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Acoustic properties of metallic glasses at low temperatures: Tunneling systems and their dephasing
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The low temperature acoustic properties of bulk metallic glasses measured over a broad range of frequencies
rigorously test the predictions of the standard tunneling model. The strength of these experiments and their
analyses is mainly based on the interaction of the tunneling states with conduction electrons or quasiparticles
in the superconducting state. A series of experiments at kHz and GHz frequencies on the same sample material
essentially confirms previous measurements and their discrepancies with theoretical predictions. These discrep-
ancies can be lifted by considering more correctly the linewidths of the dominating two-level atomic-tunneling
systems. In fact, dephasing caused or mediated by interaction with conduction electrons may lead to particularly
large linewidths and destroy the tunneling sytems’ two-level character in the normal conducting state.
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The low temperature properties of disordered solids make
up a fascinating thermodynamic combination comprising spe-
cific heat, thermal conductivity, and dielectric as well as
mechanic susceptibilities [1–4]. The standard tunneling model
[5,6] seems to account for all these properties in a material-
independent, universal manner establishing its fifty-year-long
success despite quantitative disagreement with some experi-
ments. A particularly remarkable example is the unexpected
crossing of the sound velocities of metallic glasses measured
in the superconducting or in the normal state of the same sam-
ple [7,8]. An experiment is shown in Fig. 1. The normal state
is enforced by a sufficiently strong magnetic field, otherwise
the sample becomes superconducting below Tc = 1.39 K. A
first and obviously too naive—or even incorrect—analysis
within the standard tunneling model predicts the sound ve-
locity of the superconducting state to mark an upper bound,
the sound velocity of the normal state being always smaller
and smoothly merging at some temperatures well below Tc.

In this paper, we discuss all questions related to the acous-
tic susceptibility of disordered solids at low temperatures
and emphasize the importance of dephasing of the two-level
atomic-tunneling systems due to their interaction with con-
duction electrons. We present a series of experiments at audio
and radio frequencies and demonstrate that they are very
well described within the tunneling model by including more
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carefully extreme linewidths of the two-level systems in the
normal conducting state of the metallic glass.

I. SOUND VELOCITY IN METALLIC GLASSES:
STATING THE PROBLEM

The tunneling model (TM) provides a microscopic expla-
nation for the low energy excitations present in virtually all
disordered solids. It assumes that some atoms or groups of
atoms in metastable configurations can occupy two different
configurations modelled as particles in double well potentials
and that at low temperatures the atoms can tunnel between
the configurations. The overlap of the two localized wave
functions generates a two-level system with eigenfunctions
across both the potential wells. Coupling to phonons or strain
fields requires these two-level tunneling systems (TSs) to
hold an elastic dipole (more correctly: quadrupole) moment
with different sizes or orientations for the two configura-
tions. When strain is applied to the material the tunneling
systems may follow this field leading to an increase of the
overall susceptibility of the material, making it ‘softer’ than
without TSs.

The softening, however, is only effective when a TS is in
its ground state. At higher temperatures, when the popula-
tion difference vanishes, its contribution to the susceptibility
disappears. At very low temperatures all relevant TS with
large enough energies are in the ground state, each adding a
small contribution to the susceptibility. This so-called reso-
nant process is analogous to a pendulum following in phase
its drive at very low frequency. With increasing temperature
both states of these TSs become equally populated which
removes their contributions to the susceptibility. The material
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FIG. 1. Temperature dependence of the transverse sound velocity
of the metallic glass Zr59Ti3Cu20Ni8Al10 measured at 969 MHz. The
superconducting transition is at Tc = 1.39 K. Data marked normal
conducting is obtained in a magnetic field of 4 T. Lines show numer-
ical calculations as explained in the text.

becomes stiffer; the sound velocity increases. This is visible in
Fig. 1 where the sound velocity in the superconducting state
increases with temperature between 50 mK and 500 mK. The
increase may persist as long as there are TSs with even higher
energies being thermally excited with rising temperature.

There is, however, another mechanism by which two-level
atomic-tunneling systems contribute to the acoustic suscepti-
bility: A relaxation mechanism, which becomes important for
temperatures where the energy relaxation rates of the TSs are
fast enough so that their occupation numbers can adjust for
the modulation of the energy splitting caused by the applied
strain of the sound field [9]. For relaxation rates much higher
than the sound frequency the occupation of the two levels
will always be close to thermal equilibrium. Due to their
continuous relaxation towards the modulated equilibrium, TSs
with energies on the order of the thermal energy contribute
to the total susceptibility and reduce the sound velocity in a
certain temperature window. This is particularly effective for
TSs with asymmetric double well potentials since the lower
and higher energy levels are identifiable with the tunneling
particle residing preferentially in either of the two wells.

At this point, possible relaxation processes and the respec-
tive temperature dependence of the resulting relaxation rates
ought to be discussed. Common for all disordered solids and
well documented is the relaxation of TS due to interaction
with the phonon bath. At low temperatures the one-phonon
process, i.e., emission or absorption of a single resonant
phonon dominates in adjusting the TSs’ occupation numbers
[9] whereas higher order phonon processes become important
at elevated temperatures. In Fig. 1 (see also Fig. 3) phonon
dominated relaxation is the reason for the sound velocity to
exhibit a maximum around 2 K and to further decrease with
rising temperature.

In a normal conducting metallic glass the energy relaxation
rates are massively enhanced because the TSs scatter inelasti-
cally conduction electrons [10,11], which have a high density
of states available around the Fermi energy. This additional
relaxation channel causes the sound velocity to be reduced
with respect to the always present resonant process discussed
above. The reduction persists to very low temperatures al-
though the positive temperature coefficient prevails. If the
same sample, i.e., with the same distribution of TSs, became
superconducting below a certain temperature, the electronic
relaxation channel would rapidly vanish and, given that re-
laxation by phonons is already too slow, the resonant process
alone would determine the temperature dependence of the
sound velocity. It marks an upper bound in the absence of
any relaxation mechanism. Nevertheless, as shown in Fig. 1
below 0.5 K the sound velocity in the normal conducting
sample is higher than in the superconducting sample, although
relaxation processes due to inelastic TS-electron scattering are
present. The electronic relaxation also becomes important in
the superconducting state when the density of thermally ex-
cited quasiparticles rapidly increases on approaching Tc. The
related contribution to the susceptibility leads to a maximum
of the sound velocity just below Tc visible in Fig. 1.

Summarizing the problem laid out in this section: Despite
the increased susceptibility due to the electronic relaxation
process, which in the normal conducting state persists to low-
est temperatures, the material is at low temperatures stiffer,
the sound velocity being higher than in the superconduct-
ing state. As both resonant and relaxation mechanisms can
only increase the susceptibility and thus decrease the sound
velocity, either the number of contributing TSs is reduced
in the normal state or one of the mechanisms is quenched
in some way. Renormalization of the density of states of
TS in the normal conducting state [12–14] followed the first
approach. However, only a qualitatively better description of
the phenomenon could be achieved. In this paper an alterna-
tive idea is suggested: The contribution of the resonant process
is reduced due to the large linewidth of TSs resulting from the
strong interaction with conduction electrons. While retaining
the originally proposed distribution function [see Eq. (12) fur-
ther down] of the Standard Tunneling Model, a very satisfying
agreement with experiments at frequencies from kHz to GHz
is achieved that way.

II. THE STANDARD TUNNELING MODEL:
A SHORT REVIEW

The standard tunneling model, as introduced by Phillips [6]
and Anderson et al. [5], and its consequences for the acoustic
susceptibility are briefly outlined here. For most quantities we
use the notation as of Jäckle [9].

The tunneling entity is modeled as a particle in a double
well potential. With the WKB method1 the tunneling en-
ergy Δ = h̄ωH exp(−λ) can be calculated from the tunneling
parameter λ = d/2h̄ · √

2mV , which absorbs the geometric
details of the tunneling particle, being the distance d , the mass
of the tunneling particle m, and the potential barrier separating

1Named after G. Wenzel, H. A. Kramers, and L. Brillouin.
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the two wells V . The asymmetry energy ε denotes the energy
shift between the ground states of the individual wells. This
TS is described by

HLR
0 = 1

2

(
ε −Δ

−Δ −ε

)
(1)

in the localized basis of the particle being in the left state |L〉
or the right state |R〉. In the energy basis Hge

0 = E/2 · σ
ge
z with

the total energy splitting E = √
ε2 + Δ2. σ

ge
z is the diagonal

Pauli matrix in the energy basis |g〉 and |e〉 with the tunneling
particle in superposition states of |L〉 and |R〉.

External strain
←→
S applied to the material changes the

asymmetry energy δε = ←→γ · ←→
S of the TSs due to their

deformation potential ←→γ . This coupling is diagonal in the
localized basis HLR

int = 1/2 (←→γ · ←→
S )σ LR

z and yields the in-
teraction Hamiltonian in the energy basis

Hge
int = 1

2E

(
ε −Δ

−Δ −ε

)
(←→γ · ←→

S ), (2)

where for the remaining part of the paper the tensorial notation
of ←→γ and

←→
S is dropped for simplicity. With the transverse

matrix element M = γΔ/2E and the longitudinal matrix ele-
ment D = γ ε/E , Eq. (2) is rewritten as Hge

int = 1/2 · (Dσ
ge
z −

2Mσ
ge
x )S. The contribution of the TS to the susceptibility χ

of the amorphous material in a sound field of frequency ω can
be derived from Bloch equations or another linear response
theory.

Following, e.g., Hunklinger and Arnold [1] (or Phillips [2]
for an analogous discussion in the dielectric case) the response
of an ensemble of N TSs to the transverse interaction in
Hge

int or the so-called resonant contribution results in real and
imaginary parts of the susceptibility

χ ′
res = −4NM 2 tanh

(
E

2kBT

)

× 1

h̄

(
(ω − ω0)τ 2

2

1 + (ω − ω0)2τ 2
2

− (ω + ω0)τ 2
2

1 + (ω + ω0)2τ 2
2

)
, (3)

χ ′′
res = 4NM 2 tanh

(
E

2kBT

)

× 1

h̄

(
τ2

1 + (ω − ω0)2τ 2
2

− τ2

1 + (ω + ω0)2τ 2
2

)
, (4)

where ω0 = E/h̄. The real part χ ′ cannot be further simplified
by the rotating wave approximation as especially for low mea-
suring frequencies the contributions at ω + ω0 and ω − ω0

add up and are equal for ω � ω0. The linewidth hτ−1
2 is

usually taken to be small. We will show that this is not always
the case and can have a large impact on the susceptibility of
a broad distribution. In contrast to the real part the loss χ ′′

res is
dominated by an ensemble subset with ω0 ≈ ω of the broad
distribution of TSs.

The longitudinal interaction in Hge
int gives rise to the relax-

ation contribution to the susceptibility

χ ′
rel = −2ND 2 ∂

∂E
tanh

(
E

2kBT

)
1

1 + (ωτ1)2
(5)

χ ′′
rel = −2ND 2 ∂

∂E
tanh

(
E

2kBT

)
ωτ1

1 + (ωτ1)2
, (6)

where ∂/∂E tanh(E/2kBT ) is the change of the occupation
number difference due to variation of the energy splitting
around the given energy E . TSs contribute to the longitudinal
susceptibility when their energy relaxation rate τ −1

1 matches
the frequency ω of the external driving field. In order to
understand the longitudinal contribution knowledge of the
energy relaxation processes is crucial. In turn, the tempera-
ture dependence of the susceptibility gives information on the
dominating relaxation process in a given temperature range.

In metallic glasses TSs relax to the thermal equilibrium
through various processes. Independent of the material being
metallic or insulating the interaction of TSs with the phonon
bath is always present, and according to Jäckle [9] the one-
phonon process yields the energy relaxation rate

τ −1
1,ph =

(
γ 2

l

v 5
l

+ 2
γ 2

t

v 5
t

)(
Δ

E

)2 E 3

2πρ h̄4 coth

(
E

2kBT

)
. (7)

ρ is the density of the material, and indices l and t denote
the phonon modes as longitudinal and transverse, respectively.
Since vl ≈ 2vt and both velocities enter with fifth power
in the denominator, τ −1

1,ph is by far dominated by transverse
phonons. For a given ratio of Δ/E thermal TSs (E ≈ kBT )
have energy relaxation rates ∝T 3. At temperatures above 2 K
multiphonon processes lead to energy relaxation rates with
stronger temperature dependencies, modeled for example [15]
by τ −1

1,mph = Kmph · T 5.
In a metallic glass the most relevant relaxation pro-

cess is caused by the TSs’ interaction with conduction
electrons which towards lower temperatures exceeds the
phonon-induced rate by many orders of magnitude. From a
microscopic point of view Black et al. [10,11] derived the
energy relaxation rate

τ −1
1,el = W 2

el
π

4h̄

(
Δ

E

)2

E coth

(
E

2kBT

)
. (8)

The constant density of states of electronic excitations around
the Fermi energy yields a linear increase ∝T of the rate for
thermal TS.

In the superconducting state electrons form Cooper pairs
and well below Tc only the phonon induced rate remains.
However, with rising temperature the interaction of TSs with
thermally excited quasiparticles leads to a rapidly increasing
rate approaching the normal conducting rate [10,16] at Tc

τ −1
1,qp = W 2

el
π

2h̄

(
Δ

E

)2

E coth

(
E

2kBT

)
1

1 + exp
(

�BCS(T )
kBT

) . (9)

This relation holds strictly only for E � �BCS. Closely below
Tc pair breaking effects are possible [16] and may result in
corrections of our calculations.

The rates τ −1
1 (T ) of all three processes (7), (8), and (9)

are shown as solid lines in Fig. 4 further down together
with experimental data extracted from the position of the
maxima in the sound velocity, which marks the tempera-
ture where τ −1

1 ≈ ω, as elucidated below. The TS-electron
coupling strength Wel is determined from the δv/v maximum
in the superconducting sample via Eq. (9). Inserting this value
for the electron-induced relaxation rate in the normal conduct-
ing state, Eq. (8), one finds rates exceeding the energy of the
thermal TSs as visualized in Fig. 4.
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FIG. 2. Temperature dependence of the sound velocity of a
metallic glass as calculated with the standard tunneling model for a
measuring frequency of 200 MHz. Bottom curves comprise energy
relaxation only by phonons (red) and additionally by quasiparti-
cles (blue) and electrons (green). Constant linewidth hτ −1

2 � E is
assumed. Sound velocities of normal- and superconducting states
merge at low temperatures. Including the lifetime limited linewidth
τ −1

2 = τ −1
1 /2 with plausible and temperature dependent τ −1

1 rates
already produces a crossing of δv/v of the normal state and the su-
perconducting state (curves next to bottom). Addition of a dephasing
process τ −1

φ ∝ T shifts this crossing to higher temperatures. Finally,
a modified dephasing model τ −1

φ ∝ f (T ) (see text) reproduces the
experimental data (see Figs. 1 and 3) very well (topmost curves).

Obviously, the linewidth hτ −1
2 of these dominating, ther-

mal TSs cannot be assumed to be small and constant and at
least [17,18] τ −1

2 = τ −1
1 /2 has to be introduced when ana-

lyzing experiments measuring χres. The contribution to χres

is reduced or even lost when the phase of a TS is lost within
one oscillation of the external field. Including this minimal re-
quirement in calculating expected temperature dependencies
of δv/v on the basis of Eqs. (3) and (5), however replacing
N by an integration over the distribution functions P(E ,Δ) as
proposed in the Standard Tunneling Model [Eq. (12) further
down] one finds already an answer to the major question
stated above: At lowest temperatures the sound velocity in the
normal state is predicted to be higher than in the supercon-
ducting state (see Fig. 2). Obviously, the short life times τ1

already broaden the line widths of relevant TSs sufficiently to
reduce their contributions to χ ′

res, Eq. (3), leaving the material
harder although both resonant and relaxation contributions are
present.

It is in fact sensible to accept explicitly a dephasing process
due to the TS-electron interaction as already suggested by
Black [10] when briefly discussing the longitudinal coupling
between TS and excitations of the electron bath. A more
general formulation of dephasing of two-level systems [19]
considers explicitly the importance of the spectral density of
the bath in the low energy limit E � kBT . This leads to a
dephasing rate

τ −1
φ,el = W 2

el
π

2h̄

(
ε

E

)2

kBT (10)

for the spectral density of the electronic bath in the normal
conducting state, which may be modified as

τ −1
φ,qp = W 2

el
π

h̄

(
ε

E

)2

kBT
1

1 + exp
(

�BCS(T )
kBT

) (11)

for the superconducting state. The magnitude of τ −1
φ is de-

termined by the same coupling constant Wel as τ −1
1 , and τ −1

φ

has the same temperature dependence as τ −1
1 of thermal TSs

with E ≈ kBT . But in contrast to τ −1
1 , dephasing τ −1

φ due
to this process vanishes for symmetric2 TSs with Δ = E .
However, slightly asymmetric TSs are sufficiently affected as
well, and their contribution to χ ′

res is also reduced. Calcula-
tion of δv(T )/v with [17,18] τ −1

2 = τ −1
1 /2 + τ −1

φ produces a
small but noticeable shift to higher temperature of the crossing
between normal and superconducting states (see Fig. 2).

The calculated influence of dephasing can be amplified
by replacing the linear T dependence in Eqs. (10) and (11)
by f (T ) = T · (T/T0)α−1. With 0 < α < 1 dephasing τ −1

φ

varies weaker than linearly with T and is effectively enhanced
towards lower temperatures. Combination of large τ −1

1 and
strong dephasing τ −1

φ weakens the contribution of symmet-
ric and slightly asymmetric TSs to χ ′

res, and the calculated
δv(T )/v exhibits a further reduced temperature variation in
the normal conducting metal shifting the intersection with the
superconducting state closer to Tc (Fig. 2 topmost curves). To
this point the suggested temperature dependence f (T ) of the
electron-mediated dephasing is purely phenomenological. We
will come back to this later.

Calculation of the response to an applied sound field of an
ensemble of atomic-tunneling systems in a disordered solid
requires both resonant and relaxation contributions to the sus-
ceptibility to be integrated over the distribution of parameters
of all TSs. The standard tunneling model [5,6] suggests a flat
distribution in asymmetry energy ε and tunneling parameter λ

yielding the distribution [2]

P(E ,Δ) dE dΔ = P0E

Δ
√

E 2 − Δ2
dE dΔ (12)

of TSs with energy splitting E and tunneling energy Δ, where
P0 is constant. The susceptibility of a macroscopic sample is

2A (ε/E )2 dependence of τ −1
φ , originating from the TSs’ dipolar

interactions, has been observed in dielectric echo experiments on
individual TSs in the oxide films of Josephson junction qubits [20].
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given by

〈χ〉 =
∫ Emax

0
dE

∫ E

Δmin

dΔ (χres + χrel ) P(E ,Δ). (13)

The real part of 〈χ〉 yields the change of sound velocity and
the imaginary part the absorption of sound waves, as quanti-
fied in the next paragraph.

We briefly discuss the role of the integration limits, because
in contrast to the known analytic solutions [2] they do not
appear in our final results. The integration limit Emax vanishes
when with Eq. (3) the linewidth is adequately taken into ac-
count. At high temperatures the energy relaxation rate caused
by interaction with phonons leads to a linewidth hτ−1

2 increas-
ing faster than linearly with energy E . TSs with hτ−1

2 � E
do not contribute to χ ′

res and this limits the increase of the
sound velocity above a certain temperature thus Emax → ∞
can be taken. Already for the one-phonon process the energy-
relaxation limited linewidth hτ−1

2 = hτ−1
1 /2 scales ∝E 3, for

multiphonon processes the linewidth increases even stronger
with exponents from E 5 to E 7. The upper bound for TSs
energies contributing to χ ′

res is of the order of 10 K and al-
most independent of the prefactors in Eq. (7). This differs
from introducing a high energy cutoff for the distribution of
TSs. Although unimportant for χ ′

res high energy TSs are still
present and are responsible for the relaxation contributions to
the susceptibility at higher temperatures.

The lower cutoff for the tunneling energy Δmin is required
in analytic calculations to avoid the divergence of the integral
for Δ → 0. For the transverse susceptibility this is canceled
by Δ in the matrix element M representing the overlap of
the localized wave functions and thus defining the two-level
character of a TS with given energy E . The longitudinal
susceptibility vanishes when the temperature dependence of
the relaxation rate is taken into account: Asymmetric TS with
Δ → 0 become too slow to relax within the time scale of the
experiment set by the measuring frequency and they no longer
contribute to 〈χ〉.

III. EXPERIMENTAL METHODS

The TSs’ contribution to the real part of the generalized
susceptibility 〈χ〉′ is related to the variation of the sound
velocity δv = v(T ) − v0 normalized to the velocity at a ref-
erence temperature v0 = v(T0) as [1,2]

δv

v0
= −1

2

1

ρv 2
0

〈χ〉′ . (14)

The imaginary part 〈χ〉′′ is related to the loss, and ultra-
sonic measurements yield the attenuation α per unit length.
Normalized to the energy loss per wave number results in the
loss tangent [1,2]

tan δ = αv0

ω
= 1

ρv 2
0

〈χ〉′′ . (15)

In experiments with vibrating reeds or other acoustic res-
onators the corresponding quantity is the inverse quality factor
Q −1 = tan δ defined as the energy loss per cycle divided by
the total energy stored in the resonator.

The samples measured in this work are made from
one rod (diameter ≈3.5 mm) of the bulk metallic glass

Zr59Ti3Cu20Ni8Al10 fabricated at IFW Dresden. Details on the
fabrication of the metallic glass sample and its properties can
be found elsewhere [21]. At low frequency (1.1 kHz) quality
factor and variation of the sound velocity—determined by
tracking the resonance frequency—are measured by a capac-
itively driven vibrating reed [22–24] machined as a stripe
(rough size 0.3 mm × 2 mm × 12 mm) [25] from one part of
the rod. The reed is clamped to a copper sample holder to
provide thermalization in a dilution cryostat. Details of the
setup used in this work are described elsewhere [26]. To
investigate the normal conducting state of the material the reed
is exposed to a magnetic field of 4 T, sufficient to reliably
suppress superconductivity of the metallic glass. In order to
minimize possible eddy currents and other disturbing effects
the sample is mounted such that the direction of its oscillation
lies parallel to the magnetic field vector.

For the high frequency experiments cylinders were cut
from the same sample rod. Their two end faces were lapped
plain and parallel.3 RF sputtered zinc oxide transducers of
thicknesses between 3.6 μm and 1.2 μm were employed to
generate and detect ultrasonic pulses between 200 MHz and
1.7 GHz with a phase sensitive homodyne technique [26].
Sample cylinders were mounted in a copper clamp and the
transducers were contacted by spring loaded probe pins. Lon-
gitudinal polarization at 1.44 GHz was measured in reflection
with only one transducer. All measurements with transverse
polarization were carried out in transmission with a transducer
at either end. This setup allows for the use of cryogenic am-
plifiers and reduced noise.

IV. RESULTS AND DISCUSSION

Measurements of the temperature dependence δv/v of the
sound velocity of transverse ultrasound are shown in Fig. 3.
At these frequencies in the GHz range all features caused
by TSs with a broad distribution of parameters as discussed
in the previous sections are clearly observed. Although both
resonant and relaxation mechanisms contribute to the acoustic
susceptibility the sound velocity at the lowest temperature is
higher in the normal state than in the superconducting state.
The onset of the relaxation process by quasiparticles in the
superconducting state is testified by the pronounced maxima
between 0.6 and 0.9 K depending on frequency. Maxima at
2 K demonstrate the frequency independent transition from
electron dominated to phonon dominated relaxation which has
been found and described in earlier experiments [7,27]. Over
some temperature ranges the sound velocity varies logarithmi-
cally with temperature. The ‘slopes’ of the log T dependencies
are a measure of the TSs’ density of states as will be explicated
below.

In a first step of analyzing the data the frequency de-
pendence of the δv(T )/v maximum in the superconducting
state of the sample is considered. At temperatures below the
maximum, the contribution of the longitudinal susceptibility
(relaxation process) is negligible and δv(T )/v is solely deter-
mined by the transverse susceptibility (resonant process). The

3Lapping was done by Stähli-Läpptechnik, Weil im Schönbuch,
Germany
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FIG. 3. Relative temperature variation of the transverse sound
velocity of glassy Zr59Ti3Cu20Ni8Al10 measured at frequencies
between 200 MHz and 1.63 GHz. Blue crosses are data without mag-
netic field where the sample is superconducting below Tc = 1.39 K.
A magnetic field of 4 T keeps the sample normal conducting at all
temperatures (green ×). Dashed lines result from numerical calcula-
tions using always the same parameters as detailed in the text. Sets
of data and curves for different frequencies are shifted for clarity.

contribution of the longitudinal susceptibility becomes impor-
tant when the TSs’ energy relaxation rates become larger than
the frequency of the applied external field, τ−1

1 � ω, yielding
a maximum in δv(T )/v when the contributions per tempera-
ture interval of the two mechanisms cancel each other. Thus
we may plot the frequency of the ultrasound versus the tem-
perature of the maximum in Fig. 4 to extract the temperature
dependence of the energy relaxation rate of thermal TSs. The
resulting rate varies rapidly with temperature between 0.5
and 0.9 K and is clearly identified with the relaxation rate of
Eq. (9) caused by the TSs’ interaction with quasiparticles and
plotted as a blue line in Fig. 4. In a better quantitative analysis
respective maxima in δv(T )/v are extracted from numeri-
cal calculations including all contributions. Plotted as black
crosses in Fig. 4, these calculated maxima clearly confirm this
analysis and yield an interaction strength Kel = W 2

elkBπ/2h̄ =
117 × 109 s−1 K−1 in the superconducting state.

FIG. 4. Energy relaxation rate of TS in the metallic glass as
extracted from the onset of the relaxation process related to re-
spective maxima of δv/v. The energy relaxation rates τ−1

1 of the
fastest, symmetric thermal TS due to interaction with phonons (red),
thermally activated quasiparticles (blue), and electrons in the nor-
mal conducting state (green) are adjusted to the data. The dashed
(orange) line indicates the energy splitting of thermal TS with
E ≈ kBT . Low frequency data are determined by vibrating reed
experiments, high frequency by pulsed ultrasound. Full symbols
denote data of samples machined from a bulk metallic glass rod of
Zr59Ti3Cu20Ni8Al10; open symbols result from of a splat quenched
sample of Zr46.8Ti8.2Cu7.5Ni10Be27.5. For crosses see text.

As already claimed in the previous section, transfer of the
same value Kel = 117 × 109 s−1 K−1 to the normal conduct-
ing state results in relaxation rates Eq. (8) of the dominating
thermal TSs which considerably exceed their energy splitting
divided by h as depicted by the green line in Fig. 4. Thus
their contribution to the transverse susceptibility is reduced,
the sound velocity remains at higher values. Continuing this
line of argument it seems plausible to introduce a regular
dephasing based on TS-electron interaction with respective
rates as given in Eqs. (10) and (11). In a last step the linear
temperature dependence of these rates is replaced by f (T ) =
T · (T/T0)α−1 and it turns out that with α = 1/3 the overall
best agreement of numerical calculations with experiment is
achieved. Apart from taking into account the polarization of
the deformation being transverse or longitudinal, all relevant
parameters concerning distribution and dynamics of the TSs
are the same for the calculated graphs of Figs. 3 and 5.

Although it is evident that dephasing plays the key role
in understanding the dynamics and susceptibility of TSs in
metallic glasses our analysis has some deficiencies. In the
normal state both resonant and relaxation contributions make
up the total temperature dependence of δv/v. Experimentally
δv/v is a straight log T which is not perfectly reproduced by
our calculation. This is noticeable with the 201 MHz data in
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FIG. 5. Temperature dependence of the longitudinal sound ve-
locity at 1.44 GHz (upper panel) and of the Young’s modulus velocity
measured by a vibrating reed [30] at 1.1 kHz (lower panel). Arrow
indicates the transition from phonon to quasiparticle dominated re-
laxation. Dashed lines show numerical calculations.

Fig. 3, however most clearly visible for the 1.1 kHz data in
Fig. 5. We will come back to this point.

In high frequency experiments a minimum of the sound
velocity is expected at a temperature where hν ≈ 2.2 kBT .
In a small temperature range with hν � E ≈ kBT a negative
contribution to the susceptibility χ ′

res leads to an inverted
temperature dependence before this mechanism becomes in-
effective [1] at even lower temperatures where kBT ≈ E �
hν. In our measurements (see Fig. 3) these minima do not
appear as pronounced as predicted. The reasons might be
that particularly in the superconducting state the sample was
not cooled sufficiently at lowest temperatures and that in the
normal state this effect is additionally smeared out by the
relaxation contribution. For high frequencies, the condition
ωτ1 � 1 may be reached after all at lowest temperatures in
the normal conducting state, leading to a flattening of the
relaxation contribution to δv(T )/v.

Figure 5 shows two more measurements of the sound
velocity change versus temperature, one with longitudinal
ultrasound at 1.44 GHz and a vibrating reed experiment at
1.1 kHz probing essentially longitudinal deformation as well.
In the superconducting state the low frequency experiment
exhibits a maximum around 35 mK which is identified as the
onset of the relaxation contribution. Since T � Tc the quasi-
particle induced rate is certainly negligible. The one-phonon
process dominates the energy relaxation of TSs and symmet-
ric TSs have a relaxation rate τ −1

1 = 1.67 ω at the maximum.
We may thus add another important data point to Fig. 4
(full circle) and with Eq. (7) we may extract the deformation
potential of the TS with respect to transverse phonon modes
from this experiment. We find τ−1

1 = 273 × 106 s−1 K−3 · T 3

for the fastest TSs corresponding to a deformation po-
tential γt = 0.49 eV. Further independent measurements of
another vibrating reed sample fabricated from splat-quenched
Zr46.8Ti8.2Cu7.5Ni10Be27.5 (Vitreloy 4) [28,29] allow us to de-

termine relaxation rates between 0.6 kHz and 12 kHz in the
same way (open circles in Fig. 4). The frequency dependent
shift supports the T 3 increase of the relaxation rate as pre-
dicted by Eq. (7), however with a smaller γt.

In Fig. 4, the relaxation rate exhibits at 200 mK a transition
from phonon-dominated energy relaxation of the TSs to relax-
ation dominated by the interaction with quasiparticles. This
is clearly reproduced in the δv(T )/v measurement at 1.1 kHz
(see Fig. 5) as a distinct change of the temperature dependence
marked by an arrow.

Quantitative inspection of the sound velocity measure-
ments (Figs. 3 and 5) in the superconducting state allows
us to extract the density of states of TSs. Analytical inte-
gration of the susceptibility’s resonant contribution χ −1

res with
P(E ,Δ) yields a logarithmic temperature dependence of δv/v

for T > hν/2.2kB in agreement with experiments as long as
the contribution of relaxation is negligible [1]

δv(T )

v

∣∣∣∣
res

= P0γ
2
l,t

ρv2
l,t

· ln
T

T0
. (16)

Numerical calculations reproduce this behavior most
clearly for the measuring frequencies between 201 and
513 MHz. The magnitude of the logarithmic slope Cl,t =
P0γ

2
l,t/ρv2

l,t contains the mass density of the material [21]
ρ = 6592 kg/m3 and the transverse and longitudinal sound
velocities vt = 2182 m/s and vl = 4741 m/s which were de-
termined independently. From the transverse ultrasound data
in the superconducting state of Fig. 3 we extract an av-
erage and frequency independent ln(T/T0) slope of Ct =
5.9 × 10−5, and knowing γt from the vibrating reed measure-
ment we find P0 = Ctρv2

t /γ
2
t = 3.0 × 1044 J−1m−3. Analog

evaluation of Fig. 5 yields Cl = 2.07 × 10−5 for longitudinal
ultrasound. The vibrating reed experiment allows us to extract
a value CE = 4.17 × 10−5 (related to the Young’s modulus
deformation field) from the total δv(T )/v decrease between
40 mK and Tc dominated by the relaxation contribution to χ ′
and also but minor importantly by a decreasing resonant con-
tribution. C and P0 values resemble those of other dielectric
and metallic glasses [23,31,32].

Closer inspection of δv(T )/v in the superconducting state
reveals that the ln(T/T0) behavior has a slight upward bend.
Quantitatively for the 969 MHz measurements (see also
Supplemental Material [33]), and quite similar for other fre-
quencies, the slope increases from Ct = 5.2 × 10−5 in the
temperature range between 100 mK and 200 mK to about Ct =
6.2 × 10−5 between 300 mK and 500 mK, still well below the
maximum (see Fig. 1 in Supplemental Material [33]). This
suggests an equivalent increase of less than 20% of the TSs’
density of states P0 in the corresponding energy range E ≈
kBT . A reduced density of states at lower energies might be
explained by models invoking a so-called dipole gap arising
from dipole-dipole interaction between TSs [34,35], which
becomes especially important at very low temperatures and
frequencies. However, thermal conductivity measurements on
another Zr based superconducting bulk metallic glass do not
support the idea of a reduced density of states of TSs towards
lower energies [36,37]—there seems to be no clear answer yet
for this class of disordered matter.
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In contrast to the slight temperature dependence of the
slope in the superconducting state, a clear log T tempera-
ture dependence of δv/v is always observed in the material’s
normal conducting state. It is further observed that the slope
depends on frequency. It decreases by 15% when lowering
the measuring frequency from 731 MHz to 201 MHz. The
extremely small, though still log T temperature dependence of
δv/v at 1.1 kHz is remarkable (Fig. 5) and requires a delicate
balance of resonant and relaxation contributions. Previous
vibrating reed measurements on glassy PdZr and CuZr alloys
[7] show an overall quite similar behavior, however, even
a negative slope of δv(T )/v is observed in a temperature
range where a positive slope is expected. Quantitatively, this
frequency dependence is not understood. It seems to be plau-
sible, however, that short dephasing times disturbing the TSs’
coherence and eventually leading to localization are more
sensitively detected the lower the measuring frequency is. In
extreme cases the still present relaxation contribution may
dominate and lead to a negative temperature dependence of
total δv/v.

In this last section, the attenuation of transverse ultrasound
is discussed. As for the temperature dependence of the sound
velocity, the attenuation due to TSs comprises both resonant
and relaxation contributions, and numerical calculation re-
quires integration of the corresponding imaginary parts of the
susceptibility, χ ′′

res and χ ′′
rel.

The resonant absorption (transverse interaction) selects
from the broad distribution those TSs for which E =
h̄ω and its temperature dependence reflects the respective
occupation number difference ∝ tanh(E/2kBT ). The temper-
ature dependence of the relaxation absorption (longitudinal
interaction)—in particular its increase when coming from
low temperatures—is determined by the dominating relax-
ation process, caused by interaction with phonons, electrons,
or quasiparticles and by the measuring frequency. In any
case, tan δ arrives at a frequency and temperature independent
plateau [9,16] when the energy relaxation of the fastest TSs
attains the condition ωτ1 ≈ 1.

Figure 6 shows measurements at 969 MHz and 1.63 GHz
together with respective theoretical curves which are calcu-
lated with parameters γt and Wel as extracted from the δv/v

measurements. P0 was magnified by 20%. The same param-
eters are used for all frequencies (more frequencies shown
in Fig. 2 in Supplemental Material [33]). Constant values
have been subtracted from the complete experimental data sets
of the two frequencies to adjust for the zero line given by
the calculation at the same time accounting for background
losses. Resonant and relaxation contributions are easily iden-
tified, particularly in the superconducting state. There, the
measured resonant absorption exhibits the correct temperature
dependence however is smaller than predicted by roughly a
factor two. This discrepancy may easily be explained by the
fact that our calculations were carried out for the limit of
small driving fields leaving the thermal occupation undis-
turbed whereas experimentally this limit was not achieved.
With decreasing T the condition for a ‘weak’ drive becomes
more and more challenging in the superconducting state as the
energy relaxation time τ1 becomes very long. Thus resonant
TSs may well be partially saturated at the given ultrasound
intensity resulting in reduced absorption. This is supported by

FIG. 6. Temperature dependence of the attenuation tan δ of trans-
verse ultrasound in the GHz frequency range. Values are determined
by the squared ratio of the amplitudes of the first transmitted ultra-
sound pulse and a fixed reference signal. Solid lines are calculated
for weak excitation using values for Wel and γt derived from the
temperature dependence of the sound velocity. For P0 values see
text. The acoustic intensity for the experiment was not at the weak
excitation level. Dash-dotted lines show calculations of only the
relaxation contribution of the superconduction sample. Experimental
data of both frequencies is vertically shifted to adjust for the zero
line of the calculated pure relaxation contribution. 969 MHz data are
shifted by another 15 × 10−5.

the observation of distorted pulse shapes indicating that steady
state conditions are not achieved within the duration (typi-
cally 500 ns) of a single ultrasound pulse. For a comparison,
ultrasound echo experiments [38] on amorphous Pd30Zr70,
the first direct measurements of energy relaxation and phase
coherence times of a superconducting metallic glass, yield
τ1 ≈ 30 μs and τ2 ≈ 5 μs at 20 mK for TS resonant with the
ultrasonic frequency of 0.86 GHz. Phonon echo experiments
on Zr59Ti3Cu20Ni8Al10 are presented in the Supplemental
Material [33,39–41].

The relaxation absorption in the superconducting state is
characterized by a steep rise between 0.5 and 1 K caused by
the rapidly increasing quasiparticle density when approach-
ing Tc. Measurement and calculation agree very well. In the
normal conducting state the absorption depends only weakly
on temperature. As expected, the plateau of the relaxation
absorption extends to low temperatures due to the slow vari-
ation of the dominating contribution of the electron bath to
τ−1

1 . Below 200 mK, a clear however small increase of the
absorption is observed indicating a resonant contribution. This
behavior is remarkably well reproduced by our calculations.
At first glance, one is led to expect a rather large resonant
absorption since fast relaxation times would leave the TSs
preferentially in their ground states except for extremely high
ultrasonic intensities. However, caused by short dephasing
times or, respectively, large linewidths hτ−1

2 the resonant con-
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tribution to χ ′′ is largely suppressed. This corresponds to the
reduced slope of δv(T )/v.

V. CONCLUSIONS

This paper deals with low temperature ultrasound experi-
ments on metallic glasses and their interpretation in terms of
the elastic susceptibility of atomic two-level tunneling sys-
tems. It turns out that the standard tunneling model in its
simplest version fails to describe the experiments properly,
which is most evident for the temperature dependences of
the sound velocity in the sample’s superconducting state in
comparison with its normal state. The simple analysis does
not predict the experimentally observed crossing.

In previous publications it was suggested that interaction
with conduction electrons might in general reduce the density
of states (DOS) of the tunneling systems thus leading to an
overall smaller temperature variation of the sound velocity in
the normal state compared to the superconducting state. This
idea, however, is ruled out by the relaxation contribution to the
attenuation tan δ which obviously has the same absolute value
in the normal state and the superconducting state below Tc,
however still in the plateau region (this is even better visible
at frequencies between 201 and 731 MHz in Supplemental
Material [33]). In the present study, we show that another ba-
sic assumption of the treatment within the standard tunneling
model is not fulfilled: Caused by their coupling to the bath
of electronic excitations the tunneling systems no longer have
linewidths that are much smaller than their energy. This does
not affect the relaxation contribution however considerably
reduces the resonant contribution to the susceptibilities in the
normal conducting metallic glass.

Our numerical calculations employ the ‘classical’ ap-
proach for the resonant response of ensembles of two-level
systems as given by Eqs. (3) and (4) although this might be
inadequate for extremely broad linewidths caused by very
high dephasing rates τ−1

φ , which rather lead to localization

and destruction of the quantum two-level nature. With τ−1
φ ∝

T (T/T0)−2/3, which emphasizes dephasing towards lower
temperatures, we achieve very good overall agreement of our
calculations with experiment, at least in the GHz frequency
range. It is obvious that dephasing has to be consequently in-
corporated in such calculations. Usually, τ−1

2 � E/h is taken
for granted. However, strong dephasing removes a consid-
erable fraction of TS from contributing to χres. A similar
idea has been put forward for insulating glasses [42]. It was
suggested that strain mediated TS-TS interaction causes loss
of coherence and a transition to incoherent tunneling, which
finally leads to a reduced contribution to χres.

Here, we have to ask: Which mechanism provides the
temperature dependence of τ−1

φ in a metallic glass, only in

the normal state? It is unlikely that electronic excitations are
directly responsible for a dephasing rate varying other than
linearly with temperature. Instead, we propose a dephasing
mechanism that involves other TSs surrounding those which
contribute to the resonant part of the susceptibility. We further
propose that this TS-TS interaction is indirect and mediated by
conduction electrons. Since the electron wave functions them-
selves become more coherent with decreasing temperature an
increasing number of TSs will be within the volume defined
by the respective phase coherence length and contribute to the
dephasing of those resonant TSs. It is thought that both the
TS-electron and the associated electron-TS interactions are
longitudinal and combine to produce the suggested indirect
TS-TS interaction.

It is evident that the key for understanding the low tem-
perature acoustic susceptibility of metallic glasses are the
extremely high dephasing rates of TSs, the dynamics of which
are largely determined by their interaction with conduction
electrons. It is as well evident that the experiments at au-
dio frequencies call for an additional explanation. As stated
above, the straight log T dependence of δv/v in the normal
state at any frequency deserved particular attention. In any
case, already Black4 expected a region of unusual behavior
when E < hτ −1

2 .
Last but not least we like to note that the analysis of

our measurements supports quite generally the assumptions
of the standard tunneling model including in particular the
suggested distribution of relevant parameters. In this sense our
work seems to constitute a good example of a ‘smoking gun’
experiment as was recently asked for by Leggett and Vural
[43]. While the energy space is explored by the temperature
from 10 mK up to several Kelvin, the dynamics of these
tunneling systems is measured at kHz and at GHz frequencies.
Moreover, the dynamcis (τ1 and τ2) of TSs with same energy
E are vastly different whether the sample is superconducting
or normal conducting.
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