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We investigate measurement-induced phase transitions in the quantum Ising chain coupled to a monitoring
environment. We compare two different limits of the measurement problem: the stochastic quantum-state
diffusion protocol corresponding to infinite small jumps per unit of time and the no-click limit, corresponding
to postselection and described by a non-Hermitian Hamiltonian. In both cases we find a remarkably similar
phenomenology as the measurement strength γ is increased, namely, a sharp transition from a critical phase
with logarithmic scaling of the entanglement to an area-law phase, which occurs at the same value of the
measurement rate in the two protocols. An effective central charge, extracted from the logarithmic scaling of the
entanglement, vanishes continuously at the common transition point, although with different critical behavior
possibly suggesting different universality classes for the two protocols. We interpret the central charge mismatch
near the transition in terms of noise-induced disentanglement, as suggested by the entanglement statistics which
displays emergent bimodality upon approaching the critical point. The non-Hermitian Hamiltonian and its
associated subradiance spectral transition provide a natural framework to understand both the extended critical
phase, emerging here for a model which lacks any continuous symmetry, and the entanglement transition into
the area law.
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I. INTRODUCTION

Recent years have seen major progress in the understand-
ing of many-body quantum dynamics. Two well separated
limits have been discussed extensively: the unitary dynamics
of closed isolated systems [1,2] and the dissipative dynamics
of open quantum systems coupled to an external environ-
ment [3]. In the former case the system remains in a pure
many-body state which, in the absence of ergodicity break-
ing [4,5], acts as an efficient bath for any of its subsystems,
leading to thermalization of local observables and volume-law
entanglement entropy. In the latter, the system is intrinsi-
cally mixed and described by a master equation for the
density matrix. The competition between unitary and dissipa-
tive couplings in this setting can lead to nonequilibrium phase
transitions but it is not expected to change the entanglement
properties of the system.

An intermediate situation which has recently attracted
major attention is the one in which the external environ-
ment represents a measurement apparatus, which ceaselessly
probes some property of the system. Here the key physics
is encoded in stochastic quantum many-body trajectories,
which contain a much richer information on the system dy-
namics than the average state. As a result, new dynamical
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phases arise, which are characterized by different entangle-
ment properties. For generic unitary evolution, as that encoded
in random circuits [6–36], these systems show a transition
between an error correcting phase and a Zeno phase, signaled
by the transition of entanglement from a volume to an area
law.

If instead the unitary dynamics is generated by a Hamil-
tonian, the properties of the system depend on the nature of
the latter [37–41]. For instance, in the case of a free fermion
Hamiltonian, the volume law is unstable for any measure-
ment rate to a subextensive entanglement content [42,43].
However, it has been shown that the average entanglement
entropy can still show a transition between a logarithmic
and area law phase at a critical measurement strength or
to display a purely logarithmic scaling, depending on the
stochastic protocol [44]. A logarithmic growth of the entan-
glement entropy in an entire phase is particularly intriguing,
given that the average state is expected to be effectively ther-
mal, and it is reminiscent of a critical, conformally invariant
phase whose origin has been so far elusive. Similar results
have been obtained for free-fermion random circuits with
temporal randomness [45], a setting that has been recently
generalized to higher dimension [46], or for Majorana random
circuits [47,48].

A different take on measurement-induced transitions has
instead focused on the limit of postselection, also called
forced measurement phase transitions [16], where only
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atypical trajectories with a particular outcome of measure-
ment are retained. In this regime several works have discussed
the relationship between measurement-induced transitions
and the spectral properties of the associated non-Hermitian
Hamiltonian [49–51]. More recently a non-Hermitian Hamil-
tonian has been also shown to emerge from the replica field
theory associated to monitored Luttinger liquids, leading to a
Kosterlitz-Thouless transition between a gapless and a gapped
phase [52].

In light of these developments it is interesting to compare
the entanglement properties of stochastic quantum dynamics
and non-Hermitian Hamiltonian, in a simple and paradig-
matic setting. With such motivation, in this work we consider
the one-dimensional quantum Ising model coupled to an
environment which continuously measures its transverse mag-
netization. Specifically, we focus on two rather opposite limits
of the measurement problem: the quantum state diffusion
protocol [53,54], a very clear, experimentally realizable mea-
surement protocol in quantum optical systems [55], equivalent
to homodyne trajectories [56,57], and the quantum jump
protocol in the so-called no-click limit, corresponding to a
purely deterministic non-Hermitian evolution, which amounts
to postselecting only trajectories without jumps.

Remarkably, despite describing rather different limits,
these protocols show a very similar phenomenology in their
entanglement properties. In particular, upon increasing the
ratio γ between measurement rate and Hamiltonian coupling
we find in both protocols a transition from a critical phase to
an area law phase, the former characterized by a logarithmic
scaling of the entanglement with time and system size. Right
at the transition point γc, which we find numerically to co-
incide in the two protocols, the prefactor of the logarithmic
entanglement contribution, interpreted as an effective central
charge, vanishes continuously.

We note that an extended phase with logarithmic (critical)
scaling of the entanglement was found also for other free-
fermionic systems under monitoring, for example, the XX
chain of Ref. [44]. Yet this result occurs here for a model,
the quantum Ising chain, which does not conserve particle
number but only its parity, and thus lacks any obvious con-
tinuous symmetry expected in conventional gapless systems.
This suggests that the role of microscopic symmetries in the
classification of quantum phases of matter, leading to the
textbook distinction between gapped and gapless phases in
the presence of discrete/continuous symmetries, needs to be
revisited for quantum many-body systems under monitoring,
as recently pointed out [48].

In this respect the no-click limit offers a natural explanation
both for the critical entanglement scaling and for its transition
towards an area law: these can be naturally understood by
looking at the spectral properties of the non-Hermitian quan-
tum Ising chain which undergoes, right at γc, a subradiance
transition from an extended critical phase with gapless decay
modes, to a gapped phase which is smoothly connected to the
dark state of the measurement operator.

In spite of the important similarities, the two protocols
differ for the behavior of the effective central charge as
a function of the measurement rate. In particular, we find
this quantity to be larger in the no-click limit, a signature

(a)

(b)

FIG. 1. Cartoon of the monitored quantum Ising chain. (a) Quan-
tum state diffusion protocol: on each lattice site a two-level system
(Ising spin) interacts with its neighbors and is subject to a weak-
continuous measurement of the up-polarized state. (b) Quantum
jump protocol: the spins in the chain interact through a non-
Hermitian Hamiltonian. Occasionally a quantum jump takes place,
projecting the measured degree of freedom in the up-polarized state.
The no-click limit corresponds to postselecting only trajectories
without jumps (see text for details).

of a noise-induced disentangling effect that appears clearly
in the statistics of the entanglement entropy, which shows
emergent bimodality upon approaching the critical point. Our
results highlight the key role played by the non-Hermitian
Hamiltonian for the qualitative understanding of entanglement
transitions and suggest that different stochastic ensembles
provide different universality classes of a common critical
phenomenon.

The paper is structured as follows. In Sec. II we introduce
the model and the measurement protocols. Then we discuss
the results for the two protocols in Sec. III, in particular the
entanglement dynamics (Sec. III A), the entanglement scaling
with system size (Sec. III B), and the entanglement statistics
(Sec. III C). We detail in the Appendices a derivation of the
protocol of interest, and a summary of the numerical methods
used for the simulations.

II. MODEL AND MEASUREMENT PROTOCOLS

We consider a one-dimensional quantum Ising chain with
Hamiltonian

H = J
L−1∑
i=1

σ x
i σ x

i+1 (1)

with open boundary conditions, evolving under the competing
effect of its own unitary dynamics and the measurement of
the up-polarized state ni ≡ (σ z

i + 1)/2 = |1〉〈1| (pictorially
illustrated in Fig. 1). Here σα are the Pauli matrices. We
now introduce the two measurement protocols that will be
considered in this work, namely. the quantum state diffusion
and the quantum jumps with postselection, corresponding to
the non-Hermitian Hamiltonian.

A. Stochastic quantum dynamics with continuous monitoring

Due to the monitoring, the evolution is captured by quan-
tum trajectories |ψ (ξt )〉 which follow the quantum state

224210-2



MEASUREMENT-INDUCED ENTANGLEMENT TRANSITIONS … PHYSICAL REVIEW B 103, 224210 (2021)

diffusion (QSD) equation

d|ψ (ξt )〉 = −iHdt |ψ (ξt )〉 +
L∑

i=1

(ni − 〈ni〉t )dξ i
t |ψ (ξt )〉

− γ

2

L∑
i=1

(ni − 〈ni〉t )
2dt |ψ (ξt )〉 (2)

(see Appendix A for a brief derivation of the above stochastic
Schrödinger equation). The first term in Eq. (2) represents
the unitary evolution, while the remaining encode the noise
effects. The dξ i

t are Îto increments of a Wiener process ξt =
(ξ 1

t , ξ 2
t , . . . , ξL

t ), responsible for the stochastic nature of the

trajectories, with zero mean dξ i
t = 0 and fulfilling the exact

property dξ i
t dξ

j
t = γ dtδi j . The last term in Eq. (2) describes

a deterministic back action from the measuring environment.
We note the presence of a feedback mechanism in Eq. (2),

as the noise contributions couple to the fluctuations of the
measured operator δni = ni − 〈ni〉t where 〈◦〉t = 〈ψ (ξt )| ◦
|ψ (ξt )〉t is the average over the quantum state. The role of
this feedback is to preserve the norm of the state (and any of
its cumulant) for any realization of the noise.

It is important to stress the difference between the condi-
tional and the mean state [42]. The conditional state is the
quantum trajectory itself ρt (ξt ) = |ψ (ξt )〉〈ψ (ξ)t |, fixed by a
realization of the Wiener process. Instead, the mean state is
given by

ρt =
∫

Dξt P(ξt )|ψ (ξt )〉〈ψ (ξt )| (3)

with P(ξt ) the probability distribution of the noise. Despite
that the conditional state is always pure, the mean state is
mixed, and follows the Lindblad master equation

d

dt
ρt = −i[H, ρt ] − γ

2

∑
i

[ni, [ni, ρt ]]. (4)

This difference is crucial, and highlights how the two states ρt

and ρt (ξt ) provide rather different information on the statisti-
cal properties of the system. For observables which are linear
in the state O[ρ] = Oρ, due to the linearity of the disorder
average, the mean state ρt encodes the statistical properties of
O. Specifically, for any function f (O), we have

tr[ρt (ξt ) f (O)] ≡ tr[ f (O)ρt ]. (5)

However, the above relationship fails if one is interested in the
noise average of quantities which depend nonlinearly on the
density matrix. A simple example involves the purity P (ρ) =
trρ2: while for the conditional state P[ρt (ξt )] = 1 (and hence
its disorder average), for the mean state we have P (ρt ) < 1.
In general, similar issues arise when one is interested in a
more subtle statistical correlation of the stochastic process, for
example, in the so-called overlaps Oi(t )Oj (t ) = 〈Oi〉t 〈Oj〉t .
We emphasize that this situation is essentially analogous to
the difference between annealed and quenched averages in
disordered systems [58].

After this parenthesis, we introduce the main observable of
interest: the (von Neumann) entanglement entropy [59–62].
Given a partition A ∪ B, the (conditional) reduced density
matrix ρA(ξt ) = trBρ(ξt ) encodes the bipartite entanglement.

The entanglement entropy is defined as

S(ξt ) = −trA[ρA(ξt ) ln ρA(ξt )]. (6)

We note that this is a well defined measure of entanglement
provided that the overall state is pure, in which case it yields
the amount of Bell pairs that can be distilled from the quantum
state. This is not the case for an overall mixed state, such as
the averaged state in Eq. (3), where also classical correlation
enters into this quantity [63]. For this reason, throughout the
paper we only consider the conditional state and the condi-
tional average of the entanglement entropy. To simplify the
notation, we furthermore omit the conditional specification.
After evolving the state under Eq. (2), we compute the entan-
glement entropy. Its average is given by

S =
∫

Dξt P(ξt )S(ξt ), (7)

as well as its full probability distribution is

P(St ) =
∫

Dξt P(ξt )δ[S − S(ξt )]. (8)

Throughout this paper we set J = 1 and study the problem by
varying the strength of the measurement γ and for different
system sizes L.

B. Non-Hermitian Hamiltonian

When the measurements act occasionally but abruptly on
the quantum state, the quantum trajectories are described by
the following stochastic Schrödinger equation:

d|ψ (Nt )〉 = −iHdt |ψ (Nt )〉 − γ

2
dt

∑
i

(ni − 〈ni〉t )|ψ (Nt )〉

+
∑

i

(
ni√〈ni〉t

− 1

)
δNi

t |ψ (Nt )〉, (9)

where Nt is a Poisson process, with δNi
t = 0, 1, (δNi

t )2 = δNi
t ,

and δNi
t = γ dt〈ni〉t . [A derivation of Eq. (9) is given in

Appendix A.] The dynamics generated by Eq. (9) preserves
the purity of the state for each trajectory, and gives an alterna-
tive unravelling of the average dynamics in Eq. (4).

When δNi
t = 0 on every site, the evolution is driven by the

non-Hermitian Hamiltonian

Heff = J
L−1∑
i=1

σ x
i σ x

i+1 − i
γ

2

L∑
i=1

ni, (10)

while when any δNi
t = 1, the last term in Eq. (9) domi-

nates and projects the measured degree of freedom onto the
up-polarized state |1〉i. The feedback constant ∝ iγ

∑
i〈ni〉t

enters as a renormalization of the wave function within the
non-Hermitian evolution driven by Eq. (10). In the follow-
ing we consider a postselection of the stochastic dynamics,
which arises when, among the experimental runs, we select
a portion of trajectories where measurements do not take
place (no-click limit). The evolution is therefore deterministic,
and driven by the non-Hermitian Hamiltonian in Eq. (10). In
particular, the effect of the environment enters the imaginary
part of Eq. (10). Here we notice that this limit captures dif-
ferent aspects of the weak measurement-induced dynamics
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compared to the quantum state diffusion. In the framework
of quantum jumps, the latter arise in the limit of infinite
measurement events, and hence correspond to an infinite-click
dynamics [64].

The dynamics of this non-Hermitian Hamiltonian has been
considered previously in Ref. [49], where a subradiant tran-
sition has been observed in relationship to a quantum-Zeno
effect. Here we study its entanglement properties, namely,
we evolve the initial density matrix ρ0 = |00 . . . 0〉〈00 . . . 0|
according to

ρ(t ) = e−iH†
eff tρ0eiHeff t

Tr
(
ρ0eiHeff t e−iH†

eff t
) , (11)

where the denominator takes into account the term propor-
tional to γ dt

∑
i〈ni〉t in Eq. (9). Then, given a partition A ∪

B, we construct the reduced density matrix ρA(t ) = trBρ(t )
which encodes the bipartite entanglement. As stressed before,
the non-Hermitian Hamiltonian provides a deterministic pro-
tocol, hence the entanglement entropy is deterministic:

S(t ) = −trA[ρA(t ) ln ρA(t )]. (12)

To explore the stationary regime, in order to avoid residual
dynamical oscillations, we consider

S(∞) ≡ lim
t→∞

1

t − tsat

∫ t

tsat

ds S(s). (13)

As for the monitoring case, we make use of the Jordan-
Wigner mapping to write down the non-Hermitian Ising
model in Eq. (10) in terms of a quadratic fermionic model (see
Appendix B).

III. RESULTS

In this section we present the results of the numerical simu-
lations for the quantum state diffusion and the non-Hermitian
Hamiltonian. After a discussion of the entanglement growth
within both paradigms, we compare the entanglement scaling
at the stationary state. Finally, we investigate the entanglement
statistics of the quantum state diffusion protocol, and relate it
to the non-Hermitian results.

A. Entanglement growth

We start considering the initial state |ψ0〉 = |00 . . . 0〉 and
evolve the system according to the QSD protocol defined in
Eq. (2). This setup is suitable to investigate the entanglement
generation in the system, as the initial state has zero entan-
glement being a product state. (We have checked, but not
presented here, that our results are robust against a different
choice of initial product state.) We make use of the Jordan-
Wigner mapping to write the monitored Ising model as a
quadratic model of spinless fermions, which can be solved
efficiently. (Details on the free fermion techniques, and on
the numerical implementation are given in Appendix B). For
the computation of entanglement, we choose a subsystem A
of LA contiguous sites. The average entanglement evolution
is shown in Fig. 2. For small to intermediate values of γ

[see panels (a)–(c)] we find a logarithmic growth in time of

FIG. 2. Dynamics of the entanglement entropy averaged over
N = 2000 trajectories for different values of the measurement
strength γ , different system sizes L, and fixing LA = L/4. (a)–(c) We
see a logarithmic growth in time of the entanglement (note the loga-
rithmic scale for the time axis) with a saturation to a size-dependent
plateau, for γ < 4 and a much slower growth to a value independent
from system size, for γ > 4.

the entanglement,

S(t ) ∼ ln t, (14)

which ultimately saturates at times tsat ∼ L/γ . It is worth em-
phasizing that already a small monitoring rate γ is enough to
give rise to a nontrivial entanglement dynamics compared to
the isolated system oscillation (generated by H = ∑

i σ
x
i σ x

i+1).
In other words the interplay between measurements and uni-
tary evolution can increase the entanglement production, at
least in a certain region of the parameters, as also noted in
Ref. [49]. However, upon further increasing the measurement
rate we see a substantial change of the entanglement growth
which already for γ = 4 shows a rapid saturation to a plateau
that is almost independent from the size, a trend that continues
for larger values of γ .

The results of the entanglement dynamics for the non-
Hermitian Ising model [cf. Eq. (12)] are given in Fig. 3.
For small values of γ [panels (a)–(c)], we see that the en-
tropy exhibits an overall logarithmic growth, which resembles
the result for the QSD protocol, but has the important dif-
ference of exhibiting residual oscillations which dress both
the growth and the saturation regimes. Upon further increas-
ing the measuring strength γ the entanglement dynamics in
the non-Hermitian case displays a sharp transition towards
a regime characterized by a fast approach to a stationary
value, with no oscillations. Our numerics locate the boundary
between these dynamical regimes around γ ∼ 4, an estimate
compatible with what was found for the QSD protocol. As we
will discuss in the next section, we can understand the origin
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FIG. 3. Entanglement dynamics for the non-Hermitian Hamilto-
nian for different values of the measurement rate γ and different
system sizes. For small γ [panel (a)] we see a logarithmic growth
in time and a saturation to a plateau that depends on system sizes.
For large γ [panel (b)] the entanglement rapidly saturates to a value
that does not depend on size. Approaching the transition point we see
strong oscillations in the dynamics.

of this sharp transition by looking at the spectral properties of
the non-Hermitian Hamiltonian.

B. Entanglement scaling and effective central charge

As we have seen, at long enough times the entanglement
reaches a stationary value in both protocols. We first discuss
the scaling of this stationary entanglement with system size.
This usually provides key insights on the properties of the
system at long times. To this extent we chose a subsystem
of LA = L/4 contiguous spins and plot in Fig. 4 the long-time
entanglement as a function of L and different values of γ .

For the quantum state diffusion protocol, we can clearly
distinguish a regime of logarithmic entanglement growth with
system size for small γ , which eventually evolves into a
much weaker dependence, an almost constant plateau for large
measurement rates [see Fig. 4(a)]. As we are going to discuss
further below, those two regimes are separated by a sharp
entanglement transition.

We note that a logarithmic scaling of the average entan-
glement in an extended region of parameters is a particularly
intriguing result which was obtained before in free-fermion
models with a continuous U (1) symmetry [44] and more
recently in connection with a Berezinskii-Kosterlitz-Thouless
(BKT) transition [48,52]. Here we find this result for a model
which only features a discrete Z2 symmetry and whose ground
state would show logarithmic scaling of the entanglement only
at the critical point. This suggests that a different mechanism,
not directly related to the microscopic symmetries of the

FIG. 4. Stationary-state entanglement entropy as a function of
the length of the chain. (a) Average entanglement entropy for the
QSD protocol. (b) Long-time entanglement entropy for the non-
Hermitian dynamics. In both cases we see a transition from a
logarithmic critical scaling, for small γ to an area law (constant)
scaling at large γ . Different curves in the two panels correspond to
increasing values of γ , from γ = 0.25 (top curve) to γ = 6 (bottom
curve) with a 	γ = 0.25.

problem, could be behind the origin of this seemingly critical
phase.

Interestingly, the finite-size scaling of the entanglement
entropy for the non-Hermitian Hamiltonian shows a behavior
which is qualitatively similar to the QSD protocol, as we
show in Fig. 4(b), including a logarithmic scaling for small
γ and an area-law (constant) scaling for large measurement
rates, separated by a sharp transition. We also note that the
two scaling regimes are connected by a finite-size crossover,
absent in the stochastic QSD protocol, whose characteristic
scale we found to diverge at the transition (not shown).

For equilibrium quantum critical systems the prefactor of
the logarithmic scaling of the entanglement entropy is con-
trolled by the central charge of the associated conformal field
theory(CFT) [59], a universal quantity which roughly mea-
sures the number of degrees of freedom in the CFT. Following
this analogy, Ref. [44] introduced an effective central charge
for an XX spin chain under continuous monitoring, which
turned out to be a nonuniversal function of the measurement
rate. Here we follow this route and define an effective central
charge for both the QSD protocol and the non-Hermitian
Hamiltonian by fitting the data in Fig. 4 according to the
ansatz

QSD S = 1
3 cQSD(γ ) ln L + a,

Heff S = 1
3 cHeff (γ ) ln L + b. (15)

Here a and b are two system-size independent quantities.
We plot the result in Fig. 5 and find that c(γ ) decreases

with γ and, quite remarkably, vanishes for both protocols
around the same value of measurement strength γc � 4, that
we therefore establish as critical value for the entanglement
transitions between logarithmic and area-law regimes. Our
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FIG. 5. Effective central charge as a function of the measurement
rate γ , for the QSD protocol and the non-Hermitian dynamics. In
both cases we find that c(γ ) decreases monotonously and vanishes
around γc � 4, which locates the entanglement transition between
logarithmic scaling and area law. Interestingly the two central
charges coincide at small and large values of γ , while approaching
the critical point we find the non-Hermitian one to be larger, possibly
vanishing at γc in a nonanalytic way.

results are consistent with the unbiased fit on the region
γ > 4, which, for the investigated values, is compatible with
zero within errorbar. Despite this similarity we notice that the
effective central charge shows a rather different dependence
from γ in the QSD and in the non-Hermitian Hamiltonian
protocols. In particular, a direct comparison in Fig. 5 shows
that the effective central charges coincide at small and large
values of γ , while they deviate in a region before the critical
point. Here the non-Hermitian effective central charge turns
out to be larger than the one associated to the QSD protocol,
a point on which we will come back to in the next section.

Before closing this section we note that many of the
properties found for the entanglement dynamics of the non-
Hermitian Hamiltonian can be naturally understood in terms
of the spectral properties of the non-Hermitian Ising model in
Eq. (10). In fact this can be easily diagonalized once written
in fermionic language [49,65,66], and takes the form

Heff =
∑
k>0


k (η̄kηk + η−k η̄−k ) + E0, (16)

where η̄k, ηk are fermionic operators obtained from a non-
Hermitian Bogolyubov rotation, E0 is an additive constant
fixing the energy zero, and 
k are the quasiparticle energies.
We note that these are in general complex, as the model lacks
any PT symmetry and read


k = 2

√
1 − γ 2

16
+ i

γ

2
cos k. (17)

The non-Hermitian Ising model features a subradiance
transition at a critical value of the measurement rate, given
exactly by γc = 4, at which the state with smallest imaginary
part changes in a nonanalytic way [49]. For small γ < γc the
imaginary part of the spectrum in Eq. (17) is gapless and,
consistently, the correlation functions in this phase decay as
a power law [66], a result which is at odds with a model
possessing only a discrete symmetry. From this point of view

the logarithmic scaling of the entanglement entropy can be
naturally understood, since the entire phase γ < γc has soft
modes with small quasidegenerate lifetime, which are respon-
sible for the slow growth of the entanglement. On the other
hand, the real part of the spectrum is gapped for γ < γc,
leading to residual oscillations in the entanglement dynamics.

Above the subradiance transition for γ > γc a gap opens up
in the imaginary part of the spectrum 
k , which is consistent
with the fast entanglement dynamics found in this regime.
The correlation functions in this phase are expected to decay
exponentially over a length diverging as γ → γ +

c , a fact that
can naturally explain the emergence of a crossover in the
finite-size entanglement scaling. We note that in the subra-
diant phase the long-time dynamics is controlled by a pair
of states with the smallest nonzero imaginary part. These in
the strong measurement limit coincide with the dark states of
the measurement operator, which are factorized (uncorrelated)
eigenstates of the transverse magnetization, therefore justify-
ing the small, system-size independent entanglement entropy.

We note that the non-Hermitian protocol can be also easily
generalized to an Ising model evolving in the presence of a
real transverse field h, in addition to the imaginary one due to
the measurement rate. In this case we expect, from the analy-
sis of the quasiparticle spectrum, that a spectral and entangle-
ment transition would occur at a field-dependent rate γc(h).
A complete analysis of the dynamics in this case is, however,
beyond the scope of this work and left for future works.

Finally, the insights on the non-Hermitian Hamiltonian
could suggest that an effective field theory description could
be possible for γ < γc and that the effective central charge
could be computed using field theory replica techniques [67],
which, however, we do not attempt here. We also note that,
in this perspective, an effective central charge which depends
on a parameter in a nonuniversal way seems very natural, and
in fact several nonunitary field theories have been shown to
enjoy this property [45,68,69].

C. Entanglement statistics

Additional insights are given by the statistical fluctuations
of the entanglement in the quantum state diffusion protocol, a
feature that goes beyond the simple average so far discussed
and that is encoded in the full probability distribution, P(St ),
defined in Eq. (8). Concretely, we investigate this distribution
at stationarity and evaluate P(S∞) = limt→∞ P(St ).

As we see in Fig. 6, the statistics of entanglement shows
a rather rich evolution with γ . In particular, we see that in
the logarithmic phase (γ < γc), the statistics changes dramat-
ically, much more than what one could have guessed from the
average value, whose dependence from γ can be reabsorded in
a renormalization of the central charge. For small values of the
measurement rate, γ � 1 [panel (a)], the entanglement distri-
bution is a normal Gaussian which broadens asymmetrically
for γ ∼ 2 [panel (b)] and develops an emergent bimodality
as the critical point γc is approached [panels (c)–(e)]. Specif-
ically we see that already for γ = 2.75 a secondary peak,
for lower values of the entanglement, starts to emerge. Upon
further increasing γ we see a transfer of weight between
the high-entanglement and low-entanglement peaks, with the
latter ultimately becoming the dominant one as the system
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FIG. 6. (a)–(f) Probability distribution of the entanglement entropy for different values of γ and different system sizes. The realization
collected for these functions is N = 64 000. We see that upon increasing γ , the statistic evolves from a simple Gaussian [panels (a) and (b)]
to a skewed distribution [panels (c)–(e)], with emergent bimodality. At large γ , the distribution is peaked at S∞ � 0 [panel (f)]. The solid line
shows the average (blue line) over the trajectories for the quantum state diffusion, and the stationary value of the non-Hermitian Hamiltonian
(orange line). (g),(h) Different statistical estimators 〈〈S〉〉 versus system size for different values of γ . Note the logarithmic scaling in the
L axis.

enters the area-law phase. Here, for γ > γc the entanglement
distribution is strongly skewed and peaked around small val-
ues of the entropy.

It is interesting to discuss the size dependence of the his-
tograms, which is rather different depending on the value of
γ . In particular, as we show in Fig. 6(g), where we plot the
average, median, and typical entanglement for different L and
γ , we find that for γ � 2.5 all indicators scale logarithmi-
cally with L. Instead, Fig. 6(h) shows that approaching the
critical point (γ = 3.75) and above it (γ = 8) the statistical
estimators deviate from each other, a signature of the non-
Gaussianity of the entanglement distribution. In the area-law
phase for γ > γc the scaling of all the statistical proxies con-
sidered becomes independent on the system size.

The emergence of bimodality in the entanglement statis-
tics is an interesting result, which suggests that within the
log phase the entanglement is not a self-averaging quantity,
and that limiting the discussion to the average value could
hide important features of the problem. A similar result was
found in the monitored XX model under QSD protocol [44]
and, in Ref. [49] for the statistics of the return probability
and the local transverse magnetization under a quantum jump
stochastic protocol. In this latter case it was shown that the
non-Hermitian Hamiltonian captured a secondary peak in the
distribution of the relevant observables.

It is therefore interesting to compare the statistical prop-
erties of the entanglement in the QSD protocol with the
non-Hermitian Hamiltonian. This comparison is proposed in
Fig. 6, where we indicate with a dashed line the long-time
entanglement in the non-Hermitian case and with a blue
line the average entanglement of the QSD protocol. We see
that indeed the non-Hermitian Hamiltonian provides a good
proxy for the average entanglement both for small γ , when

entanglement fluctuations are Gaussian, as well as for large
γ when the statistics is dominated by small values of the
entanglement entropy. For intermediate values of γ instead,
when the statistics becomes strongly bimodal and fluctua-
tions due to the noise are more relevant, the entanglement
content of the non-Hermitian Hamiltonian is systematically
larger than the average, reflecting the atypical nature of the
no-click process. This is not surprising in retrospect, as the
QSD protocol contains randomness which is expected to de-
crease the entanglement content of the system as opposed to
the translational-invariant non-Hermitian protocol. We note
also that in addition to the leading scaling behavior of the
entanglement, captured by the effective central charge, there
is also a nonuniversal correction to the entanglement that
depends in principle on γ and could play a role in the precise
comparison between the two protocols.

IV. CONCLUSION

In this work we have discussed measurement-induced crit-
icality in a quantum Ising chain coupled to a monitoring
environment. We have focused on two different limits of
the measurement problem, corresponding respectively to the
quantum state diffusion protocol and the no-click dynamics,
the latter described by a non-Hermitian Ising model.

In both cases we found a sharp phase transition in the
entanglement properties of the system, as a function of the
measurement rate γ . The entanglement dynamics out of an
initial product state evolves from a slow logarithmic growth
at small measurement rates to a fast approach to a stationary
value at large γ . The stationary-state entanglement shows a
critical logarithmic scaling with respect to system size, with
an effective central charge which changes continuously with
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γ and vanishes at a critical strength γc, indicating a transition
towards an area-law scaling which we found numerically to
coincide in the two protocols. The existence of an extended
critical phase with logarithmic scaling of the average entan-
glement is particularly surprising for our Ising model which,
differently from others stochastic measurement problems con-
sidered recently in the literature, lacks a continuous symmetry
usually associated with gapless critical behavior. The no-click
limit and associated non-Hermitian evolution provides a natu-
ral mechanism for this phenomenology, in terms of a spectral
(subradiant) phase transition from a critical phase with gapless
decay modes at small measurements to a gapped area-law
phase. We also find important differences between the two
protocols, in particular in the behavior of the effective central
charge as a function of the measurement strength which turns
out to be larger in the non-Hermitian case. This effect, which
seems to suggest different universality classes depending on
the specific measurement ensemble, can be understood in
terms of a disentangling effect of the noise.
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APPENDIX A: CONTINUOUS MEASUREMENTS
AND STOCHASTIC SCHRÖDINGER EQUATIONS

This Appendix is an overview of stochastic quantum dy-
namics in the Hilbert space (see Refs. [54,64,70,71] for a
general review). We first introduce the positive-operator value
measurements (POVM), which arise naturally when system
and environment interact for a finite time. In the limit of
weak measurement, the system evolves through a stochastic
Schrödinger equation, the details of which depend on the
environment specifics. We consider two possible choices of
system-environment setups which naturally translate, respec-
tively, in the quantum state diffusion Eq. (2) and in the quan-
tum jump equation (9). From the latter, the non-Hermitian
quantum Hamiltonian equation (10) is obtained through post-
selection. These equations correspond to different unravelling
of the same master equation, highlighting the independence of
the mean state Eq. (3) from the stochastic protocols.

1. Weak measurements and quantum trajectories

Measurement lies at the core of quantum mechanics. Given
a state |ψ〉, and an observable O, the von Neumann postu-

lates states that, when a measurement takes place, the wave
function collapses in the eigenvector |n〉 of O corresponding
to the measurement outcome on. This can be seen as the
transformation

|ψ〉 
→ |ψ ′〉 = Pn|ψ〉
‖Pn|ψ〉‖ . (A1)

Here Pn = |n〉〈n| is the projector to the eigenspace of on (the
observable is resolved as O = ∑

n onPn), and pn ≡ 〈ψ |Pn|ψ〉
is the measurement probability.

These projective measurements are an idealization: they
are implicitly instantaneous, and they collapse a pure state into
a pure state. In contrast, real-world experiments are imper-
fect: they require a finite time of interaction with the system,
and in general the outcome state is mixed. Positive-operator
value measurements represent a generalization of projective
measurements, which are suitable to treat situations where the
interaction time between system and ancilla is comparable to
the energy scale of the system.

Given a set of positive operators En which sum to the
identity

∑
n En = 1, it is possible to define the probabilities

pn = tr(ρEn). Differently from the projective case, these op-
erators are not orthogonal, hence the knowledge of En does not
fix the state after the measurement. It is necessary to know a
set of operators An,k such that En = ∑

k A†
nkAnk (dubbed Kraus

operators). Then, the state after the measurement outcome
corresponding to En is

ρ 
→ ρ ′ =
∑

k AnkρA†
nk

tr(ρEn)
. (A2)

It is clear that in general, given a pure density matrix ρ, the
outcome measurement in Eq. (A2) is mixed. The condition to
preserve purity is that En = A†

nAn, i.e., there is only one Kraus
operator per measurement. In this case Eq. (A2) can be recast
in a wave-function perspective

|ψ〉 
→ |ψ ′〉 = An|ψ〉√〈ψ |En|ψ〉 . (A3)

POVM can be implemented by allowing the system to in-
teract with an ancilla for a finite time, and apply afterward
a projective measurement to the ancilla. The limit when this
interaction is small is the weak measurement, when typically
the state of the system is mildly perturbed.

As an example, we consider the toy model of a two-level
system |ψ〉 = ∑

n=0,1 cS
n |n〉S which interacts with a two-level

ancilla initialized in a state |a〉 = ∑
k=0,1 cA

k |k〉A. If their inter-
action is infinitesimal, the unitary evolution of the combined
system initialized in |�〉 = |ψ〉 ⊗ |a〉 is given by

U (ε) = exp

[
−iε

∑
j

OS
j ⊗ OA

j

]
. (A4)

After the unitary transformation, entanglement is generated,
and the state up to first order in ε is given by

|� ′〉(ε) =
∑
m,n

(
cS

ncA
m − iεcent

nm

)|n〉S ⊗ |m〉A,

cent
nm =

∑
j

∑
n′,m′=0,1

OS
j,n′,nOA

j,m′,mcS
n′cA

m′ , (A5)

Oμ

j,k,k′ ≡ 〈k|Oμ|k′〉μ, μ = S, A.
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Rearranging the above equation, the system is given by

|� ′〉(ε) = α(ε)|φ0〉S ⊗ |0〉A + β(ε)|φ1〉S ⊗ |1〉A, (A6)

where the constants α, β, and φk are read out matching
Eqs. (A5) and (A6). If a measurement is now performed on
the ancilla along the z direction, one obtains

|ψ〉 =
{|φ0〉, with probability p0 = |α(ε)|2,
|φ1〉, with probability p1 = |β(ε)|2. (A7)

Hence, POVM can be implemented by carefully designing
the system-ancilla interaction, the ancilla initial state, and the
projective measurement on the ancilla. To conclude, let us
notice that, in the case of the two-level ancilla, the Kraus
operators are one for each measurement type. Hence, the
measurements are generated by Ek = A†

kAk, k = 0, 1. This is
a convenient, but not unique, setting to guarantee the purity
preservation of the state. Furthermore, as stressed, the precise
form of the operators Ak depends on the microphysics of the
system and ancilla. As we shall see, to derive a stochastic
Schrödinger equation it is usually necessary to expand up
to second order in the parameter ε. (Nonetheless, the above
argument is still valid.) In the following we shall assume that
the Kraus operators (and hence the POVM) are given by the
problem, thus simplifying the discussion.

2. Quantum state diffusion

We consider the following Kraus operators:

A0 =
√

1
2 |0〉〈0| +

√
1
2 − ε|1〉〈1|, (A8)

A1 =
√

1
2 |0〉〈0| +

√
1
2 + ε|1〉〈1|. (A9)

Starting from the state |ψ〉 = α|0〉 + β|1〉, after the measure-
ment the state is in one of the following two states:

|φ0〉 = A0|ψ〉√
p0

= α

(
|β|2ε + 3

2
|β|4ε2

)
|0〉

+ β

(
ε(1 − |β|2) + ε2

2
(−1 − 2|β|2 + 3|β|4)

)
|1〉,
(A10)

|φ1〉 = A1|ψ〉√
p1

= α

(
−|β|2ε + 3

2
|β|4ε2

)
|0〉

+ β

(
−ε(1 − |β|2) + ε2

2
(−1 − 2|β|2 + 3|β|4)

)
|1〉,

(A11)

with probability respectively p0 = 1/2 − |β|2ε and p1 =
1/2 + |β|2ε. The above postmeasurement state can be col-
lected into a compact differential form, by introducing the
random binomial variable dW = ∓ε, and the operator n =
|1〉〈1|. We have

d|ψ〉 = |ψ ′〉 − |ψ〉 = 2ε2(〈n〉2 − 2〈n〉n)|ψ〉

+ dW (n − 〈n〉)|ψ〉 − ε2

2
(n − 〈n〉)2|ψ〉, (A12)

where 〈◦〉 = 〈ψ | ◦ |ψ〉 is the state average. The expression
can be simplified by centering the random variable dW 
→

dξ = dW − dW , since the average dW = 2β2ε2 = 2〈L〉ε2

due to the O(ε) unbalance in the outcome probability. The
variance is preserved at leading order dξ 2 = ε = dW 2, and
the equation reads

d|ψ〉 = dξ (n − 〈n〉)|ψ〉 − ε2

2
(n − 〈n〉)2|ψ〉. (A13)

Equation (A13) gives one interaction with a single ancilla
qubit. In order to derive a stochastic Schrödinger equation we
subsequently couple a series of identically prepared ancillas
with the same paradigm. Hence, Eq. (A13) is iterated multiple
times. Taking the scaling limit, with infinitesimal time step we
have

d|ψ (ξt )〉
dt

= dξt

dt
(n − 〈n〉t )|ψ (ξt )〉 − ε2

2dt
(n − 〈n〉t )

2|ψ (ξt )〉.
(A14)

Fixing the scaling ε2 = γ dt reduces this equation to

d|ψ (ξt )〉 = dξt (n − 〈n〉t )|ψ (ξt )〉 − γ

2
dt (n − 〈n〉t )

2|ψ (ξt )〉.
(A15)

This is the quantum state diffusion equation for a two-level
qubit.

Let us make some final comments. (i) The scaling ε =√
γ dt is typical when dealing with Kraus operators (for in-

stance, see Refs. [3,54,64] for an in-depth discussion). This
is due to a Markovian approximation, which is assumed to
hold for the systems of interest. (ii) The generalization to
multiple qubits is trivial. Recovering the noise terms in Eq. (2)
requires the introduction of L uncorrelated Îto terms dξi with
dξ = 0 and dξidξ j = γ dtδi j . (iii) For the time evolution in the
limit dt → 0, the binomial variable can be approximated by a
Gaussian increment, in the same spirit as obtaining a Wiener
process from a random walk.

3. Quantum jumps and non-Hermitian Hamiltonian

We consider the following Kraus operators:

A0 = |0〉〈0| + cos ε|1〉〈1|, (A16)

A1 = sin ε|1〉〈1|. (A17)

In this situation, given the state |ψ〉 = α|0〉 + β|1〉, the mea-
surements E0 and E1 are unbalanced, with probability p0 =
1 − |β|2ε2 and p1 = |β|2ε2, respectively. As in the previous
section, we introduce the operator n = |1〉〈1|. The state after
the measurement is in either of the following states:

|φ0〉 = |ψ〉 + 1
2α〈n〉ε2|0〉 + 1

2β(〈n〉 − 1)ε2|1〉
= |ψ〉 − 1

2 (n − 〈n〉)ε2|ψ, (A18)

|φ1〉 = |1〉. (A19)

In differential form, we have

d|ψ〉 = −1

2
(n − 〈n〉)ε2|ψ〉 +

(
n√〈n〉 − 1

)
δN |ψ〉. (A20)

Here δN is a Poisson process: δN = 0(1) with probability
p0(p1). Since δN = |β|2ε2, the state is unlikely to experience
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a measurement and usually is affected only by the Kraus oper-
ator A0. However, when δN = 1, the second term in Eq. (A20)
dominates the infinitesimal one, and projects the state onto |1〉.
Notice that in this case δN2 = δN .

Suppose that the system interacts with n ancilla qubits. As
previously discussed, the stochastic Schrödinger equation is
given once the scaling ε2 = γ dt is set:

d|ψ (Nt )〉 = −1

2
(n − 〈n〉t )γ dt |ψ (Nt )〉

+
(

n√〈n〉t
− 1

)
δNt |ψ (Nt )〉. (A21)

This is the so-called quantum jump equation. The first term
is a non-Hermitian Hamiltonian, while the second term is the
quantum jump. When the event happens, the state is projected
to |1〉〈1|. It is interesting to ask how much is the probability
that the state does never jump? The probability of this no-click
dynamics for one qubit is given by

Pno-click = �∞
n=0 p0 � |α|2. (A22)

Thus, the number of trajectories with no-jump effect is sub-
stantial.

We conclude with a few remarks. (i) The generalization
to many body is trivial, once L uncorrelated variables are
included, and the Hamiltonian H of the system is added.
The final equation for the quantum jumps is Eq. (9). The
non-Hermitian Hamiltonian in Eq. (10) is recast when post-
selecting the trajectories without jumps. Notice that the
contribution ∝γ dt

∑
i〈ni〉t factorizes as an overall rescaling

of the wave function, and cancels out in the average. (ii) In the
situation of a spin chain, the probability of no-click dynamics
(hence non-Hermitian generated dynamics) depends on the
system size. In practice, one chooses among all the trajectories
the portion where no jump has occurred. This postselec-
tion process is key in investigating non-Hermitian physics
in experimental setups. (ii) Both the quantum jump and the
quantum state diffusion equations induce the same Lindblad
evolution Eq. (4) for the mean state. This difference highlights
how quantum trajectories contain substantially more informa-
tion than the average state. Importantly, the non-Hermitian
Hamiltonian coincides with the noncoherent term of the Lind-
blad equation (4).

APPENDIX B: FREE-FERMION TECHNIQUES
AND NUMERICAL IMPLEMENTATION

In this Appendix we present a summary of the simulation
techniques used in this paper. (For a general reference on
the ideas used here, see Ref. [72].) These methods are based
on the fermionic representation of the Ising model, which
can be applied also to Eq. (2) [Eq. (10)], as the noise (non-
Hermitian) term preserves the quadratic structure. We first
review the Jordan-Wigner transformation, and explain how
the time evolution reads in fermionic variables. Due to the
Gaussian preservation of both quantum state diffusion and
non-Hermitian Hamiltonian, the state is fully characterized by
its two-point function. Afterwards, we show how the entangle-
ment entropy is derived from the correlation matrix. Finally,
we give some detail of the numerical implementation.

1. Jordan-Wigner mapping

The Jordan-Wigner transformation is defined by

σ x
i = Ki(ci + c†

i ), Ki =
∏
j<i

(2ni − 1), (B1)

ni = c†
i ci. (B2)

Here, the string operator Ki ensures the fermionic algebra. For
the quantum state diffusion Eq. (2), the dynamics maps to

d|ψ (ξt )〉 = − i
L−1∑
i=1

(c†
i ci+1 + c†

i c†
i+1 + H.c.)dt |ψ (ξt )〉

+
L∑

i=1

(ni − 〈ni〉t )dξ i
t |ψ (ξt )〉

− γ

2
dt

L∑
i=1

(ni − 〈ni〉t )
2|ψ (ξt )〉. (B3)

Instead for the non-Hermitian Hamiltonian Eq. (10), we have

d|ψ〉 = −i
L−1∑
i=1

(c†
i ci+1 + c†

i c†
i+1 + H.c.)dt |ψ〉

− γ

2
dt

L∑
i=1

ni|ψ〉. (B4)

Within this formalism, if the initial state of the system is
Gaussian, then the state is Gaussian at each time step. In
particular, all the observables are encoded in the correlation
matrix

Gi j =
(〈c†

i c j〉 〈c†
i c†

j 〉
〈cic j〉 〈cic

†
j 〉

)
. (B5)

In the next section, we show how the dynamics can be reduced
to the time evolution of a 2L × 2L matrix.

2. Dynamics in the fermionic formalism

The equation of motion for both the protocols can be writ-
ten as d|ψ (ξt )〉 = dZt |ψ (ξt )〉, where dZt is quadratic in the
creation/destruction fields. For the quantum state diffusion

dZt = dt

(
−iH − γ

2

∑
i

(ni − 〈ni〉t )
2

)

+
∑

i

dξ i
t (ni − 〈ni〉t ), (B6)

while for the non-Hermitian Hamiltonian we have

dZt = dt

(
−iH − γ

2

∑
i

ni

)
= −idtHeff . (B7)

Both these instances can be treated on the same footing, once
the operator dZt is specified. From the operator dZt , it is pos-
sible to write down an equation of motion for the correlation
matrix Eq. (B5). [This is obtained by taking the differential
of Eq. (B5), simplifying the fermionic algebra, and expanding
up to order O(dt )].
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However, in practical implementation, this method is not
the most efficient. A better strategy, which we follow in this
paper, is the route pioneered in Ref. [42]. Since the system is
Gaussian, for any t , there exists a unitary matrix

Ut =
(

Ut V †
t

Vt U †
t

)
(B8)

such that

|ψ〉t = 1√| det Ut |
exp

⎛
⎝−1

2

∑
i, j,k

(Ut )i,k (V †
t )k, jc

†
i c†

j

⎞
⎠|0〉.

(B9)

This condition is equivalent to finding a unitary transforma-
tion that maps the original fermionic fields (ci, c†

j ) to a new

set (χi, χ
†
j ) such that χi|ψ〉t = 0 for all i. Explicitly, labeling

a vector of fermionic field as c = (c1, c2, . . . , cL ),(
χ

χ†

)
= Ut

(
c

c†

)
. (B10)

From the definition of the correlation matrix and Eq. (B9),
and after few manipulations in fermionic algebra, we have the
relationship

G(t ) = Ut

(
1L×L 0L×L

0L×L 0L×L

)
U†

t . (B11)

Hence, the full evolution is encoded in Ut . The equation of
motion for this object are easily derived from Eq. (B10) and
using the annihilation condition χi|ψ〉t = 0. In practice it can
be implemented into two steps. (i) Integrate the Heisenberg
equation of motion between t and t + dt (with initial condi-
tion Ut=0 = U0 given):

dUt = 2dZtUt . (B12)

(ii) Apply a renormalization to guarantee that Ut+dt is
unitary (for instance, a QR decomposition). This guarantees
that |ψ〉t+dt is in the form Eq. (B9) with the operators given in
Ut+dt . For concrete details on the numerical implementation,
see Appendix B 4.

3. Majorana fermions and entanglement entropy

For a Gaussian state, Wick’s theorem reduces the compu-
tation of entanglement from diagonalizing a 2L × 2L matrix
to a 2L × 2L linear problem. For this goal, it is convenient to

introduce two species of Majorana fermions:

a j,1 = c j + c†
j , a j,2 = i(c†

j − c j ). (B13)

Then the matrix

V =
(

1L×L 1L×L

−i1L×L i1L×L

)
(B14)

transforms the correlation function from Dirac fermions
to Majorana W = V GV †. Due to the Majorana algebra
{ai,p, a j,q} = δi, jδp,q, the Majorana correlation can be de-
composed into W = 1 + iW̃ . The matrix W̃ is real and
antisymmetric, and is the key actor in computing any ob-
servable. In particular, entanglement entropy on a bipartition
A ∪ B is obtained by diagonalizing W̃ |A(B), that is, restricting
the indices of the Majorana fermions within either partition. If
the eigenvalues of W̃ |A are λk , then the entanglement entropy
is given by

S = −
∑

k

(
1 + λk

2
ln

1 + λk

2
+ 1 − λk

2
ln

1 − λk

2

)
. (B15)

4. Numerical implementation

The numerical implementation can be adapted to the proto-
col considered. For the quantum state diffusion, it is practical
to divide the unitary step from the noise term dZt = −iHdt +
dT . The Hamiltonian H can be stored and exponentiated
only once, while the noise term dT is diagonal, with el-
ements dTi j = δi j[dξ i + γ dt (2〈ni〉 − 1)]/2 that needs to be
computed repeatedly at each time step.

The resulting evolution then is

Ũt+dt = N e2dT e2iHdtUt , (B16)

where we have neglected higher order terms O(dξdt ) (Trot-
ter approximation). The normalization N is unimportant,
as Eq. (B16) is followed by a QR decomposition Ũt+dt =
Qt+dtRt+dt , and by setting Ut+dt = Qt+dt . As previously dis-
cussed, this condition guarantees the state is in the form of
Eq. (B9) and the correlation function is obtained through
Eq. (B11).

For the non-Hermitian quantum evolution, it is sufficient to
exponentiate once the operator dZt = −iHeffdt and apply it
subsequently to generate the evolution

Ũt+dt = N e2iHeff dtUt . (B17)

After each time step, the QR decomposition is implemented
to normalize the state. In both situations, the entanglement
entropy is computed as described in Appendix B 3.
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