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Zintl chemistry leading to ultralow thermal conductivity, semiconducting behavior, and high
thermoelectric performance of hexagonal KBaBi
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We identify the ground state structure of the phase KBaBi using ab initio evolutionary structure search methods
and demonstrate that the bonding of this compound leads to a combination of very low thermal conductivity
and electronic properties that are favorable for thermoelectric performance. The structure is the hexagonal
ZrBeSi-type structure, with the cubic half-Heusler structure as a higher-energy competing phase. The bonding
of the hexagonal structure leads to strongly anharmonic vibrational properties, which underlie the low thermal
conductivity. The calculated figure of merit is approximately Z7 = 3 at 1000 K with optimized doping. This
work underscores the use of chemical control of bonding to obtain low thermal conductivity and identifies a

chemistry that achieves this.
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I. INTRODUCTION

Thermoelectric (TE) materials are a subject of consider-
able recent interest. The reason is their potential applications
in energy technology [1-4] and the exciting scientific chal-
lenges posed by the need to resolve contradictory electrical
and thermal transport requirements for high thermoelectric
performance [5-7]. The conversion efficiency of a TE de-
vice is limited by the thermoelectric figure of merit ZT =
0S*T /(. + k;) of the semiconductor materials used in it.
Here S is the Seebeck coefficient, o is the electrical conduc-
tivity, k, is the electronic thermal conductivity, ; is the lattice
thermal conductivity, and T is the absolute temperature [8].
For example, a high power factor, PF = S2¢, in the numerator
of ZT requires a high Seebeck coefficient, generally a char-
acteristic of heavy-mass semiconductors at low doping levels
and, at the same time, high conductivity, generally occurring
in light-mass semiconductors and at heavy doping. Low ther-
mal conductivity, needed for high ZT, generally requires soft
anharmonic lattices, as in ionic crystals, and strong phonon
scattering, while high electrical conductivity is characteristic
of semiconductors with stiff covalent bonding and low scat-
tering, as in silicon and GaAs.

These contradictions have led to a variety of approaches
for overcoming them. They have been of importance be-
yond the field of thermoelectrics, for example, through better
understanding of the role of band structure and its en-
gineering, nanostructure to modify thermal and electronic
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transport [9-11], theoretical methods for thermal conduc-
tivity [12], and improved understanding of the interplay of
chemical bonding and transport in complex semiconduc-
tors [13—15]. Exploration of novel chemistries is an important
way forward in developing this understanding.

Here we extend this by showing a chemistry for simultane-
ously obtaining ultralow thermal conductivity and favorable
electronic transport. This is achieved in hexagonal KBaBi,
which we identify as a stable compound based on first-
principles evolutionary structure search. This compound is
based on the Zintl concept, where the electropositive K pro-
vide electrons to a layered semiconducting Ba-Bi framework
based on nominal Bi*~. This anionic framework structure
leads to soft phonons, large anharmonicity, and low thermal
conductivity while maintaining dispersive bands that favor
electrical conductivity.

KBaBi is a composition that was identified as a possible
cubic half-Heusler structure compound [16]. In particular,
it shows thermodynamic stability with respect to known
competing phases and does have stable phonons in the half-
Heusler structure. While this thermodynamic stability does
imply that KBaBi is likely a stable phase, it does not prove
that it will occur with the half-Heusler structure as there may
be other lower-energy structures. It is interesting though that
it would have low thermal conductivity in the half-Heusler
structure [16,17]. Furthermore, the half-Heuslers are a fam-
ily of compounds that contain many excellent thermoelectric
materials, are cubic, and typically exhibit other properties,
particularly mechanical properties, and stability that favor ap-
plications [18-20]. Thus, KBaBi would be a very interesting
thermoelectric composition in the half-Heusler structure.

We note that the half-Heusler structure is a broad fam-
ily of compounds with diverse chemistry. However, the
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combination of two very electropositive elements with Bi is
unusual, suggesting that the structure may be different, as has
also been noted in other prospective half-Heusler compounds.
For instance, LiZnSb and LiAlSi adopt, instead, hexago-
nal structures [21,22], while HfCoAs, VCoGe, NbFeAs, and
NiTiGe are orthorhombic [23,24].

Alternately, Zhang and coworkers, also based on thermo-
dynamic stability against competing phases, predicted that
KBaBi is stable in the hexagonal ZrBeSi-type structure and
that it would be a topological insulator in that structure
due to a band inversion at the zone center [25]. Subsequent
theoretical work indicated that the electrical and thermal
transport properties of this hexagonal phase are consistent
with good thermoelectric performance [26,27]. Thus, Carrete
and coworkers [16] and Zhang and coworkers [25] found that
KBaBi is likely a stable phase, but using different hypothe-
sized crystal structures. To the best of our knowledge neither
the half-Heusler nor the hexagonal structures of KBaBi have
been reported experimentally.

As usual, one may expect a strong interplay between
crystal structure, bonding, and properties. This necessitates
determination of the structure in order to properly elucidate
the thermoelectric and other properties.

II. STRUCTURE DETERMINATION

The chemical bonding of a material is intimately connected
to the crystal structure, and transport properties in turn are
controlled by the structure and bonding. We used the unbi-
ased particle swarm structure search method as implemented
in the CALYPSO code [28,29] to determine the stable crystal
structure. The global optimization was done for the total en-
ergy as determined within density functional theory (DFT).
We used the Perdew-Burke-Ernzerhof generalized gradient
approximation (PBE-GGA) [30]. The energies of optimized
structures were determined using the projector augmented
wave method [31], as implemented in the Vienna Ab initio
Simulation Package (VASP) [32]. Good convergence is ob-
tained with an energy cutoff of 400 eV for the plane-wave
expansion and a 277 x 0.03 A~! k-point mesh in the Brillouin
zone, which were the parameters used. The criterion of the en-
ergy convergence for the self-consistent cycles was 1073 eV,
and the forces on individual atoms in relaxations were less
than 10~* eV/A. We used a higher cutoff of 600 eV for the
two final total energy calculations. We searched for possible
KBaBi structures including unit cells up to 12 atoms (4 f.u.).
The evolutionary search was done for 50 generations, with
each generation containing 50 structures. The lowest structure
was found to have 2 fu./cell. As seen in Fig. 1, no new
ground states were identified in the final generations, which
is characteristic of completion of the global optimization.

The lowest-energy structure found was a hexagonal
(P63/mmc) structure, as shown in Fig. 2(a). The previously
studied cubic phase (F43m) is also a low-energy struc-
ture and is shown in Fig. 2(b). These are the ZrBeSi-type
structure and the half-Heusler structure, which, as men-
tioned, are both suggested structures based on stability against
known competing phases [16,25]. The hexagonal structure
is based on honeycomb lattice layers of alternating Ba and
Bi and is centrosymmetric, while the cubic structure is
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FIG. 1. Energies of structures in different generations as ob-
tained in the global optimization search for the ground state of
KBaBi. The red line connects the lowest-energy structures in dif-
ferent generations.

noncentrosymmetric. In between these in energy are three
other structures, with space groups Imm2 (30 meV/atom
above the ground state), R3m (34 meV /atom above the ground
state), and Pm (36 meV /atom above the ground state). The
R3m structure, however, shows phonon instabilities and is
therefore not a viable phase. In the following we focus on the
ground state P63 /mmc in comparison with the previously sug-
gested half-Heusler (F43m) structure, which is 40 meV /atom
above the ground state.

Figures 2(c) and 2(d) show the calculated electron local-
ization function (ELF) for the two structures [33]. The energy
difference between these is approximately 40 meV per atom.
This is above the normal range of DFT errors for the energy

Hexagonal (P6,/mmc) Cubic (F43m)

FIG. 2. (a) The lowest-energy structure of KBaBi, space group
P65/mmc. (b) Crystal structure of the half-Heusler structure of
KBaBi. Electron localization function (ELF) for the (c) hexagonal
and (d) cubic phases of KBaBi. The scale bar for the ELF is shown
on the left.
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differences between phases. The hexagonal structure is lowest
in energy, and therefore, it and not the half-Heusler structure
is the predicted ground state. As discussed below, we also
calculated the temperature-dependent Gibbs free-energy dif-
ference between these two phases at zero pressure using the
phonon dispersions as well as the pressure dependence of the
energy difference. The ground state hexagonal phase is further
stabilized relative to the cubic by temperature due to its softer
bonding. In addition the cubic phase cannot be stabilized by
moderate pressure.

The calculated lattice constants of the ground state hexag-
onal P63/mmc structure are a = 6.19 A, c=7.61 A, with all
atoms on symmetry sites: K at (0, 0, 0), Ba at (1/3,2/3, 1/4),
and Bi at (2/3, 1/3, 1/4). Ba and Bi are coplanar, forming
anionic (BaBi)~ sheets. The layer stacking forms -Bi-Ba-Bi-
Ba- chains along the ¢ axis. The K cations are between these
sheets, providing charge balance and stabilizing the layered
structure. Each Bi is coordinated by three Ba atoms in the
layer, with bond length 3.57 A, and two Ba, one above and
one below, in the chains, at a significantly longer distance of
3.81 A. The Bi-K distance is 4.05 A. This is considerably
different from the half-Heusler structure, where Bi and Ba
form a tetrahedral framework with a bond length of 3.65 A
and the K fill octahedral sites around the Ba atom, leading
to the same tetrahedral coordinated Bi-K bond length of 3.65
A. Thus, the coordination of the nominal Bi*~ anions is by
four Ba?" and four K™, both at 3.65 A, in the half-Heusler
structure and by three Ba®* at 3.57 A and another two Ba®*
at 3.81 A, plus six K* at 4.05 A, in the hexagonal structure.
In this sense, the hexagonal structure is a more ionic struc-
ture in having higher coordination of anions by cations along
with generally longer bond lengths, differentiated to bring the
higher charged cations closer relative to the lower charged
cations. This suggests a softer and more anharmonic lattice
with the potential for lower thermal conductivity, as we find
below. It should be noted that this is related to packing and not
a consequence of a lower density in the hexagonal phase since
the hexagonal phase has a higher density. The cubic structure
has a primitive unit cell with 1 f.u. and a volume of 149.6 A3,
while the hexagonal structure has a unit cell with 2 f.u. and a
volume of 253.1 A3.

The ELF can be expressed as ELF(r)=
(1 +{K@)/Kplp(r)]}>)"", where K is the curvature of
the electron pair density for electrons of identical spin,
p(r) is the density at r, and Kj,[po(r)] is the value of K in
a homogeneous electron gas with density p. The ELF may
be used to characterize the degree of electron localization
to identify the character of chemical bonding. The ELF lies
between 0 and 1. An ELF of O corresponds to no localization
as in regions with no electrons. A value of 0.5 reflects the
behavior of a homogeneous electron gas, with values near 0.5
being characteristic of metallic bonding. An ELF value of
1 indicates full localization, with high values characterizing
covalent bonds, core shells, and lone pairs. While descriptions
of bonding in real materials are necessarily qualitative, the
ELF can be useful in characterizing differences in bonding
between compounds [33].

As seen in the ELF and also in the electronic density of
states (DOS) discussed below, both the cubic and hexagonal
structures show ionic bonding for K and Ba, which is as
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FIG. 3. (a) Temperature-dependent free-energy difference be-
tween the hexagonal and cubic structures. (b) Pressure-dependent
enthalpy relative to the zero-pressure ground state.

expected from the strongly electropositive nature of these
atoms. There is some rather weak, but still discernible, co-
valency seen in both structures based on the slightly higher
ELF in the region between these atoms relative to the quite
low values in the interstitial. Still, the ELF values in the area
between Bi and Ba are low in both compounds, amounting
to 0.12 and 0.15 for the hexagonal and cubic structures, re-
spectively. These are as measured in the ab plane for the
cubic structure and along the ¢ direction for the hexagonal
structure. Thus, these compounds are basically ionic with
some weak covalency. Having obtained the predicted ground
state and first metastable structures, we proceed to analyze the
properties.

III. PHONONS AND THERMAL CONDUCTIVITY

We calculated the vibrational properties for both the
ground state hexagonal and cubic phases. The harmonic
second-order interatomic force constants (IFCs) and phonon
dispersions were obtained using the frozen phonon method
implemented in the PHONOPY package [34]. We used a 3 x
3 x 3 supercell containing 162 atoms for the hexagonal phase
and a 4 x 4 x 4 supercell containing 192 atoms for the cubic
structure for this purpose.

The calculated phonon dispersions for the two structures
are compared in Fig. 4. The corresponding Griineisen parame-
ters y are indicated on the phonon dispersions. We calculated
the vibrational contributions to the Gibbs free energy G and
entropy S, which can be written as G = E + Hyip, — T Sconf —
T Syin, where E is the DFT-calculated total energy, Hy;, is
the vibrational enthalpy, and Scons and Sy, are the configura-
tional and vibrational entropies, respectively. The free-energy
difference of two phases is defined as AG = AE + AH, —
T AScont — T ASyiv; AScont 18 zero for pristine material. The
temperature dependence of the free-energy difference includ-
ing the vibrational entropy is shown in Fig. 3(a). As mentioned
above, the hexagonal structure remains stable over the cubic
structure independent of temperature.

Returning to the phonons, the acoustic frequencies are
lower in hexagonal KBaBi than in cubic KBaBi, which means
that hexagonal KBaBi has lower acoustic phonon veloci-
ties. This favors lower thermal conductivity. There are other
important differences, particularly a peak in the phonon den-
sity of states (PHDOS) of the hexagonal structure starting
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FIG. 4. Calculated phonon dispersion curves for (a) hexagonal
and (c) cubic phases of KBaBi. The symbol sizes give the Griineisen
parameters y of each phonon mode. Blue (+) and red (—) indicate
positive and negative y, respectively. The (projected) phonon density
of states (PHDOS) for (b) hexagonal and (d) cubic structures.

at ~1 THz and extending up to ~2 THz of Bi character
with two subpeaks of Ba character in this frequency range.
This arises from flat branches in the dispersion. The cubic
structure also shows peaks in the PHDOS, but these are less
pronounced, reflecting more dispersive optical branches. In-
teractions between low-frequency optical phonons and the
acoustic branches can lead to enhanced scattering of the heat-
carrying acoustic phonons. This again suggests the possibility
of lower lattice thermal conductivity in hexagonal KBaBi.
Large-magnitude Griineisen parameters indicate strong anhar-
monicity and hence a low thermal conductivity. As shown in
Fig. 4, hexagonal KBaBi has larger Griineisen parameters for
the acoustic branches than found in the cubic structure. This
again suggests low thermal conductivity for the hexagonal
structure since acoustic branches generally play an important
role in heat conduction. This expectation is confirmed by
detailed thermal conductivity calculations.

The lattice thermal conductivity «; at temperature 7 can
be calculated via the linearized Boltzmann transport equa-
tion [35] as the sum of contributions over all the phonon
modes A with branch p and wave vector q:

Y .
kI = Koo = 37 4 a—T(hwx)v%vm. (D

The phonon lifetime 7, is controlled by two processes: two-
phonon scattering from isotopic disorder and three-phonon
anharmonic scattering, which is a sum of the two-phonon iso-
topic scattering rate 1/7"° and the three-phonon anharmonic
scattering rate 1/7™. Here 1/7*" can be determined as the
sum over three-phonon transition probabilities Fﬁw/’ which
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FIG. 5. Calculated temperature-dependent lattice thermal con-
ductivity for the hexagonal and cubic structures of KBaBi.

are calculated as
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2
where the upper (lower) row in the curly brackets corresponds
to the 4+ (—) sign denoting absorption (emission) processes.
The three-phonon scattering phase space Wf is defined as
the sum of frequency-containing factors in the expression for
Fﬁ,k,/ and is [36-38]
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for absorption (4) and emission (—) processes.

The third-order IFCs, needed for the thermal conductivity,
were calculated using real-space supercells via the SHENGBTE
package [35]. For this purpose we imposed a cutoff of 5.0 A
for the interaction range. Convergence tests were done for the
cutoff range. We find that a cutoff of 4 A would be inadequate,
while 6 A would yield somewhat lower thermal conductivities
than 5 A, which would lead to slightly higher predictions for
ZT. The lattice thermal conductivities x; were calculated by
iteratively solving the linearized Boltzmann-Peierls transport
equation for phonons as implemented in the SHENGBTE pack-
age. A phonon momentum q mesh of 15 x 15 x 15 was used
in solving the transport equation.

The temperature-dependent lattice thermal conductivities
k; of the two structures are shown in Fig. 5. As seen, «;
of the hexagonal ground state structure is much lower than
for the half-Heusler. Near room temperature, «; are 1.67 and
2.26 W/mK for hexagonal and cubic structures, respectively.
This value for the hexagonal phase is somewhat lower than the
value reported by Barman and coworkers based on the Boltz-
mann transport equation for phonons [27]. As mentioned, the
low values of k; for the hexagonal structure can be anticipated
in terms of the bonding and phonons. This is reflected in
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FIG. 6. Calculated scattering phase space for phonon modes in
hexagonal and cubic structures of KBaBi. The + (—) sign denotes
three-phonon absorption (emission). Note the logarithmic scale.

the three-phonon anharmonic absorption and emission phase
space, shown in Fig. 6. The scattering phase space is larger
for the hexagonal structure than for the cubic one, reflecting
differences in the phonon dispersions.

The phonon lifetimes, related to the third-order anhar-
monic IFCs, are also important. The anharmonic scattering
rates at 300 K are presented in Fig. 7. As seen, the scattering
rates of hexagonal KBaBi are larger than those of the cubic
structure in the low-frequency regions (below 1 THz), but
the anharmonic scattering rates for cubic KBaBi are higher
in an intermediate-frequency range. This affects contributions
of phonon modes to lattice thermal conductivity, as shown in
the cumulative thermal conductivity in the inset of Fig. 7. The
net result is that the thermal conductivity of the ground state
hexagonal phase is reduced due to stronger scattering of heat-
carrying acoustic phonons. This results from both the larger
scattering phase space and the larger anharmonic couplings.

IV. ELECTRONIC STRUCTURE AND ELECTRICAL
TRANSPORT

Electronic structures and electrical transport properties
were obtained using the all-electron general potential lin-
earized augmented plane-wave (LAPW) method [39], as
implemented in the WIEN2K code [40]. Importantly, the
present calculations are based on the the modified Becke-
Johnson (MBJ) potential of Tran and Blaha [41]. This
potential generally gives improved band gaps relative to ex-
periment for most semiconductors compared to the standard
PBE-GGA functional, particularly for compounds that do
not include transition elements [41-44]. Spin-orbit coupling
(SOC) was included for the electronic properties. We used a
basis set cutoff parameter RyinKmax = 9, where Ry, is the
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FIG. 7. Calculated anharmonic scattering rates at 300 K. The
normalized cumulative «; as a function of frequency is shown in the
inset. Note the logarithmic scale.

smallest sphere radius and K, is the plane-wave cutoff.
The electronic transport parameters were calculated using
the BOLTZTRAP code [45]. These transport calculations were
based on first-principles calculations on a k-point mesh with
approximately 50 000 points in the irreducible Brillouin zone,
with the needed relaxation time determined using deformation
potential theory.

We focus on the hexagonal ground state structure. The
band structure and corresponding DOS as obtained with the
MBI potential are shown in Figs. 8 and 9, respectively. Al-
though it is composed of metallic elements, hexagonal KBaBi
is predicted to be a semiconductor.
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FIG. 8. (a) Band structure of hexagonal KBaBi as determined us-
ing the modified Becke-Johnson potential and carrier pocket shapes
as given by isosurfaces (b) 0.1 eV above the conduction band for
electrons and (c) 0.1 eV below the valence band maximum for holes.
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FIG. 9. Electronic density of states of hexagonal KBaBi and
projections of Bi p and Ba d character. The projections are obtained
as the weights inside LAPW spheres with a radius of 3.1 bohrs.
This underestimates the contribution of extended orbitals that have
substantial weight outside the sphere as is the case for the p orbital
of the Bi anion. Spin-orbit coupling is included.

Previously, it was reported that KBaBi is a topological
insulator due to a band inversion at the zone center. This report
was based on a metallic scalar relativistic band structure that
is then gapped by SOC, with a calculated band gap of 0.22 eV
with the PBE-GGA [25]. It was also noted that the hybrid
Heyd-Scuseria-Ernzerhof (HSE) functional gives a nontopo-
logical band structure for this compound [25]. Our PBE-GGA
calculations reproduce the prior result of a metallic scalar
relativistic band structure and a topological band structure
including SOC (0.20 eV calculated gap). However, with the
MBJ potential, we find a semiconducting band structure in a
scalar relativistic approximation, which remains a trivial non-
topological semiconductor with SOC. Specifically, the band
structure remains noninverted, with band extrema remaining
at the symmetry points. Since the MBJ potential is generally
more reliable for the electronic structure of semiconductors,
especially the band gap, we proceed to analyze the electronic
properties based on the MBJ results. It should be noted that,
usually, topological band structures are expected to be bet-
ter for thermoelectric performance than nontopological band
structures [46]. Nonetheless, we do find favorable electronic
behavior that, combined with the very low lattice thermal
conductivity, suggests potentially good thermoelectric perfor-
mance.

The calculated band gap of 0.53 eV is in the range normally
found in thermoelectric materials. The band gap is direct at I".
The carrier pocket shapes are shown in Figs. 8(b) and 8(c).
Interestingly, they have different anisotropies for the p type
and n type. The holes have significantly heavier mass in the
ab plane, as seen in the pancake shape, while the electrons are
more nearly isotropic. At low carrier concentration, the calcu-
lated transport effective masses in units of the bare electron
mass are m; = 0.86 and mj, = 0.17 for holes in the in-plane
and c-axis directions, respectively, and m} = 0.42 and m} =
0.38 for electrons in the in-plane and c-axis directions, re-
spectively. Thus, the electrical conductivity has substantial
anisotropy for the p type, which then leads to anisotropy in
ZT, while as usual the Seebeck coefficient shows much lower

anisotropy [47]. The much lower anisotropy of S compared to
o favors high ZT in the c-axis orientation for the p type. Also
interestingly, there is a second set of carrier pockets near the K
point of the zone, which comes from a secondary conduction
band minimum, as seen in the band structure. This can favor
high ZT for the n type.

The DOS shows a sharper onset for the conduction band
than the valence band, although both the conduction and
valence bands show an increasing mass with carrier con-
centration, as seen in the more rapid increase in the DOS
as one moves away from the band edge. The valence band
has primarily Bi p character, corresponding to the ionic pic-
ture discussed above in which Bi occurs as trivalent anions
with nominally filled Bi p states. The conduction band is
dominated by Ba d states. There is additionally some weak
hybridization between the Bi p and Ba d states, as is evident
from the Ba d contributions to the valence band seen in Fig. 9.

Calculation of the electrical transport properties within
Boltzmann theory requires a scattering time t, which is a
function of both temperature and doping level. For this pur-
pose we assume that acoustic phonon scattering dominates,
as is typically the case for good thermoelectric materials.
We calculate the temperature- and energy-dependent t from
deformation potential theory [48], with implementation as
described in previous work [49]. The needed average longi-
tudinal sound velocity was obtained by calculating the elastic
constants from the stress-strain relationship, and the defor-
mation potentials E; for electrons and holes were obtained
from the shifts of the conduction and valence band edges with
changes in volume. The values of the deformation potentials
are thus derived from shifts in the valence and conduction
band edges with volume, which require a reference. The ref-
erence energy used here is the energy of the lowest calculated
band, which is ~28.4 eV below the valence band maximum,
which results in deformation potentials of —4.90 eV and
—6.93 eV for the conduction and valence bands. The effec-
tive masses are determined as the transport effective masses
obtained from calculations using BOLTZTRAP. This procedure
leads to somewhat lower deformation potentials than were
recently reported by Barman and coworkers [27], presumably
related to the choice of the reference level. Details of the
band shifts for the deformation potential and the calculated
relaxation time are given in the Supplemental Material [50].

As discussed above, band structure is important for ther-
moelectric performance because it is necessary to have band
structures that can provide both high conductivity and a
high Seebeck coefficient. The complex band shapes found
in topological insulators provide one avenue for this. Other
band features that can improve thermoelectric performance
are band convergence, where multiple carrier pockets near
the Fermi level contribute to transport, and carrier pocket
anisotropy, where the different directional averages can lead
to improved performance [51,52]. In the present case, the
secondary pockets near the conduction band minimum are
beneficial, as are the anisotropies of the valence band and
conduction band carrier pockets at I.

Calculated transport properties are shown in Fig. 10 as
functions of p-type and n-type doping levels at 1000 K.
Transport properties at 300 K, where ZT is lower due
to higher lattice thermal conductivity and lower Seebeck
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FIG. 10. Calculated transport properties of hexagonal KBaBi:
(a) electrical conductivity, (b) transport effective mass for con-
ductivity, (c) Seebeck coefficient, and (d) thermoelectric figure of
merit. The values shown are at 1000 K. The plots are based on the
anisotropic electrical properties. The thermal conductivity in ZT is
from the calculated «; (see text) plus an electronic part, «,, based on
the Wiedemann-Franz relation.

coefficient, are given in the Supplemental Material [50]. The
transport effective mass shown is the value of the mass in
a single parabolic band that would give the same conduc-
tivity as the actual band structure, with a fixed value of the
relaxation time. The estimated ZT values are based on the
electrical transport properties, a thermal conductivity that is
the lattice thermal conductivity, as calculated above, and an
electrical part from the Wiedemann-Franz relation. As seen,
the direction-averaged effective mass is similar for the p type
and n type. However, the magnitude of the Seebeck coefficient
is higher for the n type at fixed carrier concentration. This
shows that the band structure decoupling of S and o is better
in the conduction band overall. This leads to a higher power
factor for a given carrier concentration and therefore a higher
direction-averaged ZT for the n type.

The maximum ZT is estimated to be high, of the order of
ZT = 3 for the n type, with high values in either the a-axis or
c-axis direction. Similar values of ZT can also be obtained for
the c-axis-oriented p type, while the values are significantly

lower along the a axis for the p type. The high ZT values
are predicted to occur at p-type and n-type doping levels of
approximately 3 x 10! and 5 x 10" cm~3. A main factor in
these high values of ZT is the low lattice thermal conductivity.

V. SUMMARY AND CONCLUSIONS

We used global optimization crystal structure determina-
tion to identify the ground state structure of KBaBi. It is
predicted to be a layered hexagonal structure. We found that
the material is a semiconductor with a gap close to 0.5 eV,
which is in the range typical of good thermoelectric materials.
Although the basic bonding is ionic, there is significant hy-
bridization between the Bi p orbitals that dominate the valence
band and the Ba d states making up the conduction band. The
result is dispersive bands with an effective mass of ~0.5m,
for both holes and electrons. The nature of the bonding with
Zintl stabilized anionic BaBi sheets leads to a soft anhar-
monic lattice with exceptionally low thermal conductivity.
The combination of low thermal conductivity and dispersive
bands leads to the prediction of favorable thermoelectric per-
formance. In contrast to prior reports based on the PBE-GGA,
we find a topologically trivial semiconductor with a direct gap
at I' when the MBJ potential is used. This is a consequence
of the noninverted band structure that is obtained, where the
band extrema remain at the symmetry points with inclusion of
SOC.

Solid-state compounds based on Bi*~ anions are relatively
rare and have been little studied compared to solids containing
Bi*", for example. Thus, the predicted stability of KBaBi as
a semiconductor provides a unique opportunity to investigate
the interplay of structure, bonding, and transport properties in
a material with a rather distinct chemistry. Key questions for
experiments to address include (1) the synthesis of the pre-
dicted phase, which is expected to be stable, (2) confirmation
of its crystal structure, (3) spectroscopic measurements to de-
termine the size of the band gap, (4) determination of whether
the band structure is topological or trivial, and (5) whether the
material can be doped and what the transport properties of the
doped material are. We hope that the present work will moti-
vate experimental effort to investigate this interesting phase.
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