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Eigenvalue analysis of the three-dimensional tight-binding model with non-Hermitian disorder
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In this study, the level statistics of the three-dimensional tight-binding model with non-Hermitian disorder,
introduced by Tzortzakakis, Makris, and Economou (TME), and its variants were analyzed. The shift-and-invert
Arnoldi method was used to analyze the eigenvalues of the TME model up to a 48 × 48 × 48 cubic lattice,
which was larger than those used in previous studies. The results showed that the magnitude of critical disorders
in the isotropic TME model was larger than that reported in previous numerical studies for smaller systems. The
localization-delocalization transition in an anisotropic model was also investigated. The computational method
adopted in this study was shown to be quite effective for large-scale analysis of the calculation of all eigenvalues
of sparse non-Hermitian matrices.
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I. INTRODUCTION

In computational physics, various physical systems de-
scribed by non-Hermitian matrices have attracted consider-
able attention [1–4]. In particular, the study of localization-
delocalization transition in random non-Hermitian Hamilto-
nians has been of interest. In [4], the localization transitions
were studied when quantum mechanical particles described
by a random Schrödinger equation were subjected to a con-
stant imaginary vector potential. In [5], the localization and
delocalization in a wide class of non-Hermitian Hamiltonians
were examined.

The level-spacing distribution P(s) between eigenval-
ues has been widely used to explain the localization-
delocalization transitions of wave functions in disordered
systems [6–8]. The detailed properties of the level-spacing
distributions have been quantitatively explained, and their re-
lationship with random matrix theory has also been discussed
[9,10]. Such spectra were characterized by a comparison with
the Gaussian orthogonal ensemble in the metallic regime and
the Poisson distribution in the insulating regime. These phe-
nomena are caused by the level repulsion between adjacent
eigenstates. The existence of critical-level statistics s at the
mobility edge has also been explained.

Recently, the problem of level statistics on non-Hermitian
disordered systems has been discussed [11,12]. Tzortzakakis,
Makris, and Economou (TME) proposed a tight-binding
model with real symmetric overlap energies and complex
random on-site energies whose real and imaginary parts are
independent random variables with uniform distribution; this
is called the TME model [11]. Such a model may describe
a random laser medium with balanced average random lo-
cal loss and amplification. They reported the behavior of
level statistics in two-dimensional systems with 50 × 50
square lattices. Huang and Shklovskii studied the localization-
delocalization transition of a three-dimensional (3D) TME
model using an exact diagonalization technique that used

LAPACK [12]. The maximum system size L of their studies was
20 on a simple cubic lattice.

In general, it is desirable to perform computer simulations
for large systems to investigate the localization problem of
waves in disordered systems with high accuracy. Inspired
by previous studies [11–13], numerical calculations from the
TME model on 3D systems (d = 3) with a large system size
were performed. The rest of the paper is organized in the
following manner. In Sec. II, the model used in this study is
described. In Sec. III, the numerical results are presented, and
the computational method adopted in this study was shown to
be quite effective for problems described in large sparse non-
Hermitian matrices. In Sec. IV, the conclusions are discussed.

II. METHODS

In this study, an extended model of the original TME model
[11,12] was considered. The Hamiltonian is given by

H =
∑

m

εma†
mam +

∑
〈m,n〉

(Vmna†
man + H.c.), (1)

where m denotes the sites on a simple cubic lattice with
system size L, and the summation 〈m, n〉 is taken over the
nearest-neighbor sites. The off-diagonal matrix element Vmn

was chosen to be Vmn = −V when sites m and n lie in
the same plane perpendicular to the z axis, and Vmn = −αV
(0 < α � 1) when sites m and n lie in the z direction [14–16].
This system consists of weakly coupled planes in the z direc-
tion, and the isotropic TME model is recovered for α = 1.
Accordingly, V = 1 without loss of generality was chosen,
and the periodic boundary conditions were applied in all di-
rections. In Eq. (1), εm is the complex random on-site energy,
whose real and imaginary parts are independent random vari-
ables uniformly distributed between −W/2 and W/2, where
W denotes the magnitude of disorder. In an isotropic 3D
system (α = 1), the critical disorder W = Wc exists, at which
all eigenstates are localized in this model [12].
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FIG. 1. (a) Example of all complex eigenvalues in the complex
plane with L = 28 and W = 6.0. (b) Set of complex eigenvalues with
L = 36 and W = 6.0, which shows the 100 lowest absolute values of
the complex eigenvalues closest to the center of the complex plane.

III. NUMERICAL RESULTS

To perform detailed analyses on the localization-
delocalization transition in disordered systems, it is necessary
to introduce a computational method to efficiently analyze the
eigenvalues of large-scale sparse non-Hermitian matrices. In
this study, the eigenvalues of the Hamiltonian matrix [Eq. (1)]
were calculated through the shift-and-invert Arnoldi method
[17–19], which is suitable for obtaining the inner eigenval-
ues of sparse non-Hermitian matrices, to study the energy
spectrum near the band center of the TME model in three
dimensions. It is noteworthy that the Arnoldi method has been
compared with other numerical methods in the context of
Anderson localization in Hermitian systems [20].

The Arnoldi process, which is an extension of the Lanczos
process, is based on Krylov subspace methods in the eigen-
value problem for unsymmetric matrices. The subspace is

FIG. 2. P(s) near the band center for different values of disorder
W for L = 20 and α = 1.0.

spanned by a series of vectors {x0, Ax0, A2x0, . . .}, where
A is a matrix of the eigenvalue problem and x0 is an arbitrary
vector. The standard eigenvalue problem is written as

Ax = λx, (2)

where λ and x are the eigenvalue and eigenvector, respec-
tively. The basic Arnoldi process is described here. For an
n × n matrix A, the Arnoldi vectors {q j}, which define an or-
thonormal basis for the Krylov subspace, and matrix elements
{hi j} are calculated using the relationship called an m-step
Arnoldi decomposition as shown below [21]:

A(q1, q2, . . . , qm)

= (q1, q2, . . . , qm, qm+1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h11 h12 · · · · · · h1m

h21 h22 · · · · · · h2m

0 h32 h33 · · · h3m
...

. . .
...

... hmm−1 hmm

0 · · · · · · · · · hm+1 m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(3)

where (q1, q2, · · · , qm) is an n × m matrix composed
of column vectors q1, q2, · · · , qm. Using the relation-
ship in Eq. (3), an m × m upper Hessenberg matrix H̃m

[(H̃m)i j = hi j for 1 � i, j � m] is defined. An eigenvalue
problem H̃my = λ̃y gives an approximate solution λ̃ for the
original eigenvalue λ in Eq. (2) [21,22].

In numerical calculations, the dimension m of the upper
Hessenberg matrix must be sufficiently small compared to the
dimension n of the original eigenvalue problem in order to
reduce the memory requirement. Therefore, the implementa-
tions of the Arnoldi method requires a restarting technique,
called the implicitly restarted Arnoldi method [21,23]. In ad-
dition, to obtain interior eigenvalues close to the target value
σ , the shift-and-invert technique is employed as such,

1

A − σ I
x = λ′x, (4)

where I is a unit matrix and λ′ = (λ−σ )−1.
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FIG. 3. W dependence of the integrated level-spacing dis-
tribution IS (W, L) plotted for three different system sizes L =
20, 28, and 36.

First, the results for isotropic (α = 1) systems are
discussed. To understand the nature of the localization-
delocalization transition and the phase diagram of the system,
it is necessary to investigate not only the eigenstates near the
band center but also all the eigenvalues in the complex energy
plane. Therefore, a full eigenvalue analysis of the Hamilto-
nian matrix [Eq. (1)] was performed. Figure 1(a) shows an
example of all the complex eigenvalues in the complex plane
with L = 28 and W = 6.0. The abscissa and the ordinate
represent the real and imaginary parts of each eigenvalue,
respectively. When performing a full eigenvalue analysis of
a non-Hermitian matrix, for example by applying the QR
method [21], it takes a computation time of order N3, where
N is the order of the matrix, and such numerical methods for
non-Hermitian matrices are generally not suitable for parallel
computations. Therefore, the CPU time increases rapidly as
the order of the matrix N increases. In the shift-and-invert
Arnoldi method, independent parallel computations with the
shifted values in the complex eigenvalue plane become possi-

FIG. 4. Profile of the critical level statistics P(s) with L = 48 and
W = 6.35.

FIG. 5. Comparison of P(s) for different boundary conditions,
with L = 28 and W = 6.0.

ble, and all eigenvalue analyses of large-scale non-Hermitian
matrices can be easily performed. In the eigenvalue analysis, a
target value in the complex plane was specified, and a limited
number of complex eigenvalues in the vicinity of each target
value were numerically obtained. To calculate all eigenvalues
of the system, many different target values were considered in
the entire region of the complex plane where the eigenvalues
were believed to appear. By performing eigenvalue calcula-
tions on all of them and collecting the results obtained, it was
confirmed that all eigenvalues of the matrix were obtained.
Figure 1(b) shows an example of a group of complex eigenval-
ues with L = 36 and W = 6.0, where the 100 lowest absolute
values of the complex eigenvalues closest to the center of the
complex plane are plotted. Figure 2 shows P(s) near the band
center for different values of disorder W for L = 20. In this
model, the value of s corresponds to the distance from a given
eigenvalue to its first nearest eigenvalue on the complex plane.
When W increases, the profile of P(s) broadens, and these
overall features are in agreement with those of a previous
study [12], where P(s) for different W values intersect near

FIG. 6. P(s) near the band center for different values of disorder
W for L = 28 and α = 0.5.
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FIG. 7. W dependence of the integrated level-spacing distribu-
tion IS (W, L) with α = 0.5.

s ≈ 1.5. This is apparently different from the 3D Anderson
model (s ≈ 2.0) [6,7].

Hofstetter and Schreiber [8] and Zharekeshev and Kramer
[6] studied the integrated level-spacing distribution to detect
the critical behavior during the disorder-induced metal-
insulator transition in a 3D Anderson model. The integrated
level-spacing distribution IS (W, L) is defined as

IS (W, L) =
∫ ∞

γ

P(s) ds. (5)

To select the lower limit of integration γ in Eq. (5),
it is sufficient to choose a value that makes it possible to
distinguish between localized and delocalized states. In the
following, the lower limit of the integral γ is assumed to be
γ = 1.5. In Fig. 3, the W dependence of IS (W, L) is plotted
with respect to three different values of L, i.e., 20, 28, and
36. P(s) is expected to show no size dependence during the
localization-delocalization transition, which is called critical-
level statistics. As a result, IS (W, L) is considered independent
of L for W = Wc. From the present calculations, it is con-
cluded that the value of Wc falls in the range 6.3 < Wc < 6.4.
The abovementioned value is slightly larger than Wc ≈ 6.0,
as reported in a previous study [12]. In Fig. 4, the profile of
the critical level statistics P(s) with L = 48 and W = 6.35 is
shown in a log-log plot. Although it is difficult to fit the entire
region within a single curve, the numerical results mostly
obey the asymptotic form, e.g., the profile being a power-law
function P1(s) ≈ 2.9s2.4 for s � 1 (long dashed line in Fig. 4)
and a Gaussian function P2(s) ≈ 1.1e−3.2(s−0.94)2

for s � 1
(short dashed line in Fig. 4).

The values of Wc in this study and that in [12] are not in
agreement with each other. The effect of different boundary
conditions on the probability density P(s) was also tested
on the TME model in three dimensions. With L = 28 and
W = 6.0, the results of the comparison of P(s) with periodic
boundary conditions (PBCs) and that with hard-wall boundary
conditions (HBCs) are shown in Fig. 5. The results indicate
that the boundary condition clearly affects P(s). With HBCs,
some of the eigenvectors may become spatially localized
modes at the edge of the system. This will affect the statistical

FIG. 8. α dependence of the critical disorder Wc(α).

properties of the eigenvalue spectrum in the system, and the
value of Wc will change for different boundary conditions.

Similarly, for the Hamiltonian in Eq. (1), the results for an
anisotropic system (α 	= 1) were also shown. The α → 0 limit
corresponds to the TME model in 2D systems, where no evi-
dence of localization-delocalization transition has been found
[12]. Figure 6 shows P(s) near the band center for different
values of disorder W for L = 28 and α = 0.5. It was shown
again that the P(s) for different W values intersect. The calcu-
lation result of IS (W, L) for the anisotropic system (α = 0.5)
is shown in Fig. 7. For the lower integral limit γ in Eq. (2), the
same value as in the analysis of the isotropic system (α = 1.0)
was used. IS (W, L) was considered to be independent of L
for W = Wc, and Wc = 5.2 ± 0.1. The value of Wc in the
anisotropic system was smaller than Wc = 6.35 ± 0.05 in the
isotropic system. It is interesting to examine other values of
α as an attempt to find how the critical disorder Wc = Wc(α)
depends on the parameter α in the range 0<α<1. Figure 8
shows the calculated results of α dependence on the critical
disorder Wc(α). It is evident that the value of Wc(α) decreases
with α according to the power law Wc(α) = 6.3α0.24, which
is shown by a dashed line. This is reminiscent of the result
Wc(α) = 16.5α0.25 in the three-dimensional Anderson model
with anisotropy [16] - the power-law exponents in both cases
are nearly identical.

IV. CONCLUSIONS

In this study, the level statistics s of the 3D TME model and
its variants in anisotropic systems were analyzed. By using
the shift-and-invert Arnoldi method, all eigenvalue analyses
were performed, and the eigenvalue distribution of this model
was explained on the complex energy plane. An eigenvalue
analysis for TME models larger than those used in previous
studies was performed, and the mobility edges of these sys-
tems were investigated quantitatively. The results show that
Wc = 6.35 ± 0.05 for the isotropic TME model. With increas-
ing anisotropy, the critical disorder Wc(α) decreases according
to the power law Wc(α) = 6.3α0.24.

In general, in the large-scale eigenvalue analysis of
non-Hermitian matrices, ill-conditioned problems are often
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encountered, unlike those of Hermitian matrices, and iterative
methods developed for large-scale Hermitian sparse matrices
are not always effective. Therefore, it is expected that large-
scale numerical studies based on the approach proposed in
this study will provide useful insights into various problems
described by non-Hermitian matrices, which have recently
attracted much interest.
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