layers. In
Fig. 2(c), the critical boundaries (black solid lines) obtained
from Eq. (3) are plotted in the ¢;-¢, plane for fixed values
of M, t;, and 1,. The critical lines separate the ¢;-¢, plane
into distinct regions which, as we will demonstrate below, are
characterized by integer quantized topological invariants.

III. PHASE DIAGRAM AND BBC

For systems with multiple occupied bands, the Chern in-
variant characterizing the topological phases is calculated
from the U(2) Berry curvature, which is non-Abelian (see
Appendix B for a detailed discussion). The Chern number
thus defined turns out to be equivalent to the total Chern
number calculated by summing up the Abelian curvatures of
the individual bands. It is given by

' aP P
Couw=— | akTe(P| 2=, 22 1). 4)
2w BZ Bk, Bk]

Here, P = Zi:l |n(k)) (n(k)| is the projection operator on the
ground state manifold of occupied states, with |n(k)) being the
occupied energy eigenstates of H (k). It is important to note
that the total Chern number, as defined in Eq. (4), remains
integer quantized and well defined as long as the gap between
the occupied and empty bands remains finite. This includes
situations in which the occupied bands may become degener-
ate at some points in the BZ.

Figure 2(c) illustrates that the regions separated by the
critical lines acquire distinct values of the Chern number,
Cio = 0, £1, £2, suggesting that the bilayer Haldane system
is endowed with a rich topological structure even in the pres-
ence of a finite interaction between the layers. The natural
question which then arises is whether there exists a BBC
corresponding to the integer quantized values of G, . To this
end, we consider the case of a semi-infinite bilayer composite,
where the system is infinite along the Cartesian x axis and has
a finite width along the y axis. Exploiting the conservation
of k,, we depict the resulting spectrum for different values of
the Chern number in Fig. 3. It is evident that when C,,, = O,
the energy spectrum is gapped, and no conducting edge states
exist. On the contrary, when C;,; # 0, conducting edge modes
appear in the bulk gap, connecting the filled valence band with
the empty conduction band.

To further establish the BBC, we inspect the probability
distribution of the ground state of the Hamiltonian corre-
sponding to a particular lattice momentum k,, along the finite
y axis of each of the layers. As shown in Fig. 1(b), we can
divide each of the layers into M “strips” along y for armchair
boundary edges. For a given energy eigenstate |y (k, = k)),
we then calculate the quantity given by
2

&)

2
Pelmiay) = Y | (mi 19 (k)
s=1

where m;],, is a lattice point on the mth strip of the lower
(upper) layer and s labels the sublattice to which the lattice
point belongs.

In Figs. 3(b) and 3(c), we plot the quantity defined
in Eq. (5) as a function of my, for two of the highest-
energy occupied eigenstates at lattice momentum k, > 0. For
C,» = 1[see Fig. 3(b)], we see that only one of the eigenstates

224304-3



SOURAV BHATTACHARIEE et al.

PHYSICAL REVIEW B 103, 224304 (2021)

Cna = 2 Cna=1 Cna=2
Cot 04 Cou22
0.2] 0.4]
A 0.3 L%
%0* E jf:oz
E 0.2 04
K R o TR T
m 0.1 m,
-1.0 -0.5 0.0 0.5 1.0 0 10 20 30 40 0 10 20 30 40
ky m m
(a) (b) (c)
FIG. 3. (a) Spectrum of the semi-infinite bilayer Haldane model with armchair edges and C;,, = 2. The values of the complex phases are

chosen to be ¢; = 1.55, ¢, = 1.59. The other parameters are the same as in Fig. 2(c). The probability distribution P, (m;,) [see Eq. (5)] for
two of the highest energy modes in the valence band as a function of m,, in the cases of (b) C;,, = 1 and (¢) G, = 2. In the former case, only
one localized edge mode, shown in red, exists which spans the edge of both the lower and upper [inset of (b)] layers, while the other mode,
shown in blue, diffuses into the bulk. On the other hand, for C,,, = 2, two edge modes exist, with one of them (red) localized at the edge of the
lower layer and the other (blue) localized at the edge of the upper layer [inset of (c)].

is localized at the edges and it spans the edges of both layers.
On the other hand, for C;,,, = 2 [see Fig. 3(c)], it is evident
that both eigenstates are edge localized, with each of them
spanning the edge of only one of the two layers. Thus, we
see a direct correspondence between the value of C;,, and the
number of localized edge states. This correspondence is also
corroborated by calculating the inverse participation ratios of
the energy eigenvalues, as shown in Appendix C. Further, we
have verified that the edge states localize at the opposite edge
of the layers for k, < 0, thus establishing their chiral nature.
Interestingly, we note that the Chern number turns out to be
identical to the Chern number of the lowest-energy band of
two-particle energy eigenstates (see Appendix D for details).

IV. UNITARILY CONNECTING INEQUIVALENT PHASES
OF MONOLAYER CHERN INSULATORS

As already mentioned, the presence of critical boundaries
separating the topological phases of a monolayer Haldane
system makes it impossible to tune the system across different
phases. However, we have already seen that the presence
of finite intercoupling alters the phase space structure [see
Figs. 2(b) and 2(c)], which can open up adiabatic passages
connecting distinct topological phases (defined for y = 0),
of the monolayers. To exemplify this, we will demonstrate
a simple case in which an initially decoupled bilayer system
with C! = —C! =1 is adiabatically transformed to another
decoupled configuration, c/ = —CL{ = —1. Thus, the proto-
col exchanges the Chern numbers of the layers at the end of
the process. The underlying idea is to dynamically break the
U(1) x U(1) subgroup of the complete U(2) gauge symme-
try to facilitate the adiabatic tuning of the monolayer Chern
phases, followed by complete restoration of the same sym-
metry. The transformation is achieved through an appropriate
manipulation of the parameters y, ¢;, and ¢,, such that adia-
batic conditions are maintained throughout the process.

We now outline the protocol, which is a three-step process.
We assume that the two layers are initialized in the ground

state with ¥ = 0 so that each of them has well-defined Chern
numbers. The other Hamiltonian parameters are chosen such
that the Chern numbers for the lower and the upper layers
are C; = 1 and C, = —1, respectively. In the first step of the
protocol, the interlayer coupling y is slowly ramped to a finite
value to open up adiabatic passages between the desired initial
and final configurations. This is exemplified in Figs. 2(b)
and 2(c), where points A and B are no longer separated
by critical lines in the presence of a finite y. In the next
step, the complex phases ¢; and ¢, are slowly tuned to their
target values, keeping y constant. Note that in the absence
of the interlayer coupling, this would have required crossing
the critical lines, which cannot be performed adiabatically
in the thermodynamic limit. In the final step, the interlayer
coupling is slowly turned off so that the two layers once again
acquire well-defined Chern numbers at the end of the protocol.
Since adiabaticity is maintained throughout, the two layers
are expected to remain in their respective ground states. The
three-step protocol is encoded in the time dependence of the
Hamiltonian parameters as

yc.% for0<r <7/,
y()={ve for/ <1 <1’ (6a)
ve(l = =5) fort” <1<,
Dl forr < 7,
¢l(u)(t) = ¢;(u) + (¢ljzu) - ¢;(u)) Ttw_j_rf for 7/ <t < -,;//’
¢lf(u) forr > 1.
(6b)

At intermediate times, the presence of a finite coupling im-
plies that the layers are entangled and hence they do not
have well-defined Chern numbers. Nevertheless, it is possi-
ble to define a Chern number (see, for example, Ref. [36])
in terms of the reduced state of the individual layers,
Piay (k) = Tr,qp [ (k)) (¥ (k)|], where [y (k)) represents the
time-evolved state of the bilayer system for the momen-
tum k (the momentum modes always remain decoupled).
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0 20 40 60 80 100 120 140
t

FIG. 4. Dynamical exchange of the Chern numbers between the
two layers attained using the protocol in Eq. (6). The Chern num-
bers (red and blue curves) are determined using Eq. (7) and do
not have any BBC in the intermediate stage, 0 <t < 7. At the
end of the protocol, the purity of the states representing the layers,
shown only for the lower layer above (black curve), is restored
to unity with Cy(t) = Cy,). Note that the total Chern number
remains invariant throughout the process C,, = 0. The parameter
values chosenaret;, = 1,4, =1/3,M = 0.5, ¢f = —¢1f =0.5, ¢f« =
—0.9,¢/ =0.6,y. = 1,7/ =20, 7" = 120, and 7 = 140.

Defining the operators A;u) = Epiu)/N, where the operator
E projects the density matrix into the single-particle subspace

and NV = \/ 2Tr[,012(u)] — Tr[pi]? is a normalization constant,

the time-dependent Chern number of each layer can then be
defined as

. i ) OAa)(t) A (1)
Cl(u)(t) - o de kTr<Al(”)(t)|: 8k, ’ akj :|>
@)

It is straightforward to check that the time-dependent Chern
number defined above reduces to the exact Chern number
of the individual layers defined in Eq. (4) when pjqu) =
|81y (k)) (g1 (k)|, where |g;,)(k)) is the ground state of the
lower (upper) layer corresponding to the momentum mode k.
We assume this to be true at 7 = 0, such that Cy(,)(0) = C},,).

For our demonstration, we assume the following parame-

ter values: 1y = 1,1, = 1/3, M = 0.5, ¢} = —¢/ = 0.5, ¢ =

-1.0
-1.5

-2.0

—0.9, ¢{: = 0.6, Y. = 1. One can verify that this choice of
parameters leads to C{ = —C! = 1and C/ = —C] = —1. The
desired exchange of the Chern numbers between the layers is
achieved when the following two conditions are satisfied: (i)
the layers are rendered to pure states at the end of the process,
1e., O (t) = Tr[pl(u)(r)z] =1, and (ii) C‘Z(u)(r) = le(u). As
can be seen from Fig. 4, which shows the temporal evolution
of C’l(u) and Oy, the above conditions are indeed satisfied; the
Chern numbers of the layers are therefore exchanged within a
finite time t.

Finally, we would like to emphasize here that the protocol
presented above does not require the two layers to be con-
jugate pairs of each other, unlike the protocol presented in
Ref. [37]. In the example above, conjugacy would have been
maintained if ¢;(t) = —¢,(¢) for all ¢, which is clearly not the
case. In fact, any desired transformation from a given config-
uration of Chern numbers to a targeted one can be achieved as
long as the total Chern number remains the same throughout
the process. Thus, complete knowledge of the topological
phases of the bilayer system allows one to identify viable
adiabatic paths to tune the Chern number of the monolayers.

V. PHASE DIAGRAM FOR NONSTAGGERED
INTERACTION

As discussed in Sec. II, the advantage of choosing a stag-
gered interaction between the layers is that the band gap
can vanish only at the Dirac points, which permits a sim-
pler analysis. However, as shown in Fig. 5, the topological
structure of the bilayer Haldane system can appear for other
forms of interactions as well. Figure 5(a) shows the phase
diagram for an interaction of the form I' = y I, where I is
the 2 x 2 identity matrix. One can identify topological phases
with Gy, = 0, £1, £2 qualitatively similar to those found in
the case of a staggered interaction [compare with Fig. 2(c)].
The same also holds true for an interaction of the form I' =
¥ Ty, as shown in Fig. 5(b). Thus, the topological structure of
the bilayer Haldane model is a general feature, irrespective
of the exact form of the interaction between the layers. For
reference, we have also presented the phase diagram in the
case of decoupled layers with y = 0 in Fig. 2(b).

-1.0
-15

-2.0

FIG. 5. Phase diagram in the ¢, — ¢, plane for (a) I' = yI and (b) I' = y 7. In all cases, one can identify distinct topological phases with

Cor = 0, £1, £2.
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VI. SUMMARY AND OUTLOOK

Summarizing, we have shown that a bilayer composite of
two coupled Haldane systems possesses a robust topologi-
cal structure exhibiting bulk-boundary correspondences. The
topologically protected edge states can either be confined to
individual layers or diffused across the edges of the layers,
depending on the exact value of the bulk Chern number. Fur-
ther, we have also explicitly demonstrated that by dynamically
breaking and eventually restoring the U(1) x U(1) subgroup
of the complete U(2) gauge symmetry in a bilayer Chern
system, it becomes experimentally viable to realize adiabatic
tuning of the Chern phases of the individual layers even in the
thermodynamic limit; the required protocol for the same is
easily identified through careful inspection of the topological
landscape of the bilayer system. Interestingly, the opening of
a gap in the spectrum due to the coupling between the two
layers can be thought to be equivalent to a counterdiabatic
process [38] suppressing diabatic excitations in the thermody-
namic limit. In this regard, optimizing the possible adiabatic
pathways to facilitate quicker preparation of nontrivial Chern
states can be an interesting problem for future investigations.
Moreover, the results presented in this work are not strictly
restricted to a bilayer Haldane system and can easily be gen-
eralized to any two-dimensional Chern insulating system.

We note in passing that the unitary protocol presented in
our work can be analogously compared to the adiabatic tuning
of symmetry-protected-topological phases in one-dimensional
systems. There, it has been shown [39] that adiabaticity can
be maintained throughout if any protecting discrete symmetry
(time reversal, charge conjugation, or chiral) is broken during
the tuning process.

A future direction of study might be to look into the
possible topological classifications of twisted bilayer systems
and the robustness of the adiabatic protocol discussed in
this work in such systems. Further, it may be worthwhile
to investigate the topological transitions in more than two
connected layers of Haldane-like systems. For example, an
immediate generalization of our results can be made for a
system with N such layers with finite interlayer couplings, in
which case the total Chern number C;,;, € [—N, N] of all the
layers in the ground state becomes invariant under arbitrary
unitary dynamics. It then follows that for a fixed N, there exist
2N + 1 distinct topological sectors of the complete system
characterized by the total Chern number, which cannot be adi-
abatically connected to each other. However, each such sector
comprises several topologically distinct configurations of the
individual layers in the decoupled limit. Hence, like in the
bilayer system, it may then be possible to dynamically induce
adiabatic transitions (by introducing finite coupling between
the layers) between these multiple topological configurations
of the individual layers adding up to the same C;,, even in
thermodynamically large systems.
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APPENDIX A: HALDANE MODEL

The Haldane model [4] is an integrable two-dimensional
model of spinless electrons. It is based on the graphene honey-
comb lattice [Fig. 1(b) of the main text] with broken sublattice
symmetry (SLS) and time-reversal symmetry (TRS). The
Hamiltonian is given by

¥ ihij g
H=u Z CiaCjp + 12 Z e"b-’(cichA + cipCip)
i,j=NN i,j=NNN

+M Y (clyein — clpeig) + He., (A1)

where A and B identify the two sublattices of the honeycomb
lattice and #, and ¢, are the amplitudes of the nearest-neighbor
(NN) and next-nearest-neighbor (NNN) hoppings, respec-
tively (see Fig. 6). The TRS is broken by the complex NNN
hoppings, the arguments of which, ¢;; = £¢, are chosen to
be positive (negative) for hoppings in the clockwise (anti-
clockwise) sense. The SLS, on the other hand, is broken by
both the complex hoppings and the Semenoff mass M. Within
the bulk, we can assume periodic boundary conditions. The
Hamiltonian then decouples for each lattice momentum mode
within the Brillouin zone (BZ), H = @, ¢jH (k)c,, where
¢k = (ck.a, ckB). The single-particle Hamiltonian H (k) as-
sumes the Bloch form,

H(k) =d(k) - o+ dy(k)I, (A2)

FIG. 6. Schematic representation of the nearest-neighbor and
next-nearest-neighbor couplings in the monolayer Haldane model.
From Dobardzic et al. [40].
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where ¢ = (o4, 0y, 0;) are the Pauli matrices, I is the 2 x 2
identity matrix, and

d.(k) = ti[cos (k - e1) + cos (k- er) + cos (k - e3)], (A3a)
dy(k) = ti[sin(k -e;) +sin(k - e2) +sin (k - e3)], (A3b)
d,(k) = M — 2t; sin ¢[sin (k - v{) + sin (k - v3)

+ sin (k - v3)], (A3c)
do(k) = —2t, cos ¢[cos (k - v) + cos (k - vy)

+ cos (k - v3)]. (A3d)

Here, for a given lattice site, the vectors {e;} and {v;} (i =
1,2, 3) are the locations of the NN and NNN sites, respec-
tively. The component dy(k) has been ignored in the bilayer
Haldane model discussed in the main text as it renormalizes
only the energy levels of each lattice momentum mode and
does not affect the topological properties of the system. The
energy spectrum is thus given by

E =% Jd (kP + dy(k) + d. (k2. (A4)

The topological phases of the Haldane model are charac-
terized by a topological order parameter, namely, the Chern
number C, which takes on only integer quantized values.
When C = 0, the system exists in a trivial phase and behaves
as a normal insulator, while for C = %1, chiral edge states
arise which are topologically protected and hence robust,
while the bulk of the system remains insulating. The phases
are separated from one another by the critical lines, at which
the band gap vanishes. Note that when M =1, = 0,1 = 1, the
Hamiltonian reduces to that of the gapless graphene Hamilto-
nian with no topological properties.

APPENDIX B: CHERN NUMBER OF MULTIPLE
OCCUPIED BAND SYSTEMS

In general, for an N-band system with completely filled
N/2 bands (half filling), the Berry connection is given by an
N/2 x N/2 matrix of the form

A = i (n(k)| Vi Im(k)) , B

where n,m = 1,2, ..., N/2 label the energy eigenstates cor-
responding to the filled energy bands. The tensor form arises
due to the fact that multiple filled bands become indistinguish-
able at degenerate points, and the individual Chern numbers
fail to remain quantized. Unlike a single filled band, the
generic gauge invariance of the quantum state is no longer
U(1). In the case of the bilayer Haldane system, where N = 4,
a generic gauge transformation in the larger filled subspace (of
two bands) takes the form

Uy = Wlh, (B2)

where Wy = (|¢) |p2)) is a spinor comprising the two occu-
pied states, |¢) and |¢g), and Uy is an arbitrary U(2) matrix.
Importantly, the gauge group U(2) is not Abelian, and hence,
one needs to define a non-Abelian connection for parallel
transport of the spinors in this space.

The non-Abelian curvature form F,, is given by

y 3 .9 o
Foak) = —A) — —A" —i[A", A'],

B3
oki ok 3)

where i, j denote the components of the vectors along the unit
vectors of the reciprocal lattice. The Chern number character-
izing the topological phase of the system is then calculated as
follows [31]:

1

C J—

=5 /. (B4)

A’k Te[F ().
74
A convenient form of the Chern number can be derived from
the above equation in terms of the projection operator P on
the ground state manifold of the completely filled bands [32],

C=— dszr<P|:E, ﬁD
2 BZ 8/{, ok j

where P = Zivfl |n(k)) (n(k)|. For N =2, we recover the
commonly used definition of the Chern number, which char-
acterizes the topological phases of two-band Chern insulators.
Further, if all the occupied bands are gapped among them-
selves, C is equivalent to the sum of the Chern numbers of
the occupied bands. On the contrary, if any degeneracy arises
among the occupied bands, the Chern numbers of the indi-
vidual bands no longer remain well defined. The total Chern
number, as defined in Eq. (B5), however, remains integer
quantized as long as the gap between the occupied and empty
bands remains finite.

(B5)

APPENDIX C: INVERSE PARTICIPATION RATIOS OF THE
ENERGY EIGENSTATES FOR SEMIOPEN BOUNDARY
CONDITIONS

We consider the semi-infinite bilayer Haldane system with
armchair edges discussed in the main text. The inverse par-
ticipation ratio (IPR) of an energy eigenstate v, is defined as

4

PRV = D (|l + > [ms )]s €D

mp,s my,s

where my(,) is the strip index for the lower (upper) layer and
s is the sublattice index. If a given eigenstate is extended
in real space, one can roughly assume |(mf(u)|¢,1)|2 ~ 1/2M,
where M is the total number of horizontal strips. The IPR
for extended states thus diminishes with increasing M and
vanishes in the thermodynamic limit. On the other hand, for
localized states, the IPR remains finite with increasing M.

In Fig. 7(a), we plot the IPR of all energy eigenstates
when C;,, = 1 with M = 40. It is clearly seen that the IPR is
significantly higher for a pair of eigenstates, confirming that
a pair of localized edge states exists, only one of which is
occupied in the ground state of the system. Similarly, Fig. 7(b)
shows the presence of four localized states when C;,; = 2, two
of which are occupied in the ground state. Hence, a one-to-one
correspondence exists between the number of occupied edge
states and the total Chern number.

APPENDIX D: CHERN NUMBER FROM THE
TWO-PARTICLE GROUND STATE

As the two negative energy bands are completely filled
at half filling and the total particle number is conserved,
the ground state of the bilayer system resides in the two-
particle Hilbert space. Within this restricted Hilbert space,
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0.10¢ 1 o012}
0.08f 1 0.10} :
x 0.06} § o 008f 1
a % 0.06} ;
0.04} s
0.04}
0.02F 1 0.02f ]
0.00 0.00
energy eigenvalues energy eigenvalues

(a) (b)

FIG. 7. Inverse participation ratio values for all energy eigenstates in a semifinite bilayer Haldane model for (a) C;,, = 1 and (b) C,,, = 2.
The IPR values identify two (one occupied) and four (two occupied) localized edge states in (a) and (b), respectively.

two out of the four single-particle states are occupied cchkA|0) CleckB 10), c}f ACkB |0)}, where |0) represents
for each lattice momentum k. The ba51s states can thus  the zero-particle vacuum state. The two-particle Hamiltonian

be constructed as {Ck Ack g 10), c:('A Cia 10D Ci(TACk 510).  in this basis is given by
|
0 0 -y -y 0 0
0 dzl(k) +di(k) d.(k)—id,(k) d.(k)—id,(k) 0 0
Hk) = -y di(k)+idy(k) dé(k) —d} (k) 0 de(k) —idy(k) vy ®1)
B dy(k) + id, (k) 0 —d!(k)+d'(k) d.(k)—idy(k) y
0 0 di(k) +idy(k)  d.(k)+ id,(k) —dzl(k) —dik) O
0 0 y y 0 0

The two-particle energy bands can be obtained by diagonalizing the above Hamiltonian. The Chern number can then be
calculated by integrating the (Abelian) Berry curvature of the lowest energy band over the BZ. The two-particle Chern number
G, thus calculated is, in fact, equivalent to the total Chern number described in the main text. To see this explicitly, we write
the two-particle ground state as |{) = Q@ | (k)) = ® |1 (k)) |p2(k)), where |¢(k)) and |p,(k)) are the negative-energy single-
particle states. The Berry connection is found to be

A(k) =i (Y )| Vi [y (k) = i {1 (k)| Vi [¢1(K)) + i (h2(k)| Vi [p2(k)) = A1 (k) + A (K), (D2)

and the Berry curvature is obtained as

Fk) = 9 Al - 9 — A 9 — Al — 9 — Al (D3)
dk; dk; nt gt ak;
The two-particle Chern number is then calculated as
1
Cp=— | d*Fk). (D4)
27 Jpz

On the other hand, the non-Abelian Berry curvature is given by [see Eq. (6) of the main text]

I B o
Fulk) = —A) — — A" —[A], AT]. D5
(k) ok ok, if ] (D5)

It is straightforward to check that Tr[A’, A/] = 0 and thus

d J0 0
— A} + AL — ——AS = F k), (D6)

9
Te[F, (k)] = — Al —
a0l = oA ok, ok ok,

ak;

where F' (k) is the (Abelian) Berry curvature in Eq. (D3). Hence, the Chern number is found to be

1
Cw = — | d*kTr[Fu(k)] = Csp. (D7)
27'[ BZ
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