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The winding number has been widely used as an invariant for diagnosing topological phases in one-
dimensional chiral-symmetric systems. We put forward a real-space representation for the winding number.
Remarkably, our method reproduces an exactly quantized winding number even in the presence of disorders
that break translation symmetry but preserve chiral symmetry. We prove that our real-space representation of
the winding number, the winding number defined through the twisted boundary condition, and the real-space
winding number derived previously [Phys. Rev. Lett. 113, 046802 (2014)], are equivalent in the thermodynamic
limit at half-filling. Our method also works for the case of filling less than one half, where the winding number
is not necessarily quantized. Around the disorder-induced topological phase transition, the real-space winding
number has large fluctuations for different disordered samples, however, its average over an ensemble of disorder
samples may well identify the topological phase transition. Besides, we show that our real-space winding number
can be expressed as a Bott index, which has been used to represent the Chern number for two-dimensional
systems.
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I. INTRODUCTION

Topological states have attracted a tremendous amount of
studies in various systems involving electrons, cold atoms,
photons, etc. Most of the noninteracting topological states
can be successfully explained by topological band theory [1]
based on perfect translation symmetry [2–5]. The first well-
known example is the integer quantum Hall effect [6], in
which the quantized Hall conductivity is related to a topologi-
cal TKNN invariant [7] defined with Bloch wave functions of
filling bands. However, in reality, there always exists disorder
that breaks translation symmetry and hence the consequent
Bloch wave functions. It becomes problematic for the calcu-
lation of topological invariants with Bloch wave functions.
Numerous topological states immune to disorder [8–15] in-
dicate that the lack of Bloch wave functions should not be a
hindrance for defining topological invariants.

To circumvent the absence of translation symmetry, one
may consider a real-space representation of the topological
invariants. One of the well-known examples is the real-space
representation of the Chern number. The construction of
real-space representation of the Chern number is through
transforming the momentum-space formula to the real-space
one [16–18], or considering a Bott index [19,20]. The real-
space representation of the Chern number has been widely
used in studying disorder effects in two-dimensional topolog-
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ical systems [21–24]. Another example is that the polarization
in one dimension can be calculated in the real space as well via
the projected position operator approach [25–28]. Recently, a
real-space representation of the winding number is proposed
for one-dimensional (1D) topological insulators with chiral
symmetry [29], in which the momentum-space formula of
the winding number is transformed to a real-space formula.
Provided that disorder does not break the chiral symmetry,
such a real-space representation of the winding number has
been proved to be valid and widely used in exploring the
topological Anderson insulator [30–33], and particularly, for
detection of the winding number in experiment [34,35]. On
the other hand, we note the momentum-space winding number
for 1D systems can be written as the “skew” polarization
[29,36], that is, the difference of polarizations (Berry phases)
between two sublattices. As the usual polarization for 1D
lattices can be obtained via the projected position operator in
real space, can we derive the real-space winding number in
views of the skew polarization?

In this paper we propose a real-space representation of the
winding number for 1D chiral-symmetric topological insula-
tors. We use the singular value decomposition (SVD) method
to derive a formula for calculating the difference of polariza-
tion between two sublattices. Our formula can be written in
the form of the Bott index [37,38], which produces a strictly
quantized winding number. We prove that our formula is ex-
actly equivalent to the momentum-space winding number in
the presence of translation symmetry. We also prove that our
real-space representation of the winding number, the wind-
ing number defined through the twisted boundary condition
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(TBC), and the real-space winding number derived previously
in Ref. [29], are equivalent in the thermodynamic limit at half-
filling. Provided the chiral symmetry is preserved, our formula
is self-averaging and satisfies the bulk-edge correspondence
in the presence of disorder. We have verified numerically that
our results are in agreement with the previous works [29,30]
on the disordered model after averaging over many random
realizations. However, our method gives exactly quantization
of the winding number in each realization of disorder, in stark
contrast to previous methods [29,30]. Away from topological
transition points, our method has advantages over the previ-
ous method [29,30] for higher accuracy and less fluctuation.
Furthermore, we show that our formula can work for the case
of filling less than one half. Also, we find our real-space
representation of the winding number in one dimension can
be written as the Bott index [19,23], which was used to define
the real-space representation of the Chern number in two
dimensions.

The rest of this paper is organized as follows: In Sec. II
we review the projected position operator approach, and show
that it is related to the Wilson loop. In Sec. III we employ SVD
for the chiral-symmetric Hamiltonian to obtain the flattened
Hamiltonian, and then construct a real-space representation
of the winding number. We will prove the equivalence of
our real-space representation of the winding number and the
twisted-boundary winding number. In Sec. IV we apply our
arguments to a 1D toy model belonging to BDI classe. Finally,
in Sec. V we make a summary and discussion.

II. BULK POLARIZATION AND PROJECTED
POSITION OPERATOR

In this section we give a brief review on calculating the
bulk polarization in the 1D system via the projected position
operator.

First, we consider a finite 1D lattice with L cells under
periodic boundary conditions. When translational symmetry
is present, quasimomentum k becomes a good quantum num-
ber, and the Hamiltonian has a block-diagonal structure. The
eigenstates are Bloch waves labeled by quasimomentum k.
The basis of momentum space is the Fourier transform of
real-space basis. In the following context we use |l, α〉 to
refer to the state that a particle is located at the αth sublat-
tice (orbital) of the lth cell. Thus, the basis of momentum
space reads

|k, α〉 = 1√
L

L∑
l=1

eikl |l, α〉, (1)

and the Bloch waves can be written as the linear combinations
of momentum basis

|ψk,n〉 =
∑

α

un
k,α|k, α〉, (2)

where n is the index of the band.
The bulk polarization can be calculated through the follow-

ing formula [28]:

p = 1

2π i
log det Wk+2π←k, (3)

where Wk+2π←k is the so-called Wilson loop

Wk+2π←k = Fk+2π−δkFk+2π−2δk · · · Fk . (4)

The matrix element of Fk is (Fk )m,n = 〈um
k+δk|un

k〉, in which
m, n are the indices of occupied bands. We will also use this
notation in the following context.

Next, we show the Wilson loop can be derived from
the projected position operator PoccXPocc, where Pocc =∑nocc

n=1

∑
k |ψn,k〉〈ψn,k| is the projector onto occupied bands,

and |ψn,k〉 is the eigenstate of system at the nth band with
quasimomentum k. A quantum-mechanical position operator
[39] X̂ = exp(iδkX̂ ), in which X̂ = ∑

x xn̂x is the general
position operator, is introduced for a lattice with a periodic
boundary condition. Here δk = 2π/L is the increment of
discrete quasimomentum k. Note that operator X is actually
the translation operator for quasimomentum k: X |k, α〉 =
|k + δk, α〉. By expanding the expression of projected position
operator, we have

PoccXPocc =
nocc∑

n,n′=1

∑
k,k′

|ψn′,k′ 〉〈ψn′,k′ |X |ψn,k〉〈ψn,k|

=
nocc∑

n,n′=1

∑
k

〈
un′

k+δk

∣∣un
k

〉|ψn′,k+δk〉〈ψn,k|, (5)

where we have used the relation [40,41]

〈ψn′,k′ |X |ψn,k〉 =
∑
α,α′

(
un′

k′,α′
)∗

un
k,α〈k′, α′|X |k, α〉

=
∑
α,α′

(
un′

k′,α′
)∗

un
k,α〈k′, α′|k + δk, α〉

(6)
=

∑
α,α′

δk′,k+δkδα,α′
(
un′

k′,α′
)∗

un
k,α

= δk′,k+δk
〈
un′

k′
∣∣un

k

〉
.

Then we seek the eigenvalues of the projected position op-
erator (5). Assuming its eigenstates are the superposition of
occupied Bloch states |�〉 = ∑

k,n �n,k|ψn,k〉, the eigenvalue
problem reads

PoccXPocc|�〉 = λ|�〉. (7)

Combining Eqs. (5) and (7), we obtain the following iterative
relation:

nocc∑
n=1

〈
un′

k+δk

∣∣un
k

〉
�n,k = λ�n′,k+δk, (8)

which can be further written in a more compact form

Fk�k = λ�k+δk, (9)

where �k = (�1,k, �2,k, . . . , �nocc,k )T, [Fk]n′,n = 〈un′
k+δk|un

k〉.
Repeating the iterative relation for L times, we have

Wk+2π←k�k=λL�k, (10)

which reveals that the Wilson loop is related to the eigenvalues
of the projected position operator. We may obtain the bulk
polarization directly through the projected position operator.
In fact, the eigenstates of the projected position operator are
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Wannier states, while its eigenvalues are center of mass of
Wannier states [25–27].

To summarize, one may obtain the polarization from
projected position operators directly in real space. This is
beneficial for investigating the disorder system since the trans-
lation symmetry is broken and the Wilson loop method Eq. (3)
is not applicable.

III. WINDING NUMBER OF THE 1D
CHIRAL-SYMMETRIC TOPOLOGICAL INSULATOR

A. Chiral-symmetric system and singular-value decomposition

In this section we shall first review some properties of
the chiral-symmetric system. Due to the special form of the
chiral-symmetric Hamiltonian, we will introduce the singular
value decomposition (SVD) for the Hamiltonian and construct
a real-space representation of the winding number.

A lattice with chiral symmetry can be classified into two
kinds of sublattices, namely A and B. Thus, the chiral symme-
try is also called the sublattice symmetry. The Hilbert space
of the system can be written as the direct sum of the two sub-
spaces H = HA ⊕ HB. The chiral symmetry manifests that
�H� = −H , where

� =
∑

l,α∈A

|l, α〉〈l, α| −
∑

l,β∈B

|l, β〉〈l, β|. (11)

In the canonical representation, where the chiral operator � is
diagonal, the Hamiltonian has the following structure:

H =
(

0 h
h† 0

)
, (12)

where h is a LA × LB matrix. Here LA and LB are, respectively,
the total numbers of A and B sublattices. By decomposing the
eigenstates into two sectors |ψn〉 = (ψA

n , ψB
n )T , the eigenvalue

equation H |ψn〉 = En|ψn〉 leads to the coupled equations

hψB
n = EψA

n ,
(13)

h†ψA
n = EψB

n ,

which can be further written as

(hh†)ψA
n = E2ψA

n ,

(h†h)ψB
n = E2ψB

n .
(14)

Now we may obtain ψA
n and ψB

n by calculating the eigenvec-
tors of hh† and h†h, respectively. Note that both (ψA

n ,±ψB
n )T

are the eigenvectors of Hamiltonian (12), and they have op-
posite eigenenergies. This is a consequence of the chiral
symmetry.

The expression of Eq. (14) reminds us of the singular
value decomposition (SVD). We can make the SVD for the
off-diagonal block h = UA
U −1

B , in which UA and UB are both
unitary matrices, and 
 is a diagonal matrix. The diagonal
elements of 
 are called singular values. We note that

U −1
A hh†UA = 
2,

U −1
B h†hUB = 
2, (15)

which reveals that UA and UB, respectively, diagonalize hh†

and h†h. Therefore, the singular values are identified as the
non-negative eigenenergies of the system. The column of

unitary matrices UA and UB are, respectively, the eigenvectors
ψA

n and ψB
n (up to a normalization factor 1/

√
2). We have not

assumed the numbers of the two kinds of sublattices LA, LB

in the above derivation. Actually, LA and LB can be different,
and the matrix h is not necessarily squared. If LA 
= LB, there
must be at least |LA − LB| zero singular values. However,
throughout this paper, we only consider the numbers of A and
B sublattices that are equal. More precisely, we are interested
in the situation where h is not singular. This further requires
the system to be gapped at E = 0.

When all singular values are nonzero, one may deform the
singular values to arbitrary positive values and still maintain
the same eigenstates. Hence, it is convenient to set 
 to be
identity. We denote the new Hamiltonian as

Q =
(

0 q
q−1 0

)
, (16)

where q = UAU −1
B is a unitary matrix. Now the energy spec-

trum of the Hamiltonian becomes completely flat and only
takes values of +1 and −1. Q is called the flattened Hamil-
tonian [36]. Later we will see the SVD is convenient for
calculating and understanding the winding number.

B. Winding number in momentum space

When translation symmetry is present, we can work in
momentum space by introducing the Fourier transformation

|k, α〉 =
∫

dk

2π
exp (ikl )|l, α〉.

Then we can block diagonalize the flattened Hamiltonian (16)
as

Q(k) =
(

0 q(k)
q(k)−1 0

)
. (17)

The eigenstates can be written as |ψn,k〉 = ∑
α uα

n,k|k, α〉.
There is a map from Brillouin zone to the unitary matri-
ces q(k). The map is classified by the first homotopy group
π1[U (n)] ∼= Z and characterized by the winding number
[36,42]. The winding number in 1D can be calculated via
[36,42]

ν = i

2π

∫ π

−π

dkTr
[
q(k)−1∂kq(k)

]
. (18)

By inserting q(k) = UA(k)U −1
B (k) introduced in a previous

subsection into Eq. (18), we find

ν = i

2π

∫ π

−π

dkTr
[
UA(k)−1∂kUA(k)

]

− i

2π

∫ π

−π

dkTr
[
UB(k)−1∂kUB(k)

]
, (19)

where we have used a fact that Tr(Uq
−1∂qUq) =

−Tr(Uq∂qU −1
q ) when Uq is a unitary matrix. As mentioned

above, the column of unitary matrix Uσ (k) is the eigenvector
uσ

n,k (σ = A, B) up to a normalization factor. One can
find that Eq. (19) is exactly the “skew” polarization. The
above expression can be considered as the difference
of the polarization between two sublattices. In other words,
the winding number (divided by 2) measures the difference
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of polarization between A and B sublattices. In addition, one
can find that the summation of the winding of UA(k) and
UB(k) divided by 2 mode 1 leads to the polarization. This
implies a relation between polarization and winding number
in chiral-symmetric topological insulators: p = ν/2 mod 1.

C. Winding number in real space

Recently, the winding number is generalized from
momentum-space formula [Eq. (18)] to real-space formula
[29,30,34]. The idea introduced in Ref. [29] is to replace
the integral and the derivative versus quasimomentum k by
its real-space representation. For a 1D system, the real-space
winding number reads [29]

ν = T {QBA[X, QAB]}, (20)

where T refers to trace per volume, QBA = �BQ�A, QAB =
�AQ�B, and �σ = ∑

l,α∈σ |l, α〉〈l, α| is the projector onto the
σ = A, B subspaces [34]. The real-space formula is still valid
even in the presence of disorder given that the chiral symmetry
is preserved [29,30].

Here we present a quite different formula to calculate the
winding number in real space. Later, we will prove that these
two formulas are equivalent in the thermodynamic limit at
half-filling. As stated in the previous section, the winding
number is related to the relative polarization of A and B sublat-
tice. We shall follow the projected position operator approach
described in Sec. II to derive the winding number in real space.

To illustrate our idea, we consider a finite system with L
cells and discretize the integral in Eq. (19) as

ν = 1

2π i

∑
k

Tr
[
log

(
F A

k F B
k

†
)]

, (21)

where F σ
k = U †

σ (k)Uσ (k − δk), σ = A, B, and k =
2nπ/L, n ∈ Z (see Appendix A for a detailed derivation).
Since the nth column of Uσ (k) is the vector |uσ

n,k〉,
it can be found that the matrix elements of F σ

k are
[F σ

k ]m,n = 〈uσ
m,k|uσ

n,k−δk〉.
Next, we propose the following equivalent formula to cal-

culate the winding number:

ν = 1

2π i
Tr

[
log

(
XAX−1

B

)]
, (22)

where Xσ = U −1
σ �σX�σUσ (σ = A, B) are unitary matrices.

Xσ can be considered as the position operator projected onto
the σ sector of the eigenstate in the occupied band. The
quantum-mechanical position operator can be chosen as

X =
∑

l,α∈A,β∈B

ei 2π
L l (|l, α〉〈l, α| + |l, β〉〈l, β|). (23)

Then this operator has the same form when it is projected to
the A and B sectors. For convenience we denote the projected
operators as X̃ ≡ �AX�A = �BX�B in the following context.

To prove the equivalence between Eqs. (22) and (21), we
note that

[Xσ ](m,k′ ),(n,k) = 〈
ψσ

m,k′
∣∣X |ψσ

n,k

〉
= δk′,k+δk

〈
uσ

m,k′
∣∣uσ

n,k

〉
, (24)

where |ψσ
n,k〉 = ∑

α∈σ uσ
n,k|k, α〉 is the σ sector of eigenstate

(up to 1/
√

2 normalization factor). Then we have

[
XAX−1

B

]
(m,k′ ),(l,k′′ ) =

∑
n,k

[XA](m,k′ ),(n,k)

[
X−1

B

]
(n,k),(l,k′′ )

=
∑
n,k

δk′,k+δkδk,k′′−δk
〈
uA

m,k′
∣∣uA

n,k

〉〈
uB

n,k

∣∣uB
l,k′′

〉
(25)

= δk′,k′′
∑

n

〈
uA

m,k′
∣∣uA

n,k′−δk

〉〈
uB

n,k′′−δk

∣∣uB
l,k′′

〉

= δk′,k′′
∑

n

[
F A

k′
]

m,n

[(
F B

k′
)†

]
n,l

.

Now we can see that matrix XAX−1
B has a block-diagonal

structure. Each block is associated with certain quasimomen-
tum k, and is exactly equal to the matrix F A

k F B
k

†. Therefore,
one can immediately recognize that Eqs. (22) and (21) are
equivalent.

Note that Eq. (21) should reproduce a strictly quantized
winding number ν ∈ N. This can be proved by noting that
det(XAX−1

B ) = 1, since Uσ and X̃ are unitary matrices. Then,
tracing the logarithm in Eq. (22) gives an integer multiple of
2π i, and therefore the resulting winding number is an integer
number.

We have to emphasize that this quantization occurs only
when the system is half-filled, i.e., the Fermi energy lies in

the band gap. Generally, when the Fermi surface lies in the
bands (i.e., the filling is less than one half), the momentum-
space winding number in Eq. (18) is ill-defined. However, the
real-space formula (22) enables us to calculate the “winding
number” at arbitrary fractional filling less than one half. As
mentioned above, each column of Uσ is the σ sector of the
eigenstates. Thus, one may select certain columns of Uσ to
construct a reduced matrix Ũσ , and then use Eq. (22) to cal-
culate the winding number. Physically it can be understood
as projecting the position operator onto a certain subspace.
For example, we may choose the eigenstates whose energies
are below the Fermi energy En < EF and calculate the corre-
sponding fractional winding number via Eq. (22). As Ũσ is no
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longer a unitary matrix after the reduction, the result may give
a fractional value. We will verify this method numerically in
Sec. IV B.

In addition, we shall show that our real-space representa-
tion of the winding number can be written in a form of the
Bott index. By transforming XAX−1

B via unitary matrix UB and
using q = UAU −1

B , we have

UB
(
XAX−1

B

)
U −1

B = UB
(
U −1

A X̃UAU −1
B X−1UB

)
U −1

B

= (
UBU −1

A

)
X̃

(
UAU −1

B

)
X̃−1 (26)

= q−1X̃qX̃−1.

Hence, Eq. (22) can be written as

ν = 1

2π i
Tr log

(
q−1X̃qX̃−1

)
= Bott(q−1, X̃ ), (27)

which is exactly the form of Bott index introduced in [37,38].
In previous works, the Bott index is related to the real-space
Chern number of the 2D topological insulator. To the best
of our knowledge, the Bott index has not been applied to
the real-space winding number of 1D chiral-symmetric topo-
logical insulators. Although the Bott indices for the Chern
number and winding number have similar forms, they are
fundamentally distinct.

D. Winding number defined through twisted
boundary condition

In the previous subsection we obtain a real-space repre-
sentation of the winding number for the 1D chiral-symmetric
topological insulator. However, some of the properties, such
as the self-averaging nature and the bulk-edge correspon-
dence, are still vague. In this subsection we introduce the
winding number defined through the twisted boundary con-
dition (TBC). Then we prove the bulk-edge correspondence
for the TBC winding number, which indicates that the TBC
winding number is self-averaging in the presence of disorder
in the thermodynamic limit. Next, we will prove that our real-
space representation of winding number Eq. (22) is equivalent
to the TBC winding number.

The TBC manifests that the two ends of the 1D lattice are
glued together, but the particle will gain a phase � when they
move through the boundary. Thus, the TBC is also called the
generalized periodic boundary condition [43,44]. The TBC
can be equivalently expressed as a result of the magnetic flux
� piercing through the periodic chain. General 1D Hamilto-
nian under TBC can be written as

H (�) = −
∑

α,β,n�m

tα,β
m,n ei�m,n c†

α,mcβ,n + H.c.,

�m,n =
{
�, 〈m, n〉 cross the boundary,

0, otherwise. (28)

in which c†
α,m (cα,m) is the creation (annihilation) operator

of the mth cell, α is the index of sublattice, and tα,β
m,n is the

corresponding tunneling strength.

1. Winding number and bulk-edge correspondence

The bulk-edge correspondence is a well-known principle in
topological band theory. Nontrivial bulk topological invariant
will lead to gapless excitations in the ground state at the edges.
There have been some rigorous mathematical proofs of bulk-
edge correspondence in the 1D chiral-symmetric topological
insulator [45–47]. Here we use the TBC and follow the idea
in Ref. [14] to derive this principle.

When the system possesses the chiral symmetry, as men-
tioned before, the flattened Hamiltonian is parametrized by
the flux �,

Q(�) =
(

0 q(�)
q−1(�) 0

)
. (29)

In Ref. [48] it has been proved that the excitation gap will not
be affected by the twist angle � in the thermodynamic limit.
This means q(�) is nonsingular for arbitrary � ∈ [0, 2π ] as
long as the chiral-symmetric system is gapped at E = 0. Then,
the TBC winding number can be safely defined as

ν̃ = 1

2π i

∫ 2π

0
d� Tr

[
q−1(�)∂�q(�)

]
. (30)

Next, we show that the nontrivial winding number ν̃ 
= 0
under PBC results in the zero-energy modes, and the number
of zero-energy modes is twice the winding number. Inspired
by Ref. [14], we modify the boundary condition by adding
a parameter η ∈ [0, 1] onto the tunneling which crosses the
boundary

tα,β
m,n (η) =

{
ηtα,β

m,n , 〈m, n〉 cross the boundary,

tα,β
m,n , otherwise.

(31)

The system has open boundary when η = 0, and restores
the usual TBC when η = 1. Now the Hamiltonian are
parametrized by (�, η). Then we introduce the U (1) phase
field

z(�, η) = det q(�, η) ∈ U (1). (32)

Provided z(�, η) 
= 0, the TBC winding number Eq. (30) can
be written as

ν̃ = 1

2π i

∮
η=1

z−1dz. (33)

For nontrivial winding number ν̃ 
= 0, Eq. (33) implies some
poles of z reside in the circle of η = 1, and the number
of the poles should be equal to the absolute value of the
winding number. Recall that the twist angle will not affect
the excitation gap in the thermodynamic limit, the system
should be either gapped or gapless at E = 0 for arbitrary
twist angle � ∈ [0, 2π ]. This argument also holds for η < 1.
Hence, there should be an infinite number of poles inside
the circle if z(�, η) = 0 for 0 < η < 1, which is impossible
when ν is well defined and the system is away from the phase
transition. Consequently, the poles of z(�, η) can only occur
at η = 0, which corresponds to the open boundary condition.
This proof is similar to the discussion about the bulk-edge
correspondence of the quantum Hall effect in Ref. [14].

Then we prove that the appearance of the zero-energy
modes is associated to the nontrivial winding number. Note
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that z(�, η) = det q(�, η) is proportional to the following
products:

z(�, η) = det q(�, η) ∝
∏

n

ξn(�, η), (34)

in which {ξn(�, η)} are the singular values of q(�, η). We
can learn from the above discussions that the number of
poles is exactly equal to the number of zero singular values.
Meanwhile, as mentioned in Sec. III A, the singular values
of the off-diagonal block h are half of the eigenvalues of the
corresponding chiral-symmetric Hamiltonian. Therefore, we
can conclude that the number of zero-energy modes is twice
the winding number under open boundary condition.

Since we have assumed the system is gapped under PBC,
the zero-energy modes are the in-gap modes and should be
localized at the edge, which is known as the bulk-edge cor-
respondence. The above considerations are still valid if we
replace the flattened Hamiltonian Q by the original Hamilto-
nian H . Importantly, this bulk-edge correspondence holds for
the disordered case given that chiral symmetry persists. The
bulk-edge correspondence also implies that the TBC wind-
ing number is self-averaging in the thermodynamic limit and
away from the phase transition point.

2. Equivalence of the TBC winding number and the real-space
representation of the winding number

Now we would like to prove that our real-space represen-
tation of winding number Eq. (22) is equivalent to the TBC
winding number in the thermodynamic limit at half-filling.
The TBC Hamiltonian (28) can be transformed to [48,49]

H̃ (�) = U�H (�)U�
−1

= −
∑

α,β,n�m

tα,β
m,n ei �

L (m−n)c†
α,mcβ,n + H.c., (35)

where

U� = ei �
L X̂ , X̂ =

∑
α,m

mc†
α,mcα,m. (36)

We shall use the tilde notation to distinguish these two unitar-
ily equivalent Hamiltonians in the following discussions. For
a sufficiently large system L → ∞, and assuming the range of
tunneling is finite, we can expand Eq. (35) up to the leading
order of �/L,

H̃ (�) = H (0) + �

L
J + O

(
1

L2

)
,

J = i
∑

α,β,n�m

[
(m − n)tα,β

m,n c†
α,mcβ,n − H.c.

]
. (37)

One may notice that J is the current operator.
Similarly, we can expand q̃(�) up to the leading order of

ε = �/L,

q̃(ε) = q(0) + ε[∂ε q̃(ε)]ε=0 + O(ε2), (38)

where we have expressed q̃(�) as q̃(ε) for clarity.

With this approximation, the winding number Eq. (30) can
be written as

ν = 1

2π i

∫ 2π/L

0
dε Tr

[
q̃−1(ε)∂ε q̃(ε)

]

= 1

2π i

∫ 2π/L

0
dε Tr

{
q−1(0)[∂ε q̃(ε)]ε=0

} + O(ε2) (39)

= 1

iL
Tr

{
q−1(0)[∂ε q̃(ε)]ε=0

}
,

where we have used the fact that {q−1(0)[∂ε q̃(ε)]ε=0} is inde-
pendent on ε.

On the other hand, noting that U2π = X , there is H (0) =
H (2π ) = X−1H̃ (2π )X according to Eq. (35). This relation
can be also generalized to the flattened Hamiltonian Q(0) =
X−1Q̃(2π )X . Since the matrix q(�) can be obtained from
projecting the Q matrix via q̃(�) = �AQ̃(�)�B. We can de-
rive a similar relation for the q(0) and q̃(2π ),

q(0) = �AQ(0)�B = �AX−1Q̃(2π )X�B

= (
�AX−1�A

)[
�AQ̃(2π )�B

]
(�BX�B) (40)

= X̃−1q̃(2π )X̃ ,

where we have used the fact that X is diagonal in the position
space and �σX = �σX�σ , �2

σ = �σ , (σ = A, B).
Let ε = 2π/L in Eq. (38), we can combine it with Eq. (40)

and obtain the following relation:

X̃q(0)X̃−1 = q̃

(
ε = 2π

L

)

= q(0) + 2π

L
[∂ε q̃(ε)]ε=0 + O

(
1

L2

)
. (41)

Therefore, we can rewrite Eq. (39) as

ν = 1

iL
Tr

{
q−1(0)[∂ε q̃(ε)]ε=0

}

= 1

2π i
Tr

{
q−1(0)

[
X̃q(0)X̃−1 − q(0)

]}
(42)

= 1

2π i
Tr

(
q−1X̃qX̃−1 − I

)
,

where I is the identity matrix and we have dropped the de-
pendence on the twist angle in the last row. From Eq. (41) one
can find that q−1X̃qX̃−1 is close to the identity for sufficiently
large L. In the thermodynamic limit L → ∞, Eq. (42) can be
written as the matrix logarithm [50]

ν = 1

2π i
Tr log

(
q−1X̃qX̃−1

)
, (43)

which is in agreement with Eq. (27). Thus, we have proved
that the real-space representation of the winding number is
equivalent to the winding number defined through the TBC in
the thermodynamic limit at half-filling.

Generally speaking, to obtain the winding number defined
through the TBC, one needs to change the twist angle �

from 0 to 2π , which requires great computational resources.
Here we have shown that the winding angle of q̃(�) changes
linearly with the twist angle: arg[det q̃(�)] ∼ �. It is such a
kind of linear dependence that leads to our efficient real-space
representation of the winding number. Moreover, as discussed
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above, the TBC winding number should be a self-averaging
quantity, and we can therefore conclude that our real-space
representation of the winding number is also self-averaging.

In addition, we can further prove that the TBC winding
number [Eq. (30)], as well as the real-space representation of
the winding number [Eq. (22)] in our work, are equivalent to
the formula [Eq. (20)] obtained in Ref. [29]. To show this, we
note that in the thermodynamic limit, there is

[X, H (0)] =
∑

α,β,n�m

[
(m − n)tα,β

m,n c†
α,mcβ,n − H.c.

]

= −iJ , (44)

where X = ∑
α,m mc†

α,mcα,m. On the other hand, the off-
diagonal block h(�) matrix and its inverse read as

h̃(�) = �AH̃ (�)�B, h̃(�)−1 = �BH̃ (�)−1�A. (45)

Hence, using Eq. (37), the derivative with respect to � reads
as [

∂ε h̃(ε)
]
ε=0 = L

[
∂�h̃(�)

]
�=0

= �AJ�B (46)

= i�A[X, H (0)]�B.

The winding number [Eq. (39)] can be equivalently written as

ν̃ = 1

iL
h(0)−1

[
∂ε h̃(ε)

]
ε=0 = 1

L
�BH−1�A[X, H]�B, (47)

where we have dropped the dependence on the twist angle �

in the last term for simplicity. Then, it is tempting to replace
the Hamiltonian by the flattened Hamiltonian, and we have

ν̃ = 1

L
�BQ�A[X, Q]�B

= 1

L
QBA[X, QAB], (48)

in which we have used the relation �2
σ = �σ , �σ X = �σ X�σ

(σ = A, B), and Q−1 = Q. We find that Eq. (48) is identical
to Eq. (20). Therefore, we can conclude that the TBC winding
number [Eq. (30)], the real-space representation of the wind-
ing number [Eq. (22)] in our work, and the real-space formula
[Eq. (20)] obtained in Ref. [29], are equivalent in the thermo-
dynamic limit. Note that Eq. (48) can be also derived from
Eq. (42) by using the Baker-Campbell-Hausdorff formula to
expand X̃qX̃−1 up to the first term, but the convergence of
the expansion seems to be unclear in that way.

E. Winding number defined through path connection

Previously we obtain the real-space winding number by
considering the sublattice polarization. We find that our for-
mula can be expressed as the Bott index. For the Bott index
there is an alternative method to express the winding number
by a path connection [37], which clearly shows the meaning
of winding in real space. We shall give a simple illustration
here.

Since unitary matrix is always diagonalizable, we
can make an eigenvalue decomposition XAX−1

B =
TXdiagT −1 where T is an unitary matrix and Xdiag =
diag{eiθ1 , eiθ2 , . . . , eiθn} is a diagonal matrix with all elements
lying on an unit circle in complex plane C.

Then Eq. (22) can be written as

ν = 1

2π i
Tr[log (Xdiag)] = 1

2π

∑
k

θk . (49)

In other words, the information of the winding number is
encoded in these phases.

Recall that the matrix logarithm is a multivalued matrix
function. To “unwind” the logarithm in Eq. (22), we consider
a continuous path (homotopy) φ : [0, 1] → GL(n,C) such
that φ(0) = XAX−1

B and φ(1) = I . The function φ(r) can be
written as

φ(r) = TXdiag(r)T −1

= T diag
{
eiθ̃1(r), eiθ̃2(r), . . . , eiθ̃n (r)}T −1, (50)

where θ̃k (r) ∈ [0, 2π ), r ∈ [0, 1] is a continuous real function
with θ̃k (0) = θk and θ̃k (1) = 0. The winding number can be
defined as

ν = − 1

2π

∫ 1

0
dr

∂

∂r
arg [det φ(r)], (51)

which is indeed related to the real-space winding number
since

− 1

2π

∫ 1

0
dr

∂

∂r
arg [det φ(r)]

= − 1

2π

∑
k

∫ 1

0
dr

∂

∂r
θ̃k (r) = 1

2π

∑
k

θk, (52)

where we have used
∫ 1

0 dr ∂
∂r θ̃k (r) = −θk .

When the winding number is nontrivial ν > 0, the con-
tinuous path φ connects different branches of a complex
logarithm. The winding number can only be changed dis-
continuously when the system undergoes a phase transition.
This is accompanied by the sudden changes of some phase
θk , and the function arg[det φ(r)] becomes discontinuous and
indifferentiable. Note that det φ(r) may be still continuous
and well defined. The singularity of arg[det φ(r)] is due to
the multivalued nature of the argument. For example, when
a phase grows continuously from θ0 to θ0 + 2π , the com-
plex function eiθ0 is continuous, while its principal argument
arg(eiθ0 ) is discontinuous. We will show this later with a
numerical calculation.

In the presence of translation symmetry, we have proved
that our formula (22) is exactly equal to the momentum-space
formula (18). Thus, it is natural that the winding number
[Eq. (51)] is also equivalent to the momentum-space formula
[Eq. (18)]. Also, it is always possible to elaborate a path that
the behavior of the winding number defined in Eq. (51) is
identical to the momentum-space winding number [Eq. (18)]
when translation symmetry is present. In other words, the loop
det φ(r) is homotopic to det h(k) and det q(k) in the presence
of translation symmetry.

IV. APPLICATION TO A 1D BDI CLASS MODEL

In the previous section we have introduced a representation
of the real-space winding number. Our formula ensures that
the winding number is an integer at half-filling case. For ar-
bitrary fractional filling less than one half, our formula is still
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FIG. 1. Schematic illustration of the extended SSH model. Be-
sides the general nearest-neighbor tunneling in the SSH model, we
include special long-range tunneling indicated by the dashed line.

applicable but does not necessarily give an integer number.
On the other hand, we define a winding number through a
continuous path from the special unitary matrix to the identity
matrix. In this section we will apply these arguments to a
toy model in the 1D BDI class. We shall also consider a
disorder on tunneling to see the robustness and validity of the
real-space winding number. These calculations can be easily
extended to the AIII class.

A. Extended Su-Schrieffer-Heeger model and disordered
tunneling

We introduce a 1D lattice model described by the following
second quantized Hamiltonian:

H = −
∑

l

(
t1,l â

†
l b̂l + t2,l â

†
l+1b̂l + t3,l â

†
l+2b̂l

) + H.c., (53)

where âl
† (b̂l

†
) creates a particle at the A (B) sublattice of

the lth cell. tn,l = tn + Wnεn,l , n = 1, 2, 3 is the tunneling
strength, εn,l ∈ (−1/2, 1/2) is a random strength distributed
uniformly, and Wn is the strength of disorder. This is an
extended Su-Schrieffer-Heeger (SSH) model up to a next-
next-nearest-neighbor (NNNN) term. A schematic illustration
of this toy model is shown in Fig. 1. With this special NNNN
tunneling, the system still preserves chiral symmetry. Accord-
ing to the tenfold classification, this model belongs to BDI
class. There exist topological phases characterized by winding
number ν = 0, 1, 2 in this model.

As a benchmark, we adapt a similar configuration in
Ref. [30], and set W = W1 = 2W2, W3 = 0 and t1 = 0, t2 =
1, t3 = −2. We use the two approaches Eqs. (20) and (22)
to numerically calculate the winding number as a function of
disorder strength W . Here the position operator reads as X̂ =
exp[iδk

∑
i l (â†

l âl + b̂†
l b̂l )]. The results are shown in Fig. 2. It

can be seen that the winding numbers obtained from Eq. (22)
stay quantized in each random realization (gray dots). We
have examined that the averaged results (blue circles) agree
well with the averaged results obtained from Eq. (20). Away
from the phase transition point, there is almost no fluctuation
of the winding number because each realization is perfectly
the same quantization. Around the phase transition point we
find that the fluctuation of winding number becomes large,
which can be served as a signature of the topological phase
transition in disorder systems. The phase transition point can
be determined with higher accuracy as the lattice length in-
creases. The scaling with different lattice lengths is presented
in Appendix. B. However, we note that the real-space winding
number obtained from Eq. (20) is not strictly quantized for the
finite system. As shown in the inset of Fig. 2, the real-space

FIG. 2. Winding number ν as a function of disorder strength
W in disordered extended SSH model in Eq. (53). Gray dots are
the results from 100 random realizations based on Eq. (22). Blue
circles are averaged over the gray dots. Inset: Comparison between
Eqs. (20) and (22). Light-purple dots are the results from 100 random
realization based on Eq. (20). Red squares are the averaged results
of the purple dots. The above calculations are implemented with
L = 1001 cells. The parameters are t1 = 0, t2 = 1, t3 = −2, and the
configuration of disorder is W = W1 = 2W2, W3 = 0.

winding number calculated via Eq. (20) slightly deviates from
the integer.

Next, based on Eq. (51), we use Eq. (51) to graphically
show the winding number in the presence of disorder. Practi-
cally we can simply assume

φ(r) = (1 − r)XAX−1
B + rI, r ∈ [0, 1]. (54)

The determinant is

det φ(r) = det
[
(1 − r)XAX−1

B + rI
]

= det
{
T [(1 − r)Xdiag + rI]T −1

}
(55)

= det [(1 − r)Xdiag + rI]

=
∏

k

[
(1 − r)eiθk + r

]
.

The graphical illustrations of real-space winding numbers are
shown in Figs. 3(a)–3(c). It can be seen that the winding
around the singularity point [det φ(r) = 0] in the complex
plane coincides well with the real-space winding number.

Besides, it can be found that det φ(r) only takes zero value
at r = 1/2 and θk = π . As stated in the previous section,
we may identify that θk = π is related to the discontinuous
change of argument, and thus corresponds to phase transition.
To show this, we numerically calculate the arguments {θk}
from the diagonal entries of Xdiag as a function of disorder
strength W in a single random realization {εn,l}. As presented
in Figs. 3(d) and 3(e), given a random realization {εn,l}, all the
phases {θk} change continuously with disorder strength except
for the phase transition point. This is in agreement with our
discussion.
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FIG. 3. (a)–(c) The trajectory of det φ(r) with W = 1, 10, 25 in
a single random realization. The red star represents the zero point.
(d) The real-space winding number ν as a function of disorder
strength W given a certain set of random factor {εn,l} in a single
random realization. (e) The argument {θk} of the diagonal entries of
Xdiag as a function of W in the same random realization as (d). Other
parameters are identical to the parameters in Fig. 2.

B. Winding number under different filling factors

Now we calculate the winding number for various fillings
(less than one half) in the extended SSH model; see Fig. 4. It
can be seen that the winding number is zero when the filling

FIG. 4. Winding number as a function of Fermi energy EF for
three different parameters t1 = 0.8, 2, 4 in the clean limit W1 = W2 =
W3 = 0. The inset shows the corresponding band structure. Other
parameters are chosen as t2 = 1, t3 = −2.

is empty. As the Fermi energy increases, the winding number
changes continuously, and finally reaches an integer value
when the system is half-filled (the Fermi energy EF lies in the
spectral gap). This result may be understood by considering
the winding number as the difference of polarization of A and
B sublattices. The difference in sublattice polarization will
change with the filling numbers.

Notice that there appears discontinuity in the first deriva-
tive of the Fermi energy. This is because there are some
local minima in the band structure, as shown in the inset of
Fig. 4. This method can be also applied to the disordered
case.

V. SUMMARY AND DISCUSSION

In summary, we propose a real-space formula for calcu-
lating the winding number of 1D chiral-symmetric systems.
Our real-space representation of the winding number is in-
spired by the projected position operator approach since the
winding number can be written as the difference of polar-
ization between two sublattices. We show that our approach
is equivalent to the momentum-space representation of the
winding number in the clean limit. Even in the presence of dis-
order, our formula produces a quantized value. We have also
shown that our method works for the case of fillings less than
one half.

With the help of TBC, we have proved the bulk-edge corre-
spondence principle for the TBC winding number. We further
prove that our real-space representation of winding number
is equivalent to the TBC winding number and the real-space
formula proposed in Ref. [29] in the thermodynamic limit at
half-filling. Therefore our real-space representation of wind-
ing number also satisfies the bulk-edge correspondence and
the self-averaging property. Meanwhile, compared with the
general TBC method, where includes the integral of twist an-
gle �, our formula can be obtained from a single Hamiltonian,
which is more efficient.

Interestingly, we find that our real-space winding number
can be expressed as a Bott index. However, the Bott index is
usually employed for the real-space Chern number [19,51,52],
which is quite different from the winding number in a 1D
chiral-symmetric topological insulator. We also show that the
Bott index has a deep connection to the twisted boundary
condition. Our work may provide another concrete example
for investigating the Bott index. Meanwhile, one may find
the position operator plays a crucial role in the construction
of real-space representation of topological invariants, such as
the Chern number [16–20], the Zak-Berry phase [25–28], and
the winding number [29–35]. Thus, it is intriguing to gener-
alize the application of position operators to other topological
systems in other topological classes or higher dimension in
the future.

We also note that recently the SVD has been applied
to non-Hermitian systems [53], where the singular val-
ues of a non-Hermitian Hamiltonian obey the bulk-edge
correspondence. The study on the interplay between non-
Hermitian systems and disorder has received many interests
recently [54,55]. With the formula of winding number for
the non-Hermitian system [56], it is intriguing to generalize
our formula to the non-Hermitian case. The non-Hermitian
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FIG. 5. Winding number as a function of disorder strength W
with different length L of system. The results are averaged over 100
random realizations. Other parameters are the same as Fig. 2.

Hamiltonian can be considered as the off-diagonal block of
some chiral-symmetric Hermitian Hamiltonians. Then our
real-space representation of the winding number may be ex-
tended to non-Hermitian systems.
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APPENDIX A: DERIVATION OF THE DISCRETIZED
FORMULA OF THE WINDING NUMBER

Here we give a detailed derivation of Eq. (21). Approxi-
mately we have

U −1
σ (k)∂kUσ (k) � U −1

σ (k)
Uσ (k + δk) − Uσ (k)

δk
, (A1)

which leads to

1 + U −1
σ (k)∂kUσ (k)δk � U −1

σ (k)Uσ (k + δk). (A2)

Take the logarithm on both sides

log
[
1 + U −1

σ (k)∂kUσ (k)δk
] � log

[
U −1

σ (k)Uσ (k + δk)
]
,

(A3)

and use the approximation log(1 + x) ≈ x when x → 0, we
obtain

U −1
σ (k)∂kUσ (k)δk � log

[
U −1

σ (k)Uσ (k + δk)
]
. (A4)

In the thermodynamic limit, the quantities in two sides of
Eq. (A4) are equivalent. Thus, the discretized form of winding
number can be written as

ν = 1

2π i

∑
k

Tr
(
log F A

k − log F B
k

)
, (A5)

where F σ
k = U †

σ (k)Uσ (k − δk), σ = A, B. Alternatively, we
can use the fact that Tr log(A) = log det(A) when ‖A‖ < π

[57], and then obtain the expression in Eq. (21).

APPENDIX B: SCALING OF THE PHASE TRANSITION

To examine the finite-size effect on the disorder-induced
topological phase transition, we present the winding number
as a function of disorder strength W in Fig. 5. The results show
that the boundary of phase transition tends to be clear when
L → ∞.
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