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Transmission of waves through a pinned elastic medium
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We investigate the scattering of elastic waves off a disordered region described by a one-dimensional random-
phase sine-Gordon model. The collective pinning results in an effective static disorder potential with universal
and non-Gaussian correlations, acting on propagating waves. We find signatures of the correlations in the wave
transmission in a wide frequency range, which covers both the weak and strong localization regimes. Our theory
elucidates the dynamics of collectively pinned phases occurring in any natural or synthetic elastic medium. The
latter one is exemplified by a one-dimensional array of Josephson junctions, for which we specify our results.
The obtained results provide benchmarks for the array-enabled quantum simulations addressing the dynamics in
broader and as yet unexplored domains of individual pinning and quantum Bose glass.

DOI: 10.1103/PhysRevB.103.224211

I. INTRODUCTION

The interplay of elasticity and disorder has attracted a wide
interest because of its relevance to describe a large variety
of physical systems, both classical (superconducting vortex
lattice [1], ferroelectric and magnetic domain wall [2], charge
density wave [3,4]) and quantum (Bose glass [5,6], Wigner
crystals [7,8]). It has been realized that a weak disorder po-
tential destroys long-range order in any dimension D < 4
due to the collective pinning mechanism first described by
Larkin in the 1970s [1]. Since then, many technical tools have
been developed to treat the correlation functions in disordered
elastic media both in space [9] and time [10], and use them to
unveil a glassy behavior in the melting and creep of the charge
density or to discuss the bulk electromagnetic absorption; see
Ref. [11] for a review. Nevertheless, the interplay of elasticity
and disorder remains a difficult optimization problem, with
many remaining open questions both for static and dynamic
properties.

Applied to the charge density waves’ propagation, the clas-
sical dynamics can be analyzed by considering the properties
of small oscillations on top of a static charge density [3].
In the weak pinning theory, the static charge density deter-
mines a correlated, non-Gaussian disorder potential in the
wave equation for plasmons. A one-dimensional (1D) nature
of the system allows for most comprehensive analytical and
numerical studies. So far, both the spatially averaged [4,12–
17] and local [18] plasmon density of states in a 1D array
have been computed. The novelty of our work is to consider
the plasmon transmission across a disordered region of a finite
length. This is the standard quantity for revealing the localiza-
tion properties of the disorder [19–21]. We find signatures of
the collective pinning in a wide frequency range that extends
from the Anderson localization limit at large frequencies to
the limit of strong localization at low frequencies.

In the collective pinning regime, the Larkin length is the
natural length scale for the correlation of the static disorder
induced in the pinned medium [1,2,4]. We find that the univer-
sality in the static correlation gives rise to universality of the
finite-frequency wave scattering by the pinned medium. While
the scattering properties are universal, they differ from those
for a Gaussian white-noise disorder. The differences are most
prominent both in the limits of almost-ballistic propagation
and of strongly localized regime.

At sufficiently high frequencies, i.e., when the frequency-
dependent mean free path exceeds the length of the system,
the differences are encoded in the forward-scattering am-
plitude. This amplitude is sensitive to the static disorder
correlations, in spite of the wavelength being shorter than the
Larkin length.

At low frequencies, corresponding to wavelengths larger
than the Larkin length, we focus on the disorder-averaged
transmission coefficient 〈T 〉 and its logarithm (commonly
referred to as the Lyapunov exponent). Previously these two
characteristics, 〈T 〉 and 〈ln T 〉, were studied extensively for a
Gaussian white-noise disorder. It was realized that T exhibits
giant mesoscopic fluctuations, while ln T is a self-averaging
quantity: The variance of its distribution function is inversely
proportional to the system’s length. The transmission T is
not a self-averaging quantity, which is manifested in a small
value of ln〈T 〉/〈ln T 〉 < 1. We find that the correlations in
the pinned medium suppress the fluctuations. Namely, corre-
lations reduce the variance of the ln T distribution function.
Moreover, the transmission T remains a non-self-averaging
quantity: The ratio ln〈T 〉/〈ln T 〉 ≈ 0.90 remains smaller, but
quite close to 1. We infer that the pinning-induced correla-
tions suppress the difference between the optimal and typical
disorder configurations, which determine ln〈T 〉 and 〈ln T 〉,
respectively.
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We find the transmission amplitude in a broad range
of frequencies covering all the said regimes. We pro-
pose that this physics can be probed in long Josephson-
junction arrays [22–25] by measuring their microwave
impedance [18,26]. A combined effect of phase slips and
disorder in these arrays may drive a transition into a “glassy”
insulating state, which retains short-range superfluid correla-
tions [5], and hence called Bose glass [6]. In the classical limit
of a high impedance array, which is the focus of our work, the
static properties of the Bose glass lead to its universal dynamic
response. Our theory facilitates the use of Josephson-junction
arrays as a quantum simulation platform, allowing for the in-
vestigation of the Bose-glass phase and possibly observing the
glass-superfluid transition taking place at smaller impedance.

The rest of this article is organized as follows. In Sec. II, we
characterize the static correlation of the pinned medium and
we define the plasmon scattering problem within the random
phase sine-Gordon model. In Sec. III, we derive an analytical
formula for the transmission in the regime of weak disor-
der (large frequency) using the Fokker-Planck method; we
compare it with the numerical result. In Sec. IV, we discuss
our numerical results on the statistics of the transmission in
the strongly localized regime (small frequency). Finally, our
results are summarized in Sec. V.

II. MODEL

In this section, we introduce the 1D random phase sine-
Gordon model using, as an example, a Josephson-junction
array connected to waveguides at its ends. Then we formulate
the scattering problem for plasmons propagating through the
array in the classical limit. The numerics is used to find the
average and the second moment of the effective disorder po-
tential that appears in the linear wave equation for plasmons.

A. Lagrangian

The Lagrangian that describes the setup of Fig. 1 is a
1D random phase sine-Gordon model, which consists of two
terms,

L = Lfree + Lint. (1)

The harmonic term consists of the kinetic and elastic contri-
butions,

Lfree =
∫

dx
h̄

2πK (x)

[
1

v(x)
θ̇2 − v(x)(∂xθ )2

]
, (2)

where θ (x, t ) is a local field associated with the accumu-
lated charge and ∂xθ is the one-dimensional charge density.
It describes the propagation of waves in an inhomogeneous
medium with local plasmon velocity v(x) and local ad-
mittance (4e2/π h̄)K (x). In the waveguides (x < 0 or x >

d), v(x) = v0 and K (x) = K0; in the medium (0 < x <

d), v(x) = v and K (x) = K . Here d is the length of the
Josephson-junction array. The harmonic term can be used to
describe plasmons with wavelengths exceeding the screen-
ing length, �sc = a

√
C/Cg, where a is the unit cell length

in the array, and C and Cg are the junction and ground ca-
pacitances along the array (typically �sc � a). Furthermore,
the low-frequency impedance of the array is given by K =

FIG. 1. As an example of wave propagation through a disordered
elastic medium, we consider the microwave plasmon scattering by a
one-dimensional Josephson-junction array of length d . The Joseph-
son energy and capacitance of each junction along the array are EJ

and C, respectively; the ground capacitance of each superconduct-
ing island is Cg. In the presence of random background charges,
the Josephson-junction array realizes a random interacting medium.
Classically, an incident plasmon wave from one of the waveguides
contacted to the array is either reflected to the same waveguide or
transmitted to the opposite waveguide, with the respective ampli-
tudes r(ω) and t (ω) at frequency ω. The plasmon velocities in the
waveguides and the array are, respectively, v0 and v; the waveguide
and array impedances are, respectively, RQ/2K0 and RQ/2K , where
RQ = π h̄/2e2 is the resistance quantum.

π
√

EJ/8Eg with Eg = e2/2Cg, and the plasmon velocity is
v = a

√
8EJEg/h̄. Using the continuity of θ and (v/K )∂xθ at

an interface between the waveguides and the medium, we
find that the probabilities of the plasmon wave reflection and
transmission at that interface are determined by the impedance
mismatch,

R0 =
(

K − K0

K + K0

)2

, T0 = 4KK0

(K + K0)2
. (3)

The interaction term in Eq. (1),

Lint =
∫ d

0
dx � cos(2θ + χ ), (4)

describes the pinning of the charge density. At EJ � Ec,

� = 8Ec√
πa

(
2EJ

Ec

)3/4

e−√
8EJ/Ec , (5)

where Ec = e2/2C is the charging energy of a junction. The
random background charge introduces phase χ in the phase-
slip amplitude [27,28] due to the Aharonov-Casher effect; χ
is a random variable with a short range of correlations. In
the experiment, the timescale for the variations of the con-
figuration of background charges largely exceeds the relevant
timescale for plasmon propagation. Therefore, we will assume
the configuration to be static in all subsequent calculations. On
the other hand, the averaging time of an experiment may be
sufficiently long for the disorder averaging over different con-
figurations to be effectively realized on that timescale [18,24].

The characteristic Larkin length in the medium and the
corresponding energy scale are determined [1,11,18] by
the competition between the elastic and disorder terms in
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Eqs. (1), (2), and (4),

ξ =
(

h̄v

2πK�σ

)2/(3−2K )

and � = v

ξ
, (6)

respectively. Here we assumed the random background
charges to be characterized by vanishing averages,
〈cosχ (x)〉 = 〈sin χ (x)〉 = 0, and dispersion

σ 2 =
∫

dx〈cosχ (x) cosχ (0)〉 =
∫

dx〈sin χ (x) sin χ (0)〉.
(7)

The collective pinning regime corresponds to the condition
ξ � σ 2. The limit K � 1 in Eq. (6) corresponds to the classi-
cal pinning. In this limit, one may cross over from the regime
of the collective pinning to that of individual pinning by in-
creasing �. A finite K allows for quantum fluctuations [18,29]
favoring longer ξ at the same value of �. The divergence of
ξ at K = 3/2 marks the transition between the Bose glass and
the superfluid phase [5].

B. Scattering problem in the classical limit

To formulate the linear scattering problem in the classical
limit (K → 0 at a fixed K/h̄), i.e., deep in the Bose-glass
phase, we represent the field θ (x, t ) as the sum of a static part,
θ̄ (x), plus small oscillations around it,

θ (x, t ) = θ̄ (x) + ψ (x)e−iωt . (8)

The static field θ̄ minimizes the energy functional

E[θ ] =
∫ d

0
dx

[
h̄v

2πK
(∂xθ )2 − � cos(2θ + χ )

]
, (9)

with boundary conditions ∂xθ (0) = ∂xθ (d ) = 0 for the charge
density. The oscillatory component, ψ (x), takes the asymp-
totic form of a scattering state at frequency ω in the
waveguides,

ψ (x) =
{

eiωx/v0 + r(ω)e−iωx/v0 , x < 0,
t (ω)eiω(x−d )/v0 , x > d.

(10)

Here r(ω) and t (ω) are the (elastic) reflection and transmis-
sion amplitudes, respectively. The wave function ψ (x) solves
the wave (Schrödinger-like) equation [30]

ω2ψ (x) = −v2∂2
x ψ (x) + V (x)ψ (x), (11)

with the effective disorder potential

V (x) = (4πKv�/h̄) cos [2θ̄ (x) + χ (x)] (12)

in the medium, together with boundary conditions

1 + r(ω) = ψ (0), (13a)

iωK/K0(1 − r(ω)) = v∂xψ (0), (13b)

t (ω) = ψ (d ), (13c)

iωK/K0t (ω) = v∂xψ (d ), (13d)

which result from matching the solution ψ (x) at x = 0 and
x = d; cf. Eq. (10).

The scattering properties obtained by the solution
of Eqs. (10)–(12), with θ̄ defined by minimization of
Eq. (9), depend on the frequency, medium’s length, and

FIG. 2. The smooth part of the second-order correlation function
of the effective disorder potential at d/ξ = 20. The green and red
lines are the numerically obtained curves for the random “phase”
and “box” models (see Appendix A), respectively; they cannot be
distinguished from each other. The dashed lines represent the fit-
ting functions −w(x) = −ce−|x|/a (c = 3.24, a = 0.346). The inset
shows the third-order cumulant at noncoinciding points.

impedance mismatch. Remarkably, we found numerically (see
Appendix A for details) that the results at any frequency ω

depend on the disorder only through the dispersion σ defined
in Eq. (7), under the assumption of short-range correlations
(this finding is in correspondence with the central limit the-
orem). Thus, the results for the transmission and reflection
amplitudes are universal once the length d and frequency ω

are expressed in units of ξ and � = v/ξ ; see Eq. (6).

C. Effective disorder potential

The effective potential (12) depends on the solution θ̄ (x)
of a nontrivial optimization problem defined by the func-
tional (9). It is thus expected to have a complex pattern
of non-Gaussian correlations of which, to the best of our
knowledge, little is known. The reality condition of the eigen-
spectrum of the wave Eq. (11) means that the local potential
has a well-defined sign and, hence, a positive mean value,
〈V (x)〉 > 0. The potential V inherits a finite correlation length
ξ from θ , despite the underlying disorder χ (x) being a short-
ranged one. We characterize the spatial correlations in V (x)
by considering its second cumulant and expressing it in the
form

〈〈V (x)V (y)〉〉 ≡ 〈(V (x) − 〈V〉)(V (y) − 〈V〉)〉

= �4

[
4δ

(
x − y

ξ

)
− w

(
x − y

ξ

)]
. (14)

Here, the introduced function w(x) is smooth and decays at
large scales. We find w(x/ξ ) numerically; see Fig. 2 and
Appendix A. We note that the random potential V (x) is non-
Gaussian; its third-order cumulant is shown in the inset of
Fig. 2. The Fourier component of 〈〈V (x)V (0)〉〉 at small mo-
mentum (on the scale of 1/ξ ) is reduced by a factor 1 − η with
η = 1/4

∫
dyw(y) ≈ 0.561 compared to its large-momentum

value, which is determined by the first term in the right-hand
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side of Eq. (14). The property η 
= 0 is the consequence of the
collective pinning mechanism. In the large-frequency range
of interest in Sec. III, η is the only parameter needed to
predict the statistics of the scattering amplitudes. On the other
hand, we illustrate in Sec. IV that the signature properties of
the reflection and transmission amplitudes at low frequencies
cannot be accounted for by a colored Gaussian disorder that
would have the same average and second moment as the effec-
tive disorder potential. Therefore, we attribute these properties
to the non-Gaussianity of the potential V (x) induced by
pinning.

III. WEAKLY LOCALIZED REGIME (HIGH FREQUENCY)

In this section, we derive an analytical formula for the
transmission probability in the regime of high frequency, in
which disorder can be treated perturbatively; we also compare
it with the results of numerical calculations.

A. Mapping to the Dirac equation

We first show that, at large frequency, the wave Eq. (11) is
equivalent to a Dirac equation in Gaussian random fields. For
this, we introduce two functions, R(x) and L(x), such that

ψ (x) = R(x) + L(x), (15a)

∂xψ (x) = i
ω

v
[R(x) − L(x)]. (15b)

Using ∂xψ (x) = ∂xR(x) + ∂xL(x) and Eq. (11), we deduce

ωR(x) = −iv∂xR(x) + V (x)

2ω
[R(x) + L(x)], (16a)

ωL(x) = iv∂xL(x) + V (x)

2ω
[R(x) + L(x)]. (16b)

Functions R(x) and L(x) have the meaning, respectively, of
the right- and left-moving components of the wave function.
The terms ∝V (x) in Eqs. (16) result in scattering between the
components. In the weak-disorder regime, only the forward-
and back-scattering amplitudes evaluated in the Born approx-
imation determine the scattering properties of the medium. At
ω � �, these amplitudes are associated with the harmonics of
the random potential near momenta k = 0 and k = 2ω/v �
1/ξ , respectively. That allows us to approximate

V (x)

2ω
≈ �0(x) + �(x)e2iωx/v + �∗(x)e−2iωx/v, (17)

where �0(x) and �(x) are slowly varying random functions
(on the scale of v/ω). We find that the slow components of
Eq. (16) yield a Dirac equation,

[−iv∂xτ3 + �0(x) + �1(x)τ1 + �2(x)τ2]�(x) = 0, (18)

with �(x) = [R(x)e−iω(x−d )/v,L(x)eiω(x−d )/v]T , �(x) =
�1(x) + i�2(x) with real fields �1(x) and �2(x), and Pauli
matrices τ1,2,3. Using Eq. (14), the Born approximation
applied to scattering off a potential given by Eq. (17) yields
the forward- and back-scattering lengths,

�0(ω) = �π (ω)/(1 − η) and �π (ω) = ξ (ω/�)2, (19)

respectively. Thus, the correlation between the random back-
ground charge and the static charge ∝∂x θ̄ induced by it

tends to weaken the forward-scattering rate and introduces a
(quantitative) difference between �0 and �π . As �0, �π � ξ

in the considered high-frequency regime, the random fields in
Eq. (18) may be viewed as Gaussian ones, due to the sampling
over a large number of correlated regions, each of which
having a length scale ∼ξ . The needed two Fourier components
of the correlation function of V are reproduced by the Fourier
components of the respective correlation functions

〈�0(x)�0(y)〉 = �4

ω2
(1 − η)δ

(
x − y

ξ

)
, (20a)

〈�(x)�∗(y)〉 = �4

ω2
δ

(
x − y

ξ

)
. (20b)

Both fields �0 and � induce a random phase be-
tween right- and left-movers. The contribution from �0 to
the phase acquired over a distance x is readily obtained,
(2/v)

∫ x
0 dy�0(y); its variance grows as 4x/�0. As we will see

below, the additional contribution from � is 2x/�π ; it only
quantitatively modifies the result. Phase scrambling occurs in
a medium of length d � �0, �π . Using Eq. (19), this condition
is equivalent to a small frequency condition, ω � ωcr with
crossover frequency ωcr = �

√
d/ξ � �. Reference [18] ad-

dressed the role of ωcr in the visibility of oscillations in
the reflection amplitude. Below we find a similar effect in
the frequency dependence of the transmission coefficient; see
Sec. III B 3.

In addition, � is responsible for the plasmons localization,
due to the waves’ back-scattering it generates.

B. Fokker-Planck formalism

To proceed further, we rely on the Fokker-Planck formal-
ism that was developed to predict the statistics of scattering
properties of waves subject to Gaussian white-noise disorder.
The previously known results [19,31–34] assume a perfect
impedance matching. Below we generalize them to the case
of a finite impedance mismatch.

For a scattering state, the wave functions in the waveguides
and the medium are related through(

R(0)
r(ω)

)
= S0

(
1

L(0)

)
,

(
t (ω)
L(d )

)
= ST

0

(
R(d )

0

)
. (21)

Here a phase factor e−iωd/v was absorbed in t (ω) and we
introduced the scattering matrix at each interface,

S0 =
(

t0 r0

−r0 t0

)
, (22)

with r0 = √
R0 and t0 = √

T0; see Eq. (3) [35]. This allows us
to relate the scattering amplitudes with the Ricatti variable,

z(x) = [L(x)/R(x)]e2iω(x−d )/v, (23)

at the ends of the medium,

r(ω) = −r0 + z(0)e2iωd/v

1 − r0z(0)e2iωd/v
with z(d ) = r0. (24)

Interestingly, the Ricatti variables that appear in Eq. (24) are
related through a first-order nonlinear stochastic differential
equation derived from Eq. (18),

−iv∂xz(x) = 2�0(x)z(x) + �∗(x) + �(x)z2(x). (25)
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Thus, r(ω) and, subsequently, the transmission probability
T (ω) = 1 − |r(ω)|2 are expressed in terms of a solution of
Eq. (25) with a given boundary condition.

Taking advantage of the Gaussian correlators (20), we
derive the Fokker-Planck equation for the conditional dis-
tribution probability P(x, θ1, θ2), where we introduced the
decomposition of the Ricatti variable into its amplitude and
phase, z = eiθ1 e−θ2 (θ2 � 0, such that |r(ω)| � 1 [19]). It
reads

−∂P

∂x
= 2

�

∂2P

∂θ2
1

+ 1

�π

∂2

∂θ2
2

(sinh2 θ2P), 0 < x < d, (26)

with

�(ω) =
(

1

�0(ω)
+ 1

2�π (ω)

)−1

= 2

3 − 2η
�π (ω) (27)

(see Appendix B for the derivation). The solution of Eq. (26)
is separable, P(x, θ1, θ2) = P1(x, θ1)P2(x, θ2); each factor
satisfies

−∂P1

∂x
= 2

�

∂2P1

∂θ2
1

, (28a)

−∂P2

∂x
= 1

�π

∂2

∂θ2
2

(sinh2 θ2P2), (28b)

with initial conditions P1(d, θ1) = δ(θ1) and P2(d, θ2) =
δ(θ2 − θ0) with θ0 = − ln r0. Note that the statistics of θ2 is
only sensitive to back-scattering, thus reflecting the medium’s
localization properties; it is insensitive to Larkin’s physics. By
contrast, the statistics of θ1, which describes the random phase
between right- and left-movers, depends both on forward- and
back-scattering; as η 
= 0, it is sensitive to Larkin’s physics.

Equation (28a) is a standard diffusion equation. Its solution
at x = 0 is

P1(θ1) ≡ P1(0, θ1) = 1√
8πd/�

exp

(
− θ2

1

8d/�

)
; (29)

the variance 〈θ2
1 〉 = 4d/�0 + 2d/�π includes the contribution

from �0 discussed in Sec. III A, plus the contribution from
�, which has the same order of magnitude. The solution of
Eq. (28b) can also be obtained,

P2(θ2) ≡ P2(0, θ2)

= e−d/4�π

4 sinh2 θ2

∫ ∞

0
dkk tanh

πk

2
P− 1

2 +i k
2
(coth θ2)

× P− 1
2 +i k

2
(coth θ0)e−k2d/4�π , (30)

where P− 1
2 +i k

2
is the Legendre function of the first kind (see

Appendix C for the derivation). The ensemble-averaged trans-
mission is then given as

〈T 〉 =
∫

dθ1

∫
dθ2 P1(θ1)P2(θ2)T (θ1, θ2), (31)

where

T (θ1, θ2) = T0
1 − e−2θ2

1 + r2
0e−2θ2 − 2r0 sin(2ωd/v + θ1)e−θ2

(32)

is obtained by inserting z(0) = eiθ1−θ2 into Eq. (24) and using
T = 1 − |r|2. Using the above equations, below we obtain
simpler formulas in various cases.

1. Perfect impedance matching, T0 = 1

At T0 = 1, Eq. (32) simplifies, T (θ1, θ2) = 1 − e−2θ2 , such
that the statistics of θ2 fully determines the transmission coef-
ficient. We use Pν (1) = 1 and

∫ ∞
1 dxP−1/2+ik/2(x)/(1 + x) =

π/cosh(kπ/2) (Eq. (7.131.1) in Ref. [36]) to find

〈T 〉 =
∫ ∞

0
dk

πk

2

tanh(πk/2)

cosh(πk/2)
e−(1+k2 )d/4�π . (33)

At d � �π , 〈T 〉 ≈ 1 as expected for a ballistic junction. At
d � �π , the ensemble-averaged transmission coefficient is

〈T 〉 ≈ π5/2

2

(
�π

d

)3/2

e−d/4�π , (34)

in agreement with Ref. [31]. This results was rediscovered in
Refs. [32,33]. The multichannel generalization was performed
in Ref. [34]. Notably, the frequency dependence of 〈T 〉 is
smooth (no oscillation) and fully captured by �π (ω).

2. Asymptote at d � �(ω) and arbitrary T0

The sine term in Eq. (32) produces Fabry-Pérot oscilla-
tions of the transmission, with period πv/d , provided that the
impedance mismatch is finite. At d � �(ω), the dispersion of
θ1 given by Eq. (29) washes out the oscillations on average.
In that regime, θ1 can be taken as uniformly distributed, and
Eq. (31) simplifies to

〈T 〉 =
∫

dθ2P2(θ2)T (θ2), T (θ2) = T0(1 − e−2θ2 )

1 − R0e−2θ2
. (35)

At T0 = 1, the result reproduces Eq. (33).
Returning to an arbitrary T0, we use Eq. (35) with P2(θ2) of

Eq. (30). At d � �π , the k integral in Eq. (30) is dominated
by the region k � 1, so that we can replace

P−1/2+ik/2(x) ≈ P−1/2(x) = 2
√

2

π
√

x+1
K

(
x − 1

x + 1

)
(36)

with complete elliptic integral K(m) = ∫ π/2
0 dφ/√

1 − m sin2 φ, and perform the k integral explicitly. Then,
the dependences on the length and the barriers’ transmission
decouple, and we get

〈T 〉 = π5/2

2

(
�π

d

)3/2

e−d/4�π f (T0) (37)

with f (T0) = (4T0/π
2)K2(1 − T0); see Fig. 3. In particular,

f (T0 = 1) = 1, reproducing Eq. (34), while

f (T0 � 1) ≈ T0

π2
ln2

(
16

T0

)
. (38)

Note that, as in Eq. (34), the ω dependence of the pre-
exponential factor in Eq. (37) comes only via �π . The ω

dependence of the transmission is again smooth in this regime.
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FIG. 3. Graph of f (T0 ) = (4T0/π
2)K2(1 − T0) (plain line) and

its asymptote, Eq. (38), at T0 � 1 (dashed line).

3. Asymptote at d � �(ω) and T0 � 1

At finite impedance mismatch and d � �, T0 
= 0, Fabry-
Pérot oscillations do exist. If in addition the mismatch is large,
T0 � 1, we may use the initial value for the θ2 distribution,
P2(θ2) ≈ δ(θ2 − T0/2) to find

〈T 〉 =
∑

n

∫
dθ1

T 2
0

T 2
0 + [2(ω − ωn)d/v + θ1]2 P1(θ1) (39)

with P1 of Eq. (29). Here ωn = nπv/d are the frequencies
at which the transmission has local maxima. Equation (39)
describes how, upon lowering ω, the oscillations’ Lorentzian
line shapes with half-width T0v/2d (determined solely by
the impedance mismatch) evolve into Gaussian line shapes
with half-width v

√
2 ln 2/d� determined by the medium ran-

domness. The crossover frequency, which is reached when
T0 ∼ √

d/�(ω), is ωcr/T0. Remarkably, in the frequency range
ωcr � ω � ωcr/T0 the width of the oscillations is sensi-
tive to η [cf. Eq. (27)] and, henceforth, to the collective
pinning.

C. Discussion

The brute-force numerics is compared with the predictions
from the Fokker-Planck formalism in Fig. 4. In that figure,
Eq. (33) is used at perfect impedance matching, while we use

〈T 〉 = 2πT0

∑
n

P1

(
2ωnd

v

) ∫
dθ2

2θ2

2θ2 + T0
P2(θ2), (40)

valid in the frequency range � � ω � ωcr/T0, at T0 � 1; see
Figs. 4(a) and 4(b) respectively.

The localization properties of a disordered 1D medium are
frequently characterized by its Lyapunov exponent, γ (ω) =
−(2d )−1ln T (ω) at large d . In contrast with the transmis-
sion, its logarithm is indeed a self-averaging quantity [19]. In
Fig. 5(a), we show the frequency dependence of the averaged
Lyapunov exponent, 〈γ (ω)〉, at fixed medium’s length. Its in-
verse defines the localization length, Lloc(ω) = 1/〈γ (ω)〉. We
checked numerically that a celebrated Thouless relation [37],
Lloc(ω) = 2�π (ω), works at large frequencies, ω � �, and
perfect impedance matching. The self-averaging nature of γ

(a)

(b)

FIG. 4. Frequency dependence of 〈T (ω)〉 for (a) K/K0 = 1.0 and
(b) K/K0 = 0.01 and d/ξ = 20. The green dots are the numerics; the
dashed line is Eq. (33) in panel (a) and Eq. (40) in panel (b).

is associated with the log-normal character of the distribution
of the transmission. The frequency dependence of the ratio
�(ω) = d 〈〈γ 2(ω)〉〉 / 〈γ (ω)〉 is plotted in Fig. 5(b). Accord-
ing to the Fokker-Planck formalism [19], that ratio should
be 1 at � � ω � ωcr. Despite the tendency as d increases,
the agreement is not perfect. (We attribute it to insufficient
length). There was a renewed interest in �(ω) [39–42] to
test the single-parameter scaling hypothesis of the theory of
localization [43].

The presence of the factor 1/4 in the argument of the expo-
nent in Eq. (34) or (37) reflects that the averaged transmission
is dominated by rare, optimal disorder configurations—not
captured by the log-normal distribution (tails), and which pro-
duce a resonant transmission T ∼ 1 [44–46]. In other words,
〈T 〉 � Ttyp where Ttyp = exp(〈ln T 〉) is the typical transmis-
sion. To check this effect, in Fig. 6 we plot the frequency
dependence of ln〈T (ω)〉/〈ln T (ω)〉 for various lengths and
K = K0. (We attribute to insufficient length the deviation of
that ratio from 1/4 at ω � �).

For completeness, we compare the effect disorder has on
the waves’ transmission with that it has on their reflection.
We may use Eq. (24) and the flat distribution of θ1 mentioned
above Eq. (35) to find that the real part of the reflection
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(a)

(b)

FIG. 5. (a) The average of the Lyapunov exponent and (b) its
variance as a function of frequency for different lengths d/ξ =
20, 40, 80, 160 and K/K0 = 1.0. The frequency range covers the
regimes of weak and strong plasmon localization, ω � � and ω �
�, respectively. Arrows indicate the crossover frequency to the bal-
listic regime, ωcr = �

√
d/ξ , for each length. The inset is an enlarged

view of the low (a) and intermediate (b) frequency regions. The
dotted lines in panels (a) and (b) show the result of the Gaussian
white-noise potential at d → ∞ for comparison. As d increases,
the Lyapunov exponent approaches a constant value. At ω � �,
the average of the Lyapunov exponents in the two models coincide,
in agreement with the Thouless relation 〈γ (ω)〉 = [2�π (ω)]−1. At
� � ω � ωcr, the difference in the Lyapunov variance between the
brute-force numerics and the result for a model with � = 1 [19] is
attributed to insufficient medium’s length. At ω � �, the average
exponent and its variance saturate to different values in the two
models.

amplitude averages to a frequency-independent value,

〈r′(ω)〉 = −r0, (41)

when � � ω � ωcr. The averaged reflection amplitude is
insensitive to disorder, in contrast to the averaged transmis-
sion coefficient 〈T 〉, which is manifestly dependent on �π ; cf.
Eqs. (34) and (37). At higher frequency, ωcr � ω � ωcr/T0,
and T0 � 1, we use the same methods as in Sec. III B 3 to find

〈r′(ω)〉 = −1 + T0

2

∑
n

P1

(
2ωnd

v

)
. (42)

FIG. 6. The frequency dependence of the ratio of ln〈T (ω)〉 and
〈ln T (ω)〉 for different lengths d/ξ = 20, 40, 80, 160 and K/K0 =
1.0. The ratio takes a frequency-independent value at low frequency,
ω � �. Upon increasing the frequency, it decreases while remaining
above the value 1/4 (dashed line) predicted in the frequency range
� � ω � ωcr , and then it increases to the value 1 at larger fre-
quencies, when disorder becomes irrelevant. Arrows indicate ωcr =
�

√
d/ξ for each of the four curves. A scaling analysis with the length

(see Ref. [38]) gives the result ln〈T (ω)〉/〈ln T (ω)〉 ≈ 0.90 at ω � �

and d/ξ → ∞.

It expresses the inhomogeneous broadening of plasmon stand-
ing waves confined in the medium, in correspondence with
Refs. [18,47]. Finally, the standard Fabry-Pérot formula for
the reflection is recovered at ω � ωcr/T0 when the levels’s
broadening is dominated by the radiation to waveguides,
rather than inhomogeneous broadening.

IV. STRONGLY LOCALIZED REGIME (LOW
FREQUENCY)

At ω � � plasmons are localized over a typical length
ξ , in the fluctuations of the effective disorder potential (12).
Those fluctuations are non-Gaussian, and we have not been
able to make an analytical theory of the scattering properties
in that regime. However, we could gather several pieces of
information from our numerics. We compare it with known
analytical results (collected in Appendix D) for the 1D theory
of localization in a Gaussian white-noise potential for which
the function w(x/ξ ) in Eq. (14) is replaced by zero. While the
scattering properties of the two models coincide in the weakly
localized regime, ω � �, important deviations are found in
the strongly localized regime, ω � �. We show that these
deviations cannot be reproduced by a model of a Gaussian
colored disorder with the values of the average 〈V〉 and of the
second cumulant 〈〈V (x)V (0)〉〉 read off the numerics for the
pinning model; see Eq. (14) and Figs. 2 and 9.

A. Lyapunov exponent

The Lyapunov exponent remains a self-averaging quantity,
which saturates to a frequency-independent value, 〈γ 〉/ξ−1 ≈
1.36, at low frequency. That value is larger than the one in the
Gaussian white-noise model, 〈γ 〉/ξ−1 = 31/3√π/�(1/6) ≈
0.46 [48]; cf. Fig. 5(a). On the other hand, the Gaussian
colored model produces a very close value for 〈γ 〉 (see
Appendix E for details on the numerical implementation of
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that model), which is hardly distinguishable from the pinned-
model result at any ω. This raises the question of whether
spatial correlations dominate over non-Gaussian correlations
in the determination of the plasmons’ scattering properties
in the strongly localized regime. Actually, our subsequent
results show that both (spatial and non-Gaussian) correlations
are relevant. We will argue at the end of this subsection that
the similarity between the results of the pinned and Gaussian
colored models for 〈γ 〉 may be fortuitous.

In agreement with the central limit theorem, the vari-
ance of the Lyapunov exponent scales inversely with d .
The frequency dependence of �(ω) = d 〈〈γ 2(ω)〉〉 / 〈γ (ω)〉 is
plotted in Fig. 5(b). The low-frequency result, � ≈ 0.218, is
significantly smaller than the one in the Gaussian white-noise
model at vanishing frequency [40], � ≈ 1.1 (that later value
being quite close to the one at large frequency, � = 1). The
Gaussian colored model gives � ≈ 0.46, which is also larger
than the result of the pinned model. Thus, a Gaussian disorder
(whether it is white or colored) does not reproduce the right
value of �, emphasizing the role of non-Gaussian correlations
in the effective potential created by pinning.

The presented values of 〈γ 〉 and � were obtained by
a brute-force numerical solution of the dynamical plasmon
propagation problem. Next, we show that these values are
reproduced by solving the plasmon transmission coefficient
problem for the static correlated random potential, Eq. (12),
upon averaging over its realizations. According to problem
25.5 in Ref. [49], the low-frequency transmission at perfect
impedance matching (T0 = 1) for the wave Eq. (11) is

T (ω → 0) ≈ 4ω2

v2[ψ ′
0(d )]2

. (43)

Here ψ0 is the (real) solution of Eq. (11) at ω = 0 that
satisfies the boundary conditions ψ0(0) = 1 and ψ ′

0(0) = 0.
Equation (43) works at sufficiently small frequency for typ-
ical disorder configurations such that ψ ′

0(d ) 
= 0. [Note that
ψ ′

0(d ) = 0 would signal a zero-energy bound state, and a
resonant transmission not captured by Eq. (43)]. An explicit
solution reads

ψ0(x) = exp

(
ξ−1

∫ x

0
dyZ (y)

)
, (44)

where Z = ξψ ′/ψ is another Ricatti variable, which solves an
equation derived from Eq. (11) at ω = 0,

ξ∂xZ (x) = −Z2(x) + V (x)/�2 with Z (0) = 0. (45)

With this, Eq. (43) reads

T (ω → 0) = 4
(ω

�

)2 1

Z2(d )
exp

(
−2ξ−1

∫ d

0
dyZ (y)

)
.

(46)

It was argued in Refs. [16,17] that the solution of Eq. (45) with
V of Eq. (12) has a positive mean, 〈Z (x)〉 > 0. Thus, solving
Eq. (45) provides a way to find the Lyapunov exponent and
its variance from the argument of the exponential factor in
Eq. (46), which only depends on V , as announced above. This
yields 〈γ 〉ξ = 1.37 and � = 0.217, in very close agreement
with the results of the brute-force numerical evaluation of
scattering amplitudes at a low, finite frequency, 〈γ 〉ξ = 1.36

FIG. 7. Probability distributions of the reflection phase at
K/K0 = 1.0 and d/ξ = 20, at ω/� = 0.157 (green), 1.16 (red), and
8.58 (blue). The inset shows the universal frequency dependence of
the distribution found numerically in the vicinity of phase θ1 = −π

either by the brute force numerics at ω/� = 0.1 (blue) and 0.25
(red), or from the solution of the Ricatti Eq. (45) (dashed line). The
dotted line represents the analytical formula derived in Ref. [50] for
a Gaussian white-noise disorder.

and � = 0.218, respectively. The agreement is also consistent
with the more general Eq. (D8) at ω = 0.

Let us now return to the issue of the closeness of 〈γ 〉
evaluated within the pinned and Gaussian colored models.
Using Eq. (45), it is straightforward to evaluate perturbatively
the leading-order correction to 〈γ 〉 in the strongly localized
regime, taking �/

√〈V〉 as a small parameter. The result,

〈γ 〉ξ ≈ 〈V〉 1
2

�
− �2

2〈V〉
[

1 − 1

4

∫
dxw(x)e−2|x|〈V〉 1

2 /�

]
(47)

(see Appendix E for details on the derivation), only depends
on the average and second moment of the disorder potential.
Evaluating Eq. (47) with 〈V〉/�2 ≈ 2.44 (see Appendix A)
yields 〈γ 〉/ξ−1 ≈ 1.41, very close to the pinned-model result,
〈γ 〉/ξ−1 ≈ 1.36. We believe that fortuitous closeness between
the two results is the reason why non-Gaussian correlations
seem to play a minor role in the determination of 〈γ 〉.

B. Reflection amplitude

In the low-frequency regime, the transmission is exponen-
tially suppressed and waves are almost perfectly reflected. In
the limit of perfect impedance matching, we characterize the
reflection amplitudes with the distribution of the reflection
phase [50,51]; see Fig. 7. While the distribution is uniform
at ω � �, a single-peak structure near θ1 = ±π develops
at lower frequency. At ω � �, the peak in the distribution
obtained from the brute-force numerics takes a universal
frequency dependence both in our model and in the Gaus-
sian white-noise model (see inset of Fig. 7), with important
differences between the two models. Furthermore, the univer-
sal dependence in our model agrees with the one obtained
by solving numerically Eq. (45) in the interval 0 < x < d
with a given (real) boundary condition at x = d � ξ for
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FIG. 8. The local density of states as a function of the frequency
for K/K0 = 0.01. The dashed line represents (ω/�)4. [In units used
in Ref. [18], it corresponds to C(ω/ω�)4 with ω� = �/(2π 2)1/3 and
C ≈ 0.039 (close to C ≈ 0.032 found in Ref. [18])]. The dotted line
is the result of the Gaussian white-noise model; see Appendix D.
Arrows indicate the crossover frequency to the ballistic regime,
ωcr = �

√
d/ξ , for each d .

various disorder configurations, and then identifying Z (0) =
−2(ω/�)/(θ1 + π ), which is the consequence of the bound-
ary conditions (13a) and (13b) with K = K0, ω/� → 0, and
r = eiθ1 . The results do not depend on the boundary condition
for Z (d ) if d � ξ . The result shown in the inset of Fig. 7 is
for d/ξ = 20.

The distribution P1(θ1) can be seen as a measure of the
modes localized near an end of the pinned region and whose
frequency lies either above (θ1 > −π ) or below (θ1 < −π )
the one of the incoming wave. The distribution appears to
reach zero at θ1 = −π , unlike both the white-noise and
colored Gaussian cases (see Appendixes E and D, respec-
tively), indicating the scarcity of low-frequency resonances.
This agrees with the strong suppression of the low-frequency
modes’ density of states [15–17] in the pinned model, in
contrast with the Gaussian models.

The distribution P1, together with Eqs. (13a) and (13b),
allows finding the statistics of the reflection phase at any
impedance mismatch between the waveguide and half-infinite
medium. In particular,

〈r′〉 + 1 =
∫

dθ1P1(θ1)
2

1 + (K0/K )2 tan2(θ1/2)
. (48)

At ω � �, the ω scaling of the peak in P1 near θ1 = −π ,
demonstrated in the inset of Fig. 7, yields [52]

〈r′〉 + 1 = A
( K

K0

)2(ω

�

)2
, A ≈ 2.4. (49)

At any K � K0, another important contribution to Eq. (48),
which scales linearly with K/K0, comes from angles near θ1 =
0, yielding

〈r′〉 + 1 = 4π
K

K0
P1(θ1 = 0). (50)

Our numerics for 〈r′〉 at K � K0, summarized by Fig. 8,
confirms the result of Ref. [18] and Eq. (50) with P1(θ1 =
0) ∝ ω4; in this regime (〈r′〉 + 1)K0/K can be interpreted
as the local density of plasmon modes. However, we were

FIG. 9. The mean effective disorder potential at d/ξ = 20.
The green and red lines are the numerically obtained curves for
104 realizations of the random “phase” and “box” models (see
Appendix A), respectively; they cannot be distinguished from
each other. The dashed lines represent the fitting functions v(x) =
d[e−x/b + e−(d−x)/b] + v0 (d = 1.36, b = 0.269, v0 = 2.44).

not able to correlate this result with the result of a direct
evaluation of P1(θ1 = 0) illustrated by Fig. 7, presumably
due to an insufficient number of disorder configurations. Fur-
thermore, the deviation of the numerics from the ω4 scaling
seen in Fig. 8 at the lowest frequencies is suggestive of a
crossover to the ω2 scaling of Eq. (49); our numerics did
not allow us to check this scaling quantitatively. The differ-
ent dependence of the right-hand side of Eq. (50) on K/K0,
compared with Eq. (49), ensures that it dominates over a
wide frequency range. The scarcity of low-frequency modes
reflects in a much stronger suppression of the local density of
states ∝ω4 at ω � � in the pinned model, in contrast with
the results of the white-noise and colored Gaussian models
where (〈r′〉 + 1)K0/K ∝ 1.29ω/� and 0.35ω/�, respectively
(see Appendixes D and E).

Finite-range correlations break the translational invariance
of the effective disorder potential near the edges of the
medium, as exemplified in Fig. 9. This prevents one from
evaluating the Lyapunov exponent with Eq. (D8) together
with the distribution of the Ricatti variable at the edge, which
determines P1(θ1) plotted in Fig. 7. Expectedly, that proce-
dure yields 〈γ 〉ξ = 1.59, different from 〈γ 〉ξ ≈ 1.37 found in
Sec. IV A.

C. Average transmission coefficient

At any frequency in the range ω � ωcr, the averaged
transmission is determined by the optimal configurations. Fur-
thermore, the ratio ln 〈T 〉 / 〈ln T 〉 remains smaller than 1, in
accordance with the inequality between the arithmetic and ge-
ometric means. In Sec. III C, we found ln 〈T 〉 / 〈ln T 〉 = 1/4
in the diffusive regime (ω � �). In the strongly localized
regime, this ratio increases toward the value ln 〈T 〉 / 〈ln T 〉 ≈
0.9; see Fig. 6. Its closeness to 1 hints to a small differ-
ence between the typical and optimal disorder configurations.
This is further confirmed by the fact that ensemble-averaging
of Eq. (43) yields a very close result for that ratio,
ln 〈T 〉 / 〈ln T 〉 ≈ 0.93. As disorder configurations with nearly
perfect transmission [44] are not taken into account in
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Eq. (43), they should have a negligible weight among the
optimal disorder configurations.

Note that the frequency scaling 〈T (ω → 0)〉 ∝ ω2 in
Eq. (46) confirms that, for the waves at the bottom of the
plasmon spectrum (i.e., in the infinite wavelength limit), the
disorder potential acts like a localized one for each realization
of the disorder. Our numerics does not have enough accuracy
to check this asymptote quantitatively and to establish its
range of validity.

For comparison, we expect disorder configurations with
nearly perfect transmission to play a major role at arbi-
trarily low frequency in the Gaussian models. This may
result in a different frequency dependence of 〈T (ω)〉 and
ln 〈T (ω)〉 / 〈ln T (ω)〉 at ω � �. As far as we know, this
question has not been studied systematically. Our numerics in-
dicates ln 〈T (ω)〉 / 〈ln T (ω)〉 ≈ 0.72 and ≈ 0.87 at ω � � in
the Gaussian white-noise and colored model, respectively. We
attribute (again) the difference of these results from the pinned
model result, ln 〈T (ω)〉 / 〈ln T (ω)〉 ≈ 0.9, to the scarcity of
low-frequency quasilocalized modes in the latter.

V. CONCLUSION

The study of a variety of 1D models has been influential
in the understanding of waves’ localization in random media.
A wealth of analytical results could be obtained thanks to
advanced mathematical methods, most (if not all) of them
relying on a Markovian assumption for the disorder, affect-
ing the propagation of linear waves. This assumption breaks
down in the case of disorder associated with the pinning
of an elastic medium. Our study of the wave scattering by
the pinned elastic medium reveals the universality of the
scattering properties, despite the manifest breakdown of the
Markovian nature of disorder.

The spatial correlations of the pinning-induced disor-
der affect the wave propagation at all frequencies. In the
high-frequency regime, we could use the familiar stochastic
methods for Gaussian white-noise disorder; see Sec. III B.
Surprisingly, we found that the correlations still affect
the forward-scattering length, despite the wavelength being
shorter than the Larkin length in that regime; see Eqs. (19)
and (27). In the almost-ballistic regime (mean-free path ex-
ceeding the medium’s length) and at a strong impedance
mismatch between the pinned medium and the waveguides,
the transmission coefficient 〈T 〉 exhibits resonances, inhomo-
geneously broadened by the disorder. Correlations affect the
broadening; see Eqs. (40), (29), and Fig. 4(b).

On the other hand, at lower frequency, the wave lo-
calization is strong, the stochastic methods relying on the
Fokker-Planck equation obviously do not work. In the strong
localization regime, our findings, which are discussed in
Sec. IV, are mostly numerical. We found that the Lyapunov
exponent is significantly increased, and its variance is sup-
pressed, in comparison with a Gaussian white-noise disorder
of a comparable strength; see Fig. 5. A large part of the
increase of the Lyapunov exponent can be accounted by the
spatial correlations on the Larkin length in the pinned model
of disorder; on the other hand, both the spatial and non-
Gaussian correlations contribute to the Lyapunov’s variance
suppression. The closeness of the ratio ln 〈T (ω)〉 / 〈ln T (ω)〉

to 1 (see Fig. 6) allows us to infer a similarity between
the optimal for the transmission and the typical disorder
configurations. This is in strong contrast with the diffusive
regime, in which the same ratio is significantly suppressed,
ln 〈T (ω)〉 / 〈ln T (ω)〉 = 1/4, as we discussed in Sec. III C. In
the regime of strong localization, in which the transmission
coefficient is exponentially suppressed with the medium’s
length, we also found signatures of the scarcity of the lo-
calized low-frequency plasmon modes. This mode scarcity
affects the distribution function of the phase of reflection off
the pinned medium; see Figs. 7 and 8. These observables
yield unique signatures of the non-Gaussianity of the pinned
medium, such as the suppression of the reflection phase distri-
bution P1(θ1 = −π ) and an average transmission probability
through the medium that is much closer to the typical one than
for the Gaussian models of disorder. Connections between the
static pinning theory and the localization theory have been re-
cently explored in Ref. [53]. We hope that our study provides
a momentum for further developments of the theory aiming
at better understanding of wave dynamics in a pinned elastic
medium.

Furthermore, our focus was mostly on the collective pin-
ning regime, i.e., Larkin length long compared to the spacing
between the sites comprising the medium. The case of strong
pinning may also reveal new physics.

Finally, we argued that Josephson-junction arrays provide
a versatile system to address the interplay of elasticity and
disorder by their microwave spectroscopy. Here we would
like to stress that the development of superinductances [54]
allowed us to reach a regime where K is small, but not vanish-
ingly small. Therefore, it would be interesting to investigate
the deviations from classical theory, especially the inelastic
scattering phenomena that will be induced by quantum fluctu-
ations [18,25].
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APPENDIX A: NUMERICS

Here we describe our strategy to calculate the scattering
amplitudes numerically.

1. Effective disorder potential

First, we rewrite our problem with the dimensionless vari-
ables by rescaling the spatial dimension by ξ and the time
dimension by 1/�. Next, the dimensionless spatial variables
are discretized with a small spacing ε, which divides the
medium into M intervals, d/ξ = (M + 1)ε. Then, the above
prescription leads the classical energy functional (9), in units
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of (ε h̄v/2πKξ ), to take the discretized form:

Ẽ[{θm}] =
M−1∑
m=0

[(
θm+1 − θm

ε

)2

− Vm

2

]
− V0 + VM

4
. (A1)

Here,

Vm = 2[V ′
m cos 2θm + V ′′

m sin 2θm] (A2)

is the effective disorder potential in dimensionless units, and
the correlators (7) are reproduced in continuum limit, ε →
0, if 〈V ′

m〉 = 〈V ′′
m〉 = 〈V ′

mV ′′
n 〉 = 0 and 〈V ′

mV ′
n〉 = 〈V ′′

mV ′′
n 〉 =

(1/ε)δm,n. The last term in Eq. (A1) arose from considering
an infinite periodic array with the mirror symmetry Vm =
V2M−m in unit array (0 � m � 2M − 1). This ensures that
the boundary conditions ∂xθ (0) = ∂xθ (d ) = 0 are satisfied in
continuum limit.

We compared two ways to generate the random fields.
In the “phase model” reminiscent of the original model, we
relate them with flatly distributed random phases at each site,
V ′

m = √
2/ε cosχm and V ′′

m = √
2/ε sin χm with 0 < χm <

2π . Alternatively, in the “box model,” V ′
m and V ′′

m are indepen-
dent and flatly distributed in the interval −√

3/ε < V ′
m,V ′′

m <√
3/ε. Our numerics could not distinguish between the two

models.
The static charge density is determined by minimizing the

classical energy functional (A1). For this, we adopted the min-
imization method described in Ref. [17]. Note that a common
π shift of the angles, θm → θm + π , leaves Eq. (A1) invari-
ant; furthermore, the effective potential (A2) only depends
on θ̄m mod π . Thus, we can look for solutions such that
−π/2 < θ̄m � π/2, provided we make the substitution (θm −
θm+1)2 → mink (θm − θm+1 − kπ )2 in Eq. (A1). (At weak pin-
ning, it is enough to keep k = −1, 0, 1).

Generating 104 random configurations at fixed medium’s
length to calculate the static charge density for each of them,
we can evaluate the mean and second moment of the disorder
potential (12). The results are shown in Figs. 9 and 2, re-
spectively. The mean reaches a constant value sufficiently far
from the edges, on the scale of ξ . We also found numerically
a fitting function that describes the enhancement of 〈V (x)〉
near the edges; see the legend of Fig. 9. It works well at
any d > 20ξ (not shown). We also found numerically that
the long-range correlation in the second moment of V (x) are
well described by Eq. (14) with the exponentially decaying
function w(x) = ce−|x|/a. Here c ≈ 3.24 and a ≈ 0.346; cf.
Fig. 2.

2. Scattering amplitudes

The wave Eq. (11) and boundary conditions (13) are dis-
cretized as(ω

�

)2
ψm + ψm+1 + ψm−1 − 2ψm

ε2
− Vmψm = 0, (A3)

for 0 < m � M, and

1 + r(ω) = ψ0, (A4a)

iωK/K0(1 − r(ω)) = �(ψ1 − ψ0)/ε, (A4b)

t (ω) = ψM, (A4c)

iωK/K0t (ω) = �(ψM − ψM−1)/ε, (A4d)

respectively. The boundary conditions (A4) are used to ex-
press r(ω), t (ω), ψ0, ψM in terms of ψ1, ψM−1. Inserting
the found ψ0, ψM into Eq. (A3), we find that the latter
forms a linear eigenvalue with a source term on the vector
{ψ1, . . . , ψM−1}. For a given disorder configuration yielding
the potentials Vm, the eigenvalue problem is solved and we
obtain the scattering amplitudes from relations

r(ω) =
(

1 − iε
K

K0

ω

�

)−1(
ψ1 − 1 − iε

K

K0

ω

�

)
, (A5a)

t (ω) =
(

1 − iε
K

K0

ω

�

)−1

ψM−1. (A5b)

The averaged scattering amplitudes are evaluated numeri-
cally by iterating this procedure for a large number of disorder
configurations. We used 104 disorder configurations to gener-
ate the plots in Figs. 2, 4, 7, and 9, and 103 in the plots in
Figs 5, 6, and 8, as well as to compute ensemble-averages dis-
cussed in Sec. IV, which are based on the discretized version
of Eqs. (45) and (46).

APPENDIX B: FOKKER-PLANCK EQUATION

In this Appendix, we provide the recipe that can be used
to obtain the Fokker-Planck Eq. (26) from the Ricatti Eq. (25)
and Gaussian correlators (20).

We consider the system of dynamical equations

∂t Xi = ai(X ) +
∑

j

bil (X )ξl (t ) (B1)

on the multidimensional variable X = (X1, . . . ,XN ) with ran-
dom forces characterized by Gaussian correlators,

〈ξl (t )ξm(t ′)〉 = 2Dlmδ(t − t ′). (B2)

The joint probability P(t,X ) of the variables X1, . . . ,XN sat-
isfies the Fokker-Planck equation

∂P

∂t
= −

∑
i

∂

∂Xi
(aiP) +

∑
i jlm

Dlm
∂

∂Xi

[
bil

∂

∂Xj
(b jmP)

]
.

(B3)

APPENDIX C: EXACT SOLUTION OF P2(x, θ2 )

In this Appendix, we closely follow Ref. [34] to find the so-
lution of Eq. (28b) for the conditional probability that satisfies
the initial condition P2(d, θ2) = δ(θ2 + ln r0).

For this, we use various changes of variable to recover
equivalent formulations of that equation. With e−2θ2 = λ/(1 +
λ) (λ > 0) and P̃(τ, λ) = P2(τ, θ2)|dθ2/dλ| (to ensure that
normalization is preserved), we find

∂P̃

∂τ
= ∂

∂λ
λ(1 + λ)

∂

∂λ
P̃ (C1)

with τ = (d − x)/�π . Introducing λ = sinh2 X (X > 0) and
P̄(τ,X ) = P̃(τ, λ)|dλ/dX | yields

∂

∂τ
P̄ = 1

4

[
∂2

∂X 2
P̄ − ∂

∂X

(
2 cosh 2X

sinh 2X
P̄

)]
. (C2)
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Then, introducing Q(X ) = P̄(X )/
√

sinh 2X , we find

− ∂

∂τ
Q =

(
H + 1

4

)
Q (C3)

with an effective Hamiltonian

H = −1

4

∂2

∂X 2
− 1

4 sinh2 2X
. (C4)

Together with Eq. (C2), the probability conservation,
∫ ∞

0
dXP̄(τ,X ) = 1, (C5)

imposes

lim
X→0

(
∂P̄

∂X
− P̄

X

)
= 0 (C6)

and, subsequently,

lim
X→0

(
∂Q

∂X
− Q

2X

)
= 0. (C7)

Knowing a normalized eigenspectrum of Eq. (C4), Hψk =
εkψk , together with the boundary condition (C7) then allows
expressing the conditional probability

P̄(τ,X ) =
√

sinh 2X

sinh 2X ′
∑

k

ψk (X )ψ∗
k (X ′)e−(εk+ 1

4 )τ , (C8)

such that P(0,X ) = δ(X − X ′) with cosh 2X ′ = (2 − T0)/T0.
(Reference [34] considered the case T0 = 1, corresponding to
X ′ = 0, only). The next paragraph is devoted to the solution
of the eigenproblem.

The change of variable ψk (X ) = √
sinh 2X fk (cosh 2X )

shows that fk (z) with z = cosh 2X > 1 solves the Legendre
differential equation

d

dz

[
(1 − z2)

dfk

dz

]
+ ν(ν + 1) fk = 0 (C9)

with (ν + 1/2)2 = −εk . The boundary condition (C7) trans-
lates into [

(z − 1)3/4 dfk (z)

dz

]
z→1

= 0. (C10)

Equation (C9) is solved by the Legendre functions of the first
and second kinds, Pν (z) and Qν (z), respectively. The boundary
condition (C10) excludes Qν (z), which diverges logarithmi-
cally at z → 1, from the set of solutions. As Pν (z) ∼ z−ν−1,
the normalizability condition of the wave functions also re-
quires Re ν > 1/2. Therefore, only solutions with εk > 0
[meaning that the Hamiltonian (C4) defined at X > 0 does
not admit for bound states] are allowed. The set of solutions
is thus given by the conical functions, fk (z) = CkP−1/2+ik/2(z)
with εk = k2/4 and k > 0 [as P−1/2+ik/2(z) = P−1/2−ik/2(z)].
The normalization condition∫ ∞

0
dxψk (x)ψk′ (x) = δ(k − k′) (C11)

is then obtained by choosing Ck = √
πk tanh(πk/2).

Equation (C8) then reads

P̄(τ,X ) = 1

2
e− τ

4 sinh 2X
∫ ∞

0
dkk tanh

πk

2
P− 1

2 +i k
2
(cosh 2X )

× P− 1
2 +i k

2
(cosh 2X ′)e− k2τ

4 . (C12)

Reverting to variable θ2 and setting x = 0, i.e., τ = d/�π , we
obtain Eq. (30).

APPENDIX D: GAUSSIAN WHITE-NOISE DISORDER

In this Appendix, we quote analytical results from the lit-
erature on a model with Gaussian white-noise disorder, which
were used in plotting some of the lines in Figs. 5, 8, and 7. We
assume that the variance of the disorder potential corresponds
to the first term of Eq. (14). Note that the literature mostly
addresses the stationary Schrödinger equation at energy E . In
the context of Eq. (11), we set E = ω2 in the results from
literature, constraining them to E � 0.

The Lyapunov exponent is given by [48]

〈γ (ω)〉ξ = 1

2

∫ ∞
0 dx

√
x exp (−x3/24 − xω2/2�2)∫ ∞

0 dx/
√

x exp (−x3/24 − xω2/2�2)
; (D1)

it is plotted by dotted line in Fig. 5(a). It yields the zero-
frequency result

〈γ (0)〉ξ = 31/3√π

�(1/6)
≈ 0.46, (D2)

as well as 〈γ (0)〉ξ = �2/2ω2 at ω � �.
The Lyapunov’s variance is given by [42]

〈〈γ 2(ω)〉〉ξd =
∫ ∞

0

ds

s
Re

[(
2〈γ (ω)〉ξ − i

d

ds

)
f 2(s)

]

(D3)
with f (s) = φ(s)/φ(0) and

φ(s) = Ai

(
− (ω/�)2 + 2is

22/3

)
− i Bi

(
− (ω/�)2 + 2is

22/3

)
,

(D4)
where Ai and Bi are Airy functions; it is plotted by dotted line
in Fig. 5(b). It yields the zero-frequency result [40]

〈〈γ 2(0)〉〉d = 〈γ (0)〉
[

5π

3
√

3
− 3F2

(
1, 1,

7

6
;

3

2
,

3

2
;

3

4

)]

≈ 1.1〈γ (0)〉 (D5)

(here 3F2 is an hypergeometric function), as well as
〈〈γ 2(ω)〉〉d = 〈γ (ω)〉 at ω � �.

The distribution of the reflection phase at perfect
impedance matching between a half-infinite medium and a
waveguide [50],

P1(θ1) = (ω/�)2 + Z2

2|ω|/� P(Z )

∣∣∣∣
Z=−(ω/�) tan(θ1/2)

, (D6)

is related with the distribution of the Ricatti variable Z ,

P(Z ) =
∫ ∞

0 dx exp [−x3/24 − xω2/2�2 − x/2(Z − x/2)2]∫ ∞
0 dx

√
2π/x exp (−x3/24 − xω2/2�2)

.

(D7)
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With the help of Eqs. (D1) and (D7), one may check that the
relation

〈γ (ω)〉ξ =
∫

dZZP(Z ) (D8)

holds at any ω. At ω � �, the distribution is uniform,
P1(θ1) ≈ 1/2π . At 0 < ω � �, the distribution is concen-
trated around phase θ1 = −π , with

P1(θ1) ≈ �

ω
p

(
�(θ1 + π )

ω

)
,

p(ϕ) = 35/6

√
π�(1/6)

∫ ∞

0

dx

ϕ2
exp(−x3/6 + x2/ϕ − 2x/ϕ2)

(D9)

if |θ1 + π | � 1. The function p(ϕ) is plotted by dotted line
in the inset of Fig. 7. The tails of the distribution P1 at |θ1 +
π | � ω/� are given by

P1(θ1) ≈ αω/�

cos2(θ1/2)
, α = 31/6�(2/3)

27/3π
. (D10)

Note that Eqs. (D9) and (D10) match each other in their
common range of validity, ω/� � |θ1 + π | � 1.

Equation (D6) allows finding the disorder average of
the reflection phase’s real part at any impedance mismatch
K < K0,

r′ + 1 = 2

1 + (K0/K )2 tan2(θ1/2)
. (D11)

At ω � �, Eq. (41) is reproduced with the uniform distribu-
tion. At 0 < ω � �, the average is contributed by the tails of
the distribution P1, Eq. (D10), which yields

〈r′〉 + 1 = 4πα
K

K0

ω

�
. (D12)

At large impedance mismatch, K � K0, Eq. (D11) is approx-
imated by r′ + 1 ≈ 4π (K/K0)δ(θ1), such that

〈r′〉 + 1 = 4π
K

K0
P1(θ1 = 0) (D13)

with P1 of Eq. (D6), which is plotted by dotted line in Fig. 8.
The linear frequency dependence in Eq. (D12) at low

frequency, as well as the saturation at ω � �, mirror
the frequency dependence of the bulk plasmon density of
states. Indeed, by using the particle density of states of the
Schrödinger problem [48,55,56] at energy E = ω2 we find

ν(ω)

ν0
= 2ω

�

√
π

2

∫ ∞
0 dx

√
x exp(−x3/24 − xω2/2�2)[ ∫ ∞

0 dx/
√

x exp(−x3/24 − xω2/2�2)
]2 ,

(D14)

where ν0 = 1/πv. In particular, ν(ω) = ν0 at ω � � and

ν(ω)

ν0
= 6π × 31/6

�2(1/6)

ω

�
, 0 <ω � �. (D15)

The linear ω dependence in Eq. (D15) reflects the finite
(particle) density of states ν̃(0) of the Schrödinger problem
at E = 0, together with the relation ν(ω) = 2ων̃(ω2), which
connects the waves’ and particles’ densities of states. The
finiteness of ν̃(0) (instead of its divergence in the disorder-free

problem) is a precursor of the Lifshits tail of states at E < 0 (a
region inaccessible for waves). Note that the overall frequency
dependences of 〈r′(ω)〉 + 1 and ν(ω) are different.

Note that Eqs. (D1) and (D15) alternatively read

〈γ (ω)〉ξ = −Im[ f ′(s = 0)], (D16a)

ν(ω)/ν0 = −�Re

[
d

dω
f ′(s = 0)

]
, (D16b)

respectively. Actually, the relation of 〈γ (ω)〉 and ν(ω) to a
common analytic function in the upper complex plane is valid
beyond the Gaussian white-noise model. It is a consequence
of the Herbert-Jones-Thouless relation [57] for any transla-
tionally invariant potential,

γ (E ) − γ0(E ) =
∫

dE ′ ln |E − E ′|[ν̃(E ′)− ν̃0(E ′)]. (D17)

Here γ0(E ) = �(−E )
√−E/v and ν̃0(E ) = �(E )/(2πv

√
E )

are for a free particle. In the case of a random poten-
tial, γ (E ) and ν̃(E ) are the respective functions averaged
over the disorder realizations, and the translational invariance
property refers to the correlation function of the potential.
Equation (D8), which relates the Lyapunov exponent with the
average the Ricatti variable, also holds for a translationally
invariant disorder potential, under an additional assumption
of inversion symmetric disorder [19].

APPENDIX E: GAUSSIAN COLORED-NOISE DISORDER

In Appendix E 1, we derive asymptotic formulas for the
Lyapunov exponent at small and large frequency; they only
depend on the average and second moment of the disorder
potential. In Appendix E 2, we show how to implement a ran-
dom Gaussian colored potential numerically; we provide plots
that illustrate the difference between the pinned and Gaussian
colored models for the plasmon’s scattering properties.

1. Asymptotes for the Lyapunov exponent

Let us start with the small frequency regime. The Lyapunov
exponent is a self-averaging quantity defined as 〈γ 〉 = Z (x →
∞)/ξ , where Z (x) is a solution of the Ricatti equation

ξ∂xZ (x) = −Z2(x) + [V (x) − ω2]/�2, (E1)

which generalizes Eq. (45) at finite frequency, irrespective of
the initial condition Z (x = 0). We ignore mathematical details
related with the existence of the Lyapunov exponent [19] and
note that Z (x → ∞) = 〈Z (x → ∞)〉.

Let us assume ω <
√〈V〉. Then, treating v(x) = V (x) −

〈V〉 as a perturbation, we find that the leading-order contribu-
tion to Z (x) = Z (0)(x) + Z (1)(x) + Z (2)(x) + · · · is constant,
Z (0) =

√
〈V〉 − ω2/�. The next-order term is found as the

solution of the equation

ξ∂xZ (1)(x) = −2Z (0)Z (1)(x) + v(x)/�2; (E2)

it yields

Z (1)(x) = Z (1)(0)e−2xZ (0)/ξ +
∫ x

0

dy

ξ

v(y)

�2
e−2(x−y)Z (0)/ξ . (E3)
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FIG. 10. (a) The average of the Lyapunov exponent and (b) its
variance as a function of frequency for different lengths d/ξ =
20, 40, 80, 160 and K/K0 = 1.0 in the Gaussian colored model. The
inset is an enlarged view of the low (a) and intermediate (b) fre-
quency regions. The dotted lines in panels (a) and (b) show the result
of the Gaussian white-noise potential at d → ∞ for comparison; the
black line shows the result for the pinned potential at d/ξ = 160.
The dashed lines in panel (a) show the result of the weak-disorder
expansion for 〈γ (ω)〉 at small and large ω, Eqs. (47) and (E8), respec-
tively. The Lyapunov exponents in the pinned and Gaussian colored
models hardly differ from each other; we ascribe their similarity to
the success of the weak-disorder expansion in most of the frequency
range, apart from the close vicinity of �. By contrast, the variances of
the Lyapunov exponent computed in the Gaussian and pinned models
differ from each other in the strongly localized regime

As 〈Z (1)(x → ∞)〉 = 0, it does not contribute to the Lyapunov
exponent. In the next order,

ξ∂xZ (2)(x) = −2Z (0)Z (2)(x) − Z (1)(x)2; (E4)

the solution yields

〈Z (2)(x → ∞)〉 = − 1

8Z (0)2

∫
dx

ξ

〈v(x)v(0)〉
�4

e−2|x|Z (0)/ξ ,

(E5)

which only depends on the second cumulant of the disorder
potential. Inserting Eq. (14) for the correlator 〈v(x)v(0)〉 =
〈〈V (x)V (0)〉〉, we find Eq. (47) at vanishing frequency.

Switching to the regime of large frequencies, we introduce
ψ = ρ sin ϑ and ψ ′ = κρ cosϑ with κ = √

ω2 − V/v to find

that the Schrödinger equation, Eq. (11), transforms into

ϑ ′ = κ − v(x)

κ
sin2 ϑ, ρ ′ = ρ

v(x)

2κ
sin 2ϑ. (E6)

The Lyapunov exponent can also be defined as the rate of
growth of the wave function’s envelope [19],

〈γ 〉 = lim
x→∞

ln ρ(x)

x
. (E7)

Solving Eq. (E6) perturbatively in v(x) and inserting the solu-
tion into Eq. (E7), we find that the leading-order contribution
reads

〈γ 〉 = 1

8v2(ω2 − V )

∫
dx〈v(x)v(0)〉 cos

(
2x

√
ω2 − V
v

)
.

(E8)

Using Eq. (14) for the correlator 〈v(x)v(0)〉, we note that that
Eq. (E8) reproduces the semiclassical result of Sec. III, 〈γ 〉 =
(�/ω)2/2ξ at ω � √

V ∼ �.
The two asymptotes, Eqs. (47) and (E8), are shown in

Fig. 10(a).

2. Numerics

We readily check that

V1(x) = 〈V〉 + V0(x) +
∫

dyW (x − y)V0(y), (E9)

where V0 is a Gaussian white-noise potential such that
〈V0(x)〉 = 0 and 〈V0(x)V0(x)〉 = 4�4ξδ(x − y), and

W (x) =
∫

dq

2π
eiqx

[√
1 − wq

4
− 1

]
, (E10a)

wq = ξ−1
∫

dxe−iqxw(x/ξ ), (E10b)

is a Gaussian colored potential that has the same average and
second cumulant, Eq. (14), as the pinned potential V (x). By

FIG. 11. The frequency dependence of the ratio of ln〈T (ω)〉 and
〈ln T (ω)〉 for different lengths d/ξ = 20, 40, 80, 160 and K/K0 =
1.0 in the Gaussian colored model. A scaling analysis with the
length (see Ref. [38]) gives the result ln〈T (ω)〉/〈ln T (ω)〉 ≈ 0.87
at ω � � and d/ξ → ∞. The analysis for the pinned model, il-
lustrated with the black line corresponding to d/ξ = 160, gives
ln〈T (ω)〉/〈ln T (ω)〉 ≈ 0.90 at ω � � and d/ξ → ∞.
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FIG. 12. Probability distributions of the reflection phase at
K/K0 = 1.0 and d/ξ = 20, at ω/� = 0.1, for the Gaussian colored
(purple), and pinned (black) models. The dotted line represents the
analytical formula derived in Ref. [50] for a Gaussian white-noise
disorder. The inset illustrates the saturation of P1(θ1) to a finite
value at θ1 = −π in the Gaussian models; by contrast, P1(θ1 = −π )
vanishes in the pinned model.

implementing numerically the white noise potential V0(x) on
a lattice, as in Appendix A, we may then study the scattering
properties of a medium characterized by the Gaussian col-
ored potential V1(x). In Fig. 10, we compare the frequency

FIG. 13. The local density of states as a function of the frequency
for K/K0 = 0.01. The black and purple lines show the result of the
pinned and Gaussian colored models, respectively. They differ in
their frequency dependence, which is ∝ω4 in the first case and ∝ω

in the second case, at ω � �. The dotted line is the result of the
Gaussian white-noise model; it also shows the dependence ∝ω at
ω � �.

dependence of the Lyapunov exponent and its variance in the
pinned and Gaussian colored models. Figures 11–13 show the
comparison for the ratio ln〈T (ω)〉/〈ln T (ω)〉, the probability
distribution of the reflection phase, and the local density of
states, respectively. They mirror Figs. 5–8, which were shown
in the main text; see Sec. IV for the discussion of the results.
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