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Hyperuniformity and wave localization in pinwheel scattering arrays
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We investigate the structural and spectral properties of deterministic aperiodic arrays designed from sta-
tistically isotropic pinwheel tiling. By studying the scaling of the cumulative integral of its structure factor
in combination with a higher-order structural correlation analysis we conclude that pinwheel arrays belong
to the weakly hyperuniformity class. Moreover, by solving the multiple scattering problem for electric point
dipoles using the rigorous Green’s matrix theory, we demonstrate a clear transition from diffusive transport to
localization behavior. This is shown by studying the Thouless number as a function of the scattering strength
and the spectral statistics of the scattering resonances. Surprisingly, despite the absence of sharp diffraction
peaks, clear spectral gaps are discovered in the density of states of pinwheel arrays that manifest a distinctive
long-range order. Furthermore, the level-spacing statistics at large optical density exhibits a sharp transition from
level repulsion to the Poisson behavior, consistently with the onset of the wave localization regime. Our findings
reveal the importance of hyperuniform aperiodic structures with statistically isotropic k space for the engineering
of enhanced light-matter interactions and localization properties.
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I. INTRODUCTION

Isotropic nanostructures with circular symmetry in k space
(i.e., k-space isotropy) have been proposed to achieve more
robust optical band gaps [1–3], enhance the efficiency and
directionality of light-emitting diodes (LEDs) [4–8] and
optical lasers [9], and create angle-insensitive structural col-
oration [10,11], and novel cavity-enhanced platforms for
quantum photonics [12,13]. Isotropy in the k space occurs in
disordered systems with long-range correlations (i.e., stealthy
hyperuniform [1,14] and optimized isotropic scattering ar-
rays [8]), quasiperiodic structures [9,15,16], and aperiodic
media beyond quasicrystals that feature nearly continuous
circular k-space symmetry, such as Vogel spirals [17–20] and
the pinwheel tiling [6,10,21].

In this paper, we study the transport and localization prop-
erties of optical waves in aperiodic arrays of scattering dipoles
positioned at the vertices of the pinwheel tiling [22,23]. A
two-dimensional (2D) pinwheel tiling is an aperiodic tiling
of the plane constructed by a deterministic inflation rule that
produces rotated copies of a triangular prototile in infinitely
many distinct orientations, giving rise to isotropic k space
(see Sec. II for more details). Motivated by the recent dis-
covery that two-dimensional (2D) disordered hyperuniform
and isotropic scattering media support a localization transition
for transverse magnetic (TM) waves [24,25], we ask whether
wave localization can also be achieved in deterministic and
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isotropic pinwheel arrays. To investigate wave localization
in an open 2D scattering environment (i.e., a system with
in-plane radiation losses), we applied the rigorous Green’s
matrix spectral method that enables a systematic investigation
of complex scattering resonances and their spectral statis-
tics [26,27]. Specifically, by studying the Thouless number
g and the first-neighbor level-spacing statistics for different
values of the optical density, our work demonstrates a tran-
sition from the diffusive to the localized transport regime
accompanied by a crossover from level repulsion to level
clustering behavior. Moreover, spectral gaps are discovered at
large optical density by studying the density of optical states
(DOS) of the pinwheel structure and the formation of local-
ized resonances is observed around the band edges, similarly
to disordered band-gap materials [24,25,28–30].

II. GEOMETRICAL PROPERTIES OF PINWHEEL ARRAYS

Aperiodic pinwheel tiling is a hierarchical structure
iteratively generated from a simple inflation rule that decom-
poses a rectangular triangle with edge lengths proportional
to 1, 2, and

√
5 (i.e., the prototile) into five congruent

copies [22,23,31,32]. An infinite tiling is produced by iterat-
ing and rescaling this linear decomposition. Since the inflation
rule also involves a rotation by an angle that is an irrational
modulo 2π , the resulting tiling contains copies of the origi-
nal prototile arranged in infinitely many distinct orientations
resulting in statistical isotropy, referred to as the “pinwheel
phenomenon” [31,32]. As a consequence, the pinwheel tiling
displays an infinity-fold rotational symmetry. The pinwheel
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FIG. 1. (a) shows 3907 scatters spatially arranged in a pinwheel
geometry. x̂ and ŷ indicate normalized coordinates with respect to the
average interparticle distance d1. (b) presents the structure factor of
the array shown in (a) (the cubic root is taken to enhance contrast).
(c) displays the azimuthally averaged structure factor (left blue axis)
and cumulative intensity function (right orange axis). The inset re-
ports a zoom-in view of the scaling of the Z (k̂). Here, k̂ indicates
the product of the wave number k with d1. The black line is the
power-law fit within the range 0.1 < k̂ < 3, while the green dashed
lines represent the 95% prediction interval. (d) compares the γ1 and
γ2 functions of the pinwheel array (green lines) to the analytical
trends of uncorrelated Poisson processes (blue curves) [33,34].

tiling, first introduced by Conway and Radin, does not contain
discrete components in its diffraction spectrum, which is con-
jectured to be absolutely continuous although it is presently
unknown whether there exists a singular-continuous compo-
nent as well [22,23,32].

The pinwheel array shown in Fig. 1(a) is obtained by
positioning one scattering electric dipole at each node of the
corresponding tiling. The resulting scattering array is ape-
riodic and features a diffraction pattern, proportional to the
structure factor S(k) shown in Fig. 1(b), that is essentially
continuous except from a few bright spots that are due to
the finite size of the system [10,32]. In the infinite size limit,
the tiles occur in infinitely many orientations and the rota-
tional symmetry of the spectrum becomes continuous [32]. In
fact, Radin has mathematically shown that there are no dis-
crete components in the diffraction spectrum of the pinwheel
tiling [22], but we remark again that it is unknown whether
there is also a singular continuous component [32]. Gener-
ally, the structure factor displays a highly structured diffuse
background that manifests k-space isotropy, i.e., a circularly
symmetric diffuse scattering background that resembles a
powder diffraction pattern [35,36].

Since the structure factor of the pinwheel array is isotropic,
we show in Fig. 1(c) its azimuthal average computed

according to the formula [8]

Sθ (k) = 1

2π

∫ 2π

0
S(k, θ )dθ. (1)

The sharp peaks in Sθ (k), shown by the blue line, quan-
tify the overall isotropic scattering strength of the pinwheel
array that has been recently exploited in engineering appli-
cations to radiation extraction [6,21] and bright structural
coloration of metal surfaces [10]. Additionally, the point
patterns obtained from the pinwheel tiling are known to
be hyperuniform [37,38]. Hyperuniformity is a correlated
state of matter characterized by the suppression of long-
wavelength density fluctuations [14,38]. Hyperuniformity has
been recently shown to play an important role in light lo-
calization phenomena for both disordered and deterministic
systems [24,25,34,39,40].

Hyperuniform systems can be classified according to three
main categories depending on the power-law scaling of their
structure factors in the vicinity of the k-space origin, i.e.,
S(k) ∼ |k|α in the limit k → 0 [14]. Specifically, α > 1, α =
1, and 0 < α < 1 define, respectively, the strong (class I), the
logarithmic (class II), and the weak (class III) hyperuniform
class [14]. Currently, the hyperuniformity class of the pin-
wheel arrays is not known.

In order to better understand the type of hyperuniformity
that characterizes pinwheel arrays we have investigated the
scaling behavior of the cumulative diffraction power Z (k)
that can be directly computed from the structure factor as
follows [41]:

Z (k) =
∫ k

0

∫ 2π

0
S(k′, θ )dθdk′. (2)

Equation (2) scales as kα+1 when k → 0 if the array is hy-
peruniform. The α coefficient can then be estimated from a
linear fit in a double logarithmic scale [41], thus identifying
the corresponding hyperuniformity class of the investigated
structure. The orange lines in Fig. 1(c) and in the correspond-
ing inset show the scaling behavior of the cumulative integral
of the structure factor. The black lines are the result of the
power-law fit and the green dashed lines represent the 95%
prediction interval. Our results demonstrate that the pinwheel
arrays are weakly hyperuniform structures characterized by
α = 0.6 ± 0.1.

General hyperuniform structures must obey the following
direct-space sum rule [42],

ρ

∫
Rd

h(r)dr = −1, (3)

where ρ is the number density, while h(r) is the total cor-
relation function that vanishes in the absence of spatial
correlations in the system [38]. Equation (3) implies that in
hyperuniform systems the total correlation function must be-
come negative for some values of r [42]. A general approach
to identify regions of negative structural correlations, devel-
oped initially to investigate correlations in the energy levels of
nuclear spectra [33,43], is based on the analysis of skewness
(i.e., γ1) and excess kurtosis (i.e., γ2) functions [34,44]. These
statistical quantities are defined in terms of the moments,

μ j = 〈(n − 〈n〉) j〉, (4)
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where n is the number of elements in an interval of length
L and 〈· · · 〉 represents an average taken over many such in-
tervals throughout the entire system [34]. Besides providing
a precise characterization of level repulsion and long-range
order, γ1 and γ2 are sensitive to three-level μ3 and four-level
μ4 structural correlations. In fact, γ1 and γ2 are equal to
μ3μ

−3/2
2 and μ4μ

−2
2 − 3, respectively [33].

In Fig. 1(d), we compare the size-scaling behavior of the
γ1 and γ2 functions of the pinwheel array (green curves) with
the analytical expressions (blue curves) corresponding to a
uniform random (UR) point pattern, which can be expressed
as γ UR

1 = (R/d1)−1/2
√

ρ and γ UR
2 = (R/d1)−2/3ρ [33,34].

We observe that the pinwheel array exhibits a range where γ2

is oscillatory and negative, indicating the presence of strong
structural correlations with repulsion behavior [34,44]. On the
contrary, UR systems do not feature structural correlations up
to fourth-order correlation functions [33]. Our scaling analysis
further demonstrates the hyperuniform nature of the investi-
gated pinwheel arrays and unveils a prominent anticlustering
behavior.

III. SPECTRAL PROPERTIES OF PINWHEEL ARRAYS

We now investigate the wave transport and localization
properties of TM-polarized electric dipoles that are spatially
arranged as in Fig. 1(a). Multiple scattering effects in two
spatial dimensions (i.e., for cylindrical waves) are studied by
analyzing the spectral properties of the Green’s matrix defined
as

Gi j = i(δi j + G̃i j ), (5)

where the elements G̃i j are given by [27]

G̃i j = 2

iπ
K0(−ik0|ri − r j |), (6)

and K0(−ik0|ri − r j |) denotes the modified Bessel function
of the second kind, k0 is the wave vector of light, and ri

specifies the position of the ith scattering dipole in the array.
The non-Hermitian matrix (5) describes the electromagnetic
coupling among the scatterers and the real and imaginary part
of its complex eigenvalues �n (n ∈ 1, 2, . . . , N) correspond
to the detuned frequency (ω0 − ω) and decay rate 
n (both
normalized to the resonant width 
0 of an isolated dipole) of
the scattering resonances of the system [26,27]. This formal-
ism accounts for all the multiple scattering orders and enables
the systematic study of the scattering properties of 2D waves
with an electric field parallel to the invariance axis of the
scatterers [45]. Even though the 2D model in (5) does not take
into account the vector nature of light [46–49], it still pro-
vides useful information on light localization in 2D disorder
media [27], transparency in high-density hyperuniform mate-
rials [45], and correctly describes the coupling between one
or several quantum emitters embedded in structured dielectric
environments [50,51].

To investigate the nature of the spectral properties of the
pinwheel arrays, we analyze the distributions of the com-
plex eigenvalues that describe the scattering resonances, the
Thouless number, the level-spacing statistics, and the density
of optical states (DOS) for different values of the scattering
strength of the system, which is quantified by its optical

FIG. 2. (a) and (b) show the complex eigenvalue distribution
and the Thouless number g as a function of the frequency ω when
ρλ2 = 10−4. (c) and (d) display the complex eigenvalue distribution
and the Thouless number g when ρλ2 is equal to 5. The dashed black
lines in (b) and (d) identify the threshold of the diffusion-localization
transition g = 1. The different markers in (a) and (c) identify the
spectral positions of the representative scattering resonances reported
in (b) and (d).

density ρλ2. Here, ρ denotes the number of scatterers per
the unit area, and λ is the optical wavelength. The spec-
tral information is derived by numerically diagonalizing the
N × N Green’s matrix (6). Figure 2 shows the results of this
analysis at both small (i.e., ρλ2 = 10−4) and large (i.e., ρλ2 =
15) optical density. In particular, Figs. 2(a) and 2(c) display
the distributions of the complex eigenvalues of the Green’s
matrix (5) in the small and large optical density regimes,
respectively. The complex eigenvalues are color coded ac-
cording to the log10 values of the modal spatial extent (MSE)
of the corresponding eigenvectors. The MSE parameter quan-
tifies the spatial extension of a given scattering resonance of
the system [52,53]. Figures 2(b) and 2(c) display the Thouless
number g as a function of the frequency ω corresponding to
the two scattering regimes.

To evaluate the Thouless number g as a function of ω, we
have used the following definition [34,47]:

g(ω) = δω

�ω
= (1/Im[�n])−1

Re[�n] − Re[�n−1]
. (7)

We have sampled the real parts of the eigenvalues of the
Green’s matrix in 500 equispaced intervals and we computed
Eq. (7) in each frequency subinterval. The symbol {· · · } in
Eq. (7) denotes the subinterval averaging operation, while ω

indicates the central frequency of each subinterval. We have
verified that the utilized frequency sampling resolution does
not affect the presented results.

In the low optical density regime, the complex eigenvalue
distribution does not show the presence of any long-lived
scattering resonance with 
n 	 
0, as visible in Fig. 2(a).
Consistently, the corresponding Green’s matrix eigenvectors
are spatially delocalized across the array. Two representative
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delocalized modes are shown in Fig. 2(b). These resonances
are labeled by the square and rhombus red markers that indi-
cate their positions in the spectrum. Moreover, the Thouless
number g remains larger than unity independently of the fre-
quency ω, which indicates diffusive transport.

On the other hand, at large optical density spatially con-
fined long-lived scattering resonances appear in the spectrum
when ωn ≈ ω0. Two representative localized modes are shown
in Fig. 2(d) labeled by the circle and triangle red markers
indicating their positions in the spectrum. Moreover, two dis-
persion branches populated by scattering resonances localized
over small clusters of dipoles near the center of the array
[see Fig. 2(c)], appear in the distribution of complex eigen-
values. Figure 2(c) also shows the formation of a spectral gap
region where the critical scattering resonances reside. These
are spatially extended and long-lived resonances with strong
spatial fluctuations at multiple length scales characterized by
a power-law scaling behavior [12,54–56]. The formation of a
spectral gap region at large optical density reflects the long-
range correlated nature of the pinwheel array. Furthermore, at
large optical density, we find that g becomes lower than one
for ω ≈ 0, indicating the onset of light localization, as demon-
strated in Fig. 2(d). We remark that the long-lived scattering
resonances that are spatially confined over a few scatterers
appear at the frequency positions where the Thouless number
becomes lower than one.

To obtain additional insights on this localization transi-
tion, we analyze the Thouless number as a function of the
normalized frequency ω for different optical density values
ρλ2, starting from 10−4 up to 12 with a resolution of 0.06.
Figure 3(a) shows a high-resolution map that is color coded
according to the quantity ln[g] = ln[g(ω, ρλ2)]. Localiza-
tion phenomena begin to occur when ρλ2 ≈ 1.5. Moreover,
Fig. 3(a) displays a clear dispersion branch followed by the
localized scattering resonances (i.e., the yellow stripes) that
are similar to the representative example previously shown in
Fig. 2(d).

The transition from diffusion to localization is confirmed
by the switching from level repulsion to level clustering of
the quantity P(ŝ) as a function of ρλ2, which is demon-
strated in Fig. 3(b). Here, P(ŝ) denotes the probability density
function of the first-neighbor level-spacing distribution of
the complex eigenvalues of the Green’s matrix [57]. It is
well established that the suppression of the level repulsion
[i.e., P(ŝ) → 0 when ŝ goes to zero] indicates the transi-
tion into the localization regime for both scalar and vector
waves in two-dimensional and three-dimensional disordered
systems [57–59] as well as nonuniform aperiodic determin-
istic structures [34,46,47,60]. When ρλ2 = 10−4, the P(ŝ) of
the pinwheel array, shown with red circle markers in Fig. 3(b),
can be modeled by the Ginibre distribution, defined as [61]

P(ŝ) = 34π2

27
s3 exp

(
−32π

24
s2

)
. (8)

We emphasize that the black curve in Fig. 3(b) does not
result from data fitting but is obtained using directly Eq. (8).
The Ginibre model extends the analysis of level repulsion to
non-Hermitian random matrices [61], which correspond to
open-scattering systems. Our analysis based on the Ginibre
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FIG. 3. (a) shows a highly resolved map of the logarithmic values
of the averaged Thouless number for different ρλ2 values as a func-
tion of ω. This map is evaluated in the range ρλ2 = [10−4, 12] with
a resolution of 0.06. (b) shows the crossover from level repulsion
to level clustering of P(ŝ). Specifically, P(ŝ) changes from the Gini-
bre’s statistic (black line) to the Poisson distribution (blue line) by
increasing ρλ2. (c) reports the Thouless number as a function of the
frequency ω at a given optical density ρλ2 = 5 for different system
sizes. Blue, red, and green circle markers indicate a total number
of scatterers of 3907, 6934, and 15 671, respectively. (d) displays
the scaling of the minimum value of the Thouless conductance as a
function of ρλ2.

distribution demonstrates that the level spacing of the pin-
wheel’s complex eigenvalues exhibits cubic level repulsion in
the low scattering regime. On the other hand, at large optical
density (i.e., ρλ2 = 5), the distribution of the level-spacing
statistics changes drastically, showing level clustering. This is
demonstrated in Fig. 3(b) by the blue circle markers. These
data are well described by the Poisson distribution e−ŝ, which
is typically associated to noninteracting, exponentially local-
ized energy levels [33,61].

Figure 3(c) displays the Thouless number as a function of
the frequency ω in the localized regime for pinwheel sys-
tems with an increasing number N of scatterers (i.e., for an
increasing size). The blue, red, and green markers refer to
arrays with 3907, 6934, and 15 671 particles, respectively.
All these curves cross at the threshold value g = 1 at two
points, independently from N , as displayed more clearly in
the insets. The abscissas of these two points can be taken as
a rough estimate of the two mobility edges that characterize
the onset of the localization transition [49]. Interestingly, the
same behavior was recently observed in the propagation of
scalar waves through a three-dimensional ensemble of res-
onant point scatterers [62]. Figure 3(d) shows the behavior
of the minimum value of the Thouless number as a func-
tion of ρλ2 for three different values of N . Specifically, we
have evaluated g = g(ω) by using Eq. (7) for each ρλ2 value
and we have repeated this procedure for different frequency
resolutions used in the Thouless number computation. The
circle markers and the error bars in Fig. 3(d) are the averaged
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values and the standard deviations corresponding to different
frequency resolutions. The scaling of min[g] as a function of
the optical density switches from min[g] > 1 to min[g] < 1,
demonstrating the diffusion to localization transition.

Even though the pinwheel array manifests a characteristic
hyperuniform long-range order, the discovered wave local-
ization transition shares similar properties with the Anderson
transition in disordered media. In particular, in 2D random
media the Thouless number drops below unity and the prob-
ability density of the level spacing switches from the Ginibre
distribution, describing level repulsion in the diffusive regime,
to the Poisson distribution, which is characteristic of level
clustering in the localization regime.

A simple justification of the observed localization thresh-
old can be obtained by estimating the localization length ξ .
For a uniform and isotropic random system, the characteristic
localization length is predicted to be [63,64]

ξ ∼ lt exp[π Re(ke)lt/2], (9)

with lt the transport mean free path and Re(ke) the real part
of the effective wave number in the medium. Although the
numerical factor in Eq. (9) may not be accurate [63,64], it
nevertheless tells us that the localization length in 2D sys-
tems is an exponential function of lt and can be extremely
large in the weak scattering regime (i.e., in the low optical
density regime). Moreover, for isotropic scattering systems
such as the ones considered in this work, the transport mean
free path coincides with the scattering mean free path ls, i.e.,
lt = ls = 1/ρσd . Here, σd is the cross section of a single point
scatterer, which is related to the 2D electric polarizability
α(ω) [50]. At resonance, σd is equal to k3

0 |α(ω0)|2/4 [26,45].
Considering that, under the effective medium theory, ke can be
approximated as k0 + i/(2ls) [45,50], Eq. (9) can be rewritten
as πλ exp[π3/(2ρλ2)]/(2ρλ2), which relates the localization
length of isotropic structures with their optical density. In
order to simply account for the discovered transition we have
to consider the ratio of ξ/L where L is the linear size of
the system. We immediately realize that when ρλ2 = 10−4,
L/ξ � 1 and the transport regime is diffusive, while for
ρλ2 = 5, ξ/L = 0.2 that is consistent with the onset of the
localization regime.

To further understand the physical mechanism beyond the
localization transition we study the behavior of the density of
states (DOS) associated to the spectral distribution of scat-
tering resonances. To evaluate the DOS within the Green’s
matrix spectral method we used the approach introduced in
Refs. [30,65] for the scalar case. In particular, the DOS can
be rigorously obtained from the knowledge of the complex
eigenvalues �n of the Green’s matrix according to

DOS = 1

Nπ

N∑
n=1


n/2

(ω + ωn)2 + (
m/2)2
, (10)

where N is the number of scatterers in the system, ωm = ω0 −

0 Re[�n]/2, and 
m = 
0 Im[�n] [30,65]. In Figs. 4(a)
and 4(b) we show the behavior of the DOS as a function of
frequency (ω − ω0)/
0 for different values of the optical den-
sity ρλ2. As discussed in detail in Ref. [65], Eq. (10) considers
only the atomic component in the excitations of the coupled
system atoms+light. Therefore, Eq. (10) does not converge
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FIG. 4. (a) displays a highly resolved map of the DOS for as a
function of the normalized frequency (ω − ω0)/
0 and for different
ρλ2 values. (b) shows the scaling of the DOS with respect to N for
three selected optical density values, marked with white dashed lines
in (a). We have considered 3907 (blue lines), 6934 (red lines), and
15 671 (green lines) scatterers, respectively.

to the DOS of the free electromagnetic field at low optical
density. Instead, it approaches a simple Lorentzian function
centered at ω = ω0. This behavior is shown in Fig. 4(a) up
to ρλ2 equal to 1.5, where we plot a high-resolution map
color coded according to Eq.(10) as a function of (ω − ω0)/
0

and ρλ2. At optical densities larger than the threshold value
ρλ2 = 1.5, our results show the formation of local band-gap
regions populated by band-edge localized modes. Moreover,
we notice that the frequency positions of the scattering reso-
nances that minimize the g values [see Fig. 3(a)] correspond
to a spectral region where the DOS is relatively low. This
shows that, analogously to random systems [24,25,28–30],
wave localization in the pinwheel array is enhanced around
the spectral regions of low DOS, i.e., close to the pseudoband
gaps of the system. Finally, we investigate the DOS for dif-
ferent system sizes. Specifically, Fig. 4(b) shows the DOS
behavior as a function of (ω − ω0)/
0 when the number of
scatterers N is equal to 3907 (blue line), 6934 (red line),
and 15 671 (olive-green line), respectively. It is well known
that the vanishing of the DOS in a gap only occurs in the
infinite-size limit [66]. In our case, the DOS inside the gap
is different from zero due to the finite size of the investigated
systems [67]. This fact is visible in Fig. 4(b) for ρλ2 = 10
where an increase of the size of the system indeed reduces the
DOS value inside the gap region. Our findings demonstrate
that TM-polarized electric dipoles arranged in a pinwheel
array support a transition from wave diffusion to localization
that occurs due to the suppression of the DOS near spectral
band-edge regions.

IV. CONCLUSIONS

In conclusion, we have systematically investigated the
structural and spectral properties of statistically isotropic
pinwheel arrays that we found to be weakly hyperuniform
systems. Moreover, we have unveiled a transition, similar to
the Anderson one, from a diffusive to a localized regime
by evaluating the Thouless number g and studying the first-
neighbor level-spacing statistics of the complex eigenvalues of
the Green’s matrix. In particular, we have shown that g drops
below unity by increasing the scattering strength in the sys-
tem and that the level spacing switches from level repulsion,

224202-5



F. SGRIGNUOLI AND L. DAL NEGRO PHYSICAL REVIEW B 103, 224202 (2021)

well described by the Ginibre distribution, to level clustering
with a Poisson distribution. Consistently, by estimating the
localization length ξ we found that ξ/L is very large at low
optical density, while it becomes smaller than one at the larger
ρλ2 values that characterize the discovered localization tran-
sition. Finally, by studying the behavior of the DOS we have
shown the formation of spectral gaps at large optical density
and of spatially localized scattering resonances that appear
where the DOS is relatively small. This behavior suggests
that the localization phenomenon in the pinwheel array is
driven by the suppression of the DOS, similarly to random

systems [28,29]. Our findings reveal the importance of hy-
peruniform deterministic aperiodic structures with isotropic k
space for the engineering of wave localization phenomena that
can be utilized to achieve enhanced light-matter interactions
and novel active nanophotonic platforms.
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