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Thermal broadening of the zero-phonon line in superfluid helium
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Based on the two-fluid model of helium II, a theory is proposed to explain the recently observed temperature
dependence of the zero-phonon line (ZPL) in the optical spectra of Dy atoms in superfluid helium. According
to this theory, the main reason for the observed dependence is the temperature redistribution of the normal and
superfluid components of the liquid helium. It is also found that due to the Archimedes’ principle, the linear
vibronic interaction with long-wave phonons in the liquid phase is singularly enhanced. This enhancement, in
turn, leads to a finite broadening of the ZPL of the superfluid component and a linear temperature dependence
of the ZPL width of the normal component. The proposed theory allows us to explain the experimental results.
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I. INTRODUCTION

Recently, the optical spectrum of the inner-shell transition
of the Dy atom in superfluid helium has been studied at vari-
ous temperatures of the superfluid helium with high precision
[1]. It was found that the spectrum contains a strong narrow
zero-phonon line (ZPL) and a weak and broad phonon wing.
The line has a width of 5.6 GHz at 1.48 K and 11.2 GHz at
2.12 K [1]. The phonon wing extends 400 GHz towards higher
frequencies and has weak flat maxima at the roton and maxon
frequencies. This structure of the observed spectrum was, in
fact, expected [1,2]—the electrons of the inner shell are well
isolated from the surrounding atoms by the outer electron
shell of the Dy atom. Therefore the inner-shell transitions
are characterized by a very weak vibronic interaction. The
observed spectrum resembles the ZPL spectrum of the glyoxal
molecule in the superfluid helium [3]; in this molecule, the
valence electrons are strongly confined within the molecule,
so the vibronic interaction with the surrounding helium atoms
is also quite weak. However, it differs significantly from the
observed optical spectra of valence electron transitions in
rare-earth atoms [2,4] and alkaline-ionic ions in liquid helium
[5–9]: these spectra, due to the stronger vibronic interaction,
are broad and do not exhibit a narrow ZPL.

To explain the observed change in the ZPL width with
temperature, the authors [1] used a model [10–12] commonly
used for crystals. According to this model, the ZPL at zero
temperature has a natural width. With increasing temperature,
this line broadens due to the quadratic vibronic interaction.
In the low-temperature limit, the main contribution to this
broadening is made by this interaction with low-frequency
acoustic phonons, which leads to the ∝T 7 dependence of
the ZPL width on temperature T . Low-frequency pseudolocal
modes can also contribute to the temperature broadening [12].
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The observed difference in ZPL widths for 1.5 and 2.1 K was
explained in [1] by these broadening mechanisms.

Liquid helium at the studied temperatures has a different
amount of normal component, varying from 9% at 1.454 K
to 80% at 2.124 K [13]. In [1] this is ignored, despite the
fact that only this component has nonzero entropy causing the
thermal broadening of the ZPL. In contrast to [1], we believe
that in fact it is this difference in the content of the normal
component of superfluid liquid helium that is the main reason
for the difference in the ZPL width at the temperatures under
study and not the quadratic vibronic interaction, as suggested
in [1].

This paper presents a theoretical model of the optical
spectra of impurity atoms in superfluid helium, which from
the very beginning takes into account the presence of the
superfluid and normal components in it. In this model the
temperature dependence of the ZPL is a consequence of the
temperature redistribution of these liquid components and the
temperature dependence of the ZPL of the normal component.
The ZPL shape of the superfluid component does not change
with temperature, but its intensity decreases to zero as the
temperature approaches the lambda temperature Tλ = 2.17 K.

Another significant change in our model is taking into
account the difference between vibronic interactions with
low-frequency phonons in the liquid and solid phases.
Namely, the vibronic interaction in crystals tends to zero if
the phonon frequency also tends to zero [11,12,14]. On the
contrary, in liquids the vibronic interaction with these phonons
increases when their frequency tends to zero. The reason for
this difference lies in the Archimedes’ principle, according to
which any body submerged in a liquid is affected by a buoyant
force that arises due to the fact that the submerged body
displaces part of the liquid to its surface. Therefore a change
in the distance to the nearest helium atoms surrounding the
impurity atom during the electron transition in it (this change
in Dy, as found in [2], is 0.15 Å) will eventually lead to a
small but finite change in the total volume of the liquid. In
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macrocrystals, the change in the total volume does not occur.
Since the change in the volume of the liquid occurs due to the
linear vibronic interaction with phonons of almost zero fre-
quency, this interaction in the liquid is incomparably stronger
than in the crystal. The ultimate reason for this difference in
the linear vibronic interaction in a liquid is related to the fun-
damental difference between a solid and a liquid in transverse
modes: in a solid, they have a finite frequency at any wave
number k, except k = 0, while in a liquid, the frequencies are
0 at any k of these modes. This allows the liquid to change its
shape isochorically according to the Archimedes principle.

Here it is found that the linear vibronic interaction in a
liquid increases singularly with a decrease in the phonon
frequency. As a result of such increase in the vibronic inter-
action, a macroscopic amount of phonons with an almost zero
frequency is created during the electron transition. This leads
to a finite broadening of the ZPL in the spectrum already at the
zero-temperature limit, when the liquid completely consists
of the superfluid component. The width and the shape of
the ZPL of the superfluid component remain unchanged with
increasing temperature; its intensity tends to zero at lambda
temperature. The width of the ZPL of the normal compo-
nent existing at nonzero temperature increases linearly with
increasing temperature. These theoretical results allow us to
explain the results of ZPL measurements [1].

II. OPTICAL SPECTRUM

To describe the optical spectrum of the Dy atom, we use the
Lax theory [15] of electronic transitions and take into account
the linear vibronic interaction

V ≡ Ĥ2 − Ĥ1 = E0 +
∑

k

ω2
k ukxk . (1)

Here Ĥ1 and Ĥ2 are the vibrational Hamiltonians of the center
in the initial (1) and final (2) electronic states, respectively,
E0 is the energy of the electronic transition, uk is the change
of the equilibrium position of the phonon coordinate xk of the
mode k during the transition, and ωk is its frequency. In the
harmonic approximation, the Fourier transform of the optical
spectrum equals eiω̃0t F (t ) [15], where ω̃0 = ω0 + iγ0, ω0 =
(E0 − ES )/h̄ is the ZPL frequency, γ0 is the natural linewidth,

ln F (t ) =
∫

dωυω[(nω + 1)(eiωt − 1) + nω(e−iωt − 1)],

(2)
υω = ωu2

ωρ(ω)/2h̄ is the vibronic interaction of a phonon
with frequency ω, uω is the change of the equilibrium position
of this phonon at the transition, nω = (eh̄ω/kBT − 1)

−1
is the

Planck occupancy factor,

ES = 2−1
∫

dωρ(ω)ω2u2
ω

is the Stokes loss, and ρ(ω) is the density of states of phonons.
Suppose that the atom is placed in the center of a spherical

liquid. Then, for nondegenerate electronic states of atom in
the long-wave limit, only ∝r−1 sin(kr) longitudinal modes
contribute to the vibronic interaction (r is the distance to
the origin). The change in the volume of the liquid due to
the electronic transition in the atom can be expressed by

�V = 4π〈R2�R〉, where

�R ∝ R−1
∫ a−1

0

0
dkk2uk sin(kR) (3)

is the change of the radius R of the liquid, a0 is the atomic
spacing in the liquid, and 〈. . .〉 is the averaging over the R.
Here we take into account that R can vary at different points
on the surface of the sphere at several atomic lengths. Given
that 〈cos(R/a0)〉 � 0, we find that �V is finite in the limit of
large R if uk ∝ k−2, k → 0. This gives, in the ω → 0 limit,
k ∝ ω, ρ(ω) ∝ ω2, and υω ∝ ω−1. In crystals in the ω → 0
limit, υω ∝ ω [11,12,14]. Consequently, in liquids the linear
vibronic interaction with low-frequency phonons is singularly
enhanced in comparison with this interaction in crystals.

An important difference between liquids and crystals is that
liquids, unlike crystals, do not have a well-defined upper limit
of the phonon frequencies. We take this property of liquids
into account by adding the cut-off factor e−ω/ε in the phonon
density of states of Debye. Then ρ(ω) = (ω2/2ε3)e−ω/ε,

where ε ∼ ωm = 0.29 THz is the maxon frequency. In this
approximation,

υω = αω−1e−ω/ε, (4)

where α = ES/h̄ε is a dimensionless parameter of the lin-
ear vibronic interaction determined by the change in the
overlapping integrals of the electronic wave functions of the
Dy atom and the nearest helium atoms during the electron
transition [15].

To estimate α, we use for the change in the distance to
the nearest He atoms during the electronic transition in the
impurity the value δR ≈ 0.15 Å found in Ref. [2] (given that
the relative intensity of ZPL is 0.7). To do this we present the
Stokes loss in the form ES ≈ ω̄2M4δR2/2, where M4 is the
mass of the helium atom, ω̄ is the mean frequency of vibra-
tions of surrounding helium atoms, and we take into account
that the half of the mean zero-point energy of these vibrations
is equal to M4ω̄

2A2
0/2, where A0 = √

h̄/2M4ω̄ is the mean
amplitude of the zero-point vibrations of the helium atoms.
We get α ≈ (δR/A0)2. Taking for ω̄ the mean frequency of the
one-phonon wing 0.25 THz [2], we get A0 ≈ 0.75 Å, which
gives α ≈ 0.04.

III. ZERO TEMPERATURE

In the case of T = 0, the Fourier transform satisfies the
equation Ḟ0/F0 = −α/(it − ε−1). Solving it, we get

F0(t ) = (1 − itε)−α. (5)

This function has a pole only in the lower part of the complex
plane t . Therefore the optical spectrum I (�) differs from
zero only for positive frequencies � (� = 0 corresponds to
the ZPL frequency). For small positive � � ε the main con-
tribution to the spectrum comes from large t , giving F0 ≈
(−itε)−α; for large � � ε it comes from small t , giving
F0 ≈ (1 − iαεt )−1. The corresponding spectra in the γ0 = 0
limit are

I0(�) ≈ αε−α(�)/�1−α, � � ε,

I0(�) ≈ (αε)−1e−�/αε, � � ε, (6)
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where (x) is the Heaviside step function. (A similar spec-
trum for small � was found in [16] for crystal lattices
with one-dimensional phonons.) Consequently, the ZPL in
a quantum liquid, in contrast to crystals, acquires a finite
width already in the limit T → 0, γ0 → 0. The reason for
this is the singular enhancement of vibronic interaction with
low-frequency phonons, which leads to the creation of a
macroscopic number of phonons with almost zero frequency
during the electronic transition.

The spectrum strongly depends on the vibronic interaction
parameter α. The case α = 1 is a border case: for α > 1
the spectrum starts at zero, I0(� → 0) → 0, and for α < 1
it starts with a stepped divergence, and the ZPL has a shape
like a lambda letter. This case corresponds to the inner-shell
transition of the Dy atom, studied in [1]. However, in this case
the significant natural width γ0 ≈ 5.15 GHz hides the given
shape.

In the case of large α, the moments of the spectrum Sn =
εnα(α + 1) . . . (α + n − 1), (n = 1, 2, ...) are practically the
same as in the case of the Poisson distribution (the first and
second moments coincide): the larger α, the smaller the dif-
ferences in the values of the moments. For example, with α =
10, the third moments differ by 0.76%, the tenth moments
by 55%; with α = 20, the third moments differ by 0.22%,
the tenth moments by 18%. Consequently, in the case of a
strong vibronic interaction, the shape of the spectrum is close
to Gaussian—the envelope of the Poisson distribution for a
large number of occurrences α. This conclusion agrees with
the results of measurement [2] of the emission spectrum of the
6s2 − 6s6p transition of the valence electron in the Dy atoms
at 1.5 K having FWHM ∼ 1 THz (corresponds to α ∼ 15) and
observed in [4] spectra of the 6s2 − 6s6p singlet and triplet
transitions of the valence electron in the Yb+ ions in liquid
helium.

IV. TEMPERATURE BROADENING OF ZPL

For Tλ � T > 1 K, the temperature dependence of the den-
sity of normal components [13,17–19] can be approximated
as ρN ≈ [0.98 × (T/Tλ)6.8 + 0.02]. The density of superfluid
component equals ρS = 1 − ρN . This component has zero en-
tropy; the entropy of a normal liquid is nonzero and increases
with temperature. Therefore the temperature broadening of
the ZPL is completely due to the normal component. Taking
this circumstance into account, the optical spectrum of the
center should be represented in the form

I (�) = ρSI0(�) + ρN (T )IT (�), (7)

where the spectrum of the superfluid component I0(�) is
given by the Fourier transform of F0(t ), while the spectrum
of normal component IT (�) is given by the Fourier transform
of FT (t ) = F0(t ) exp (gT (t )), where

gT (t ) = α

∫ ∞

−∞
dωυ|ω|n|ω|( cos(ωt ) − 1) (8)

is the temperature-dependent part of ln F . Keeping the two
largest terms in the limit |t | → ∞, we get [20,21] ln F (t ) =
−γT |t | + iςsgn(t ), where γT = παkBT /h̄ describes the tem-
perature broadening of the ZPL of a normal liquid, and ς =
πα/2 is the asymmetry factor of ZPL. In the case of α � 1

FIG. 1. Experimental (points, see [1]) and theoretical dependen-
cies of the ZPL width of the Dy atoms in liquid helium with (solid
line) and without (dashed line) account of the inhomogeneous broad-
ening. The kinks at Tλ = 2.17 K are the result of a similar kink
in the dependence of the density of the normal component on the
temperature.

this factor can be neglected and we get

I (�) ≈ ρSγ0π
−1

�2 + γ 2
0

+ ρNγNπ−1

�2 + γ 2
N

, (9)

where γN = γ0 + παkBT /h̄. The intensity of the first line ∝ρS

decreases to zero as the temperature rises to Tλ; its width
remains unchanged. The intensity and width of the second
line increase with increasing temperature, and the increase in
width is linear.

In [1], to find the widths of the ZPL, a single-Lorentzian
fit of the spectral shape was used. Therefore to compare
the presented theory with the experiment, we also use a
single-Lorentzian fit, using the nonlinear model fitting pro-
cedure [22]. Taking γ0 = 5.15 GHz [1] and found above
α = 0.04, we get for the width of the normal component
γN = (5.15 + 2.5 T ) GHz (temperature in K). The tempera-
ture dependence of the ZPL width obtained in this case using
a single-Lorentzian fit is consistent with the experiment for
low temperatures, but at a higher temperature T ≈ 2 K it gives
about a 10% smaller value than in the experiment (see Fig. 1).

A possible reason for the discrepancy is that the differ-
ent Dy atoms in the superfluid helium may have different
configurations of the surrounding atoms, and hence the ZPL
frequencies [23], which leads to inhomogeneous broadening
of the ZPL. Note that in the case of an optical transition
from 1S to 1P, characterized by a strong vibronic interac-
tion, the differences in configurations can cause a rather large
(∼ 0.02 eV) broadening of the entire optical spectrum [24].

Following [23], we consider here that there are differ-
ences in the static (on the nanoscale timescale) configurations
of the surrounding helium atoms and in the surface ten-
sion energy of the corresponding bubbles. The surface
tension energy in the superfluid component acquires the most
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energetically favorable value. However, the thermal fluctu-
ations of the normal component allow for different config-
urations and, consequently, different values of this energy
for different Dy atoms, which leads to an inhomogeneous
broadening of the ZPL. Given that the difference in surface
energy of bubbles is small compared to kBT , we can take the
inhomogeneous broadening in the form �ρN , where � is a
parameter. Then instead of γ0 we get γ̄0 = γ0 + �ρN . Assum-
ing � = 2.5 GHz, we obtain the temperature dependence of
the ZPL width of the Dy atoms in good agreement with the
experiment (see Fig. 1).

Note that the theoretical value of α = 0.04 with an ac-
curacy of several percent coincides with the value of this
parameter, which gives the best match of the theoretical curve
with the experimental points when using α and � as the fitting
parameters. The value of γ0 = 5.15 GHz is taken from [1].
Therefore, in fact, the dashed line in Fig. 1 is calculated
without fitting the parameters, and the solid line corresponds
to a one-parameter fit of the theory to the experiment.

V. SUMMARY

A theory is proposed that describes the optical spectra of
impurity atoms in superfluid helium, based on a two-fluid
model of helium II. In this theory the temperature dependence
of the spectrum is a consequence of the temperature redis-
tribution of these two fluids and the temperature dependence
of the spectrum of the normal fluid component. It is shown

that, owing to the Archimedes principle, the linear vibronic
interaction with low-frequency phonons in the liquid phase
is singularly enhanced. The reason for this enhancement is
due to the zero values of the transverse phonon frequencies
in a liquid, which allows the liquid to change its shape iso-
chorically in accordance with the Archimedes’ principle. As
a result of such a singular increase in the vibronic interaction,
a macroscopic amount of phonons with an almost zero fre-
quency is created during the electron transition, which leads
to a finite broadening of the ZPL in the spectrum already at
the zero-temperature limit. It is shown that the temperature
dependence of the ZPL has a discontinuity in the derivative
at the lambda temperature Tλ = 2.17 K, and above Tλ this
dependence becomes linear.

Theory is applied for the description of the temperature
dependence of ZPL of the optical spectrum studied in [1] of
the inner-shell transition of the Dy atom in superfluid helium.
A good agreement of the theory with experiment is achieved,
taking into account, in addition to the linear vibronic inter-
action, the inhomogeneous broadening of ZPL considered
earlier in [23], caused by slow fluctuations of the surface
tension of the bubbles of the surrounding helium atoms.
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