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Intertwined charge, spin, and pairing orders in doped iron ladders
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Motivated by recent experimental progress on iron-based ladder compounds, we study the doped two-orbital
Hubbard model for the two-leg ladder BaFe2S3. The model is constructed by using ab initio hopping parameters
and the ground state properties are investigated using the density matrix renormalization group method. We show
that the (π, 0) magnetic ordering at half filling, with ferromagnetic rungs and antiferromagnetic legs, becomes
incommensurate upon hole doping. Moreover, depending on the strength of the Hubbard U coupling, other
magnetic patterns, such as (0, π ), are also stabilized. We found that the binding energy for two holes becomes
negative for intermediate Hubbard interaction strength, indicating hole pairing. Due to the crystal-field split
among orbitals, the holes primarily reside in one orbital, with the other one remaining half filled. This resembles
orbital selective Mott states. The formation of tight hole pairs continues with increasing hole density, as long as
the magnetic order remains antiferromagnetic in one direction. The study of pair-pair correlations indicates the
dominance of the intraorbital spin-singlet channel, as opposed to other pairing channels. Although in a range of
hole doping pairing correlations decay slowly, our results can also be interpreted as corresponding to a charge
density wave made of pairs, a precursor of eventual superconductivity after interladder couplings are included.
Such a scenario of intertwined orders has been extensively discussed before in the cuprates, and our results
suggest a similar physics could exist in ladder iron-based superconductors. Finally, we also show that a robust
Hund’s coupling is needed for pairing to occur.
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I. INTRODUCTION

The study of iron-based high critical temperature super-
conductors continues attracting considerable attention in the
condensed matter community [1–11]. The parent compounds
of iron-based superconductors exhibit nontrivial magnetic
ordering [12–14] and can have either metallic or insulat-
ing characteristics [8–11]. Early theoretical studies based
on weak-coupling theory suggested that antiferromagnetic
(AFM) order is stabilized by Fermi surface nesting [15,16],
leading to the prediction of superconductivity with s± pairing
symmetry induced by AFM fluctuations [17,18]. However,
the absence of hole pockets in some compounds [10,19]
and the presence of robust local magnetic moments [20]
indicated that the role of electronic correlations cannot be ne-
glected [11,13,14,21–23]. Superconductivity can be induced
in iron-based compounds by either electron or hole dop-
ing [9,17] or also by applying pressure [24,25]. For example,
the iron-based compound BaFe2As2 becomes superconduct-
ing by electron doping, namely by partially replacing Fe
by Ni [4]. Also, superconductivity has been induced in the
hole-doped Ba1−xKxFe2As2 [26] and it can even survive the
hole-overdoped regime [27]. Interestingly, by hole doping
BaFe2As2, the superconducting transition temperature Tc can
reach higher values than by electron doping [28].

More interesting for our present study, pressure-induced
superconductivity has been achieved in geometries different

from planes, namely in the iron-based ladder material
BaFe2S3 [24,25]. In particular, BaFe2S3 becomes supercon-
ducting at pressures above 10 GPa with a critical temperature
Tc = 24 K [24]. At ambient pressure this material is a Mott
insulator with a stripe-type arrangement, where magnetic mo-
ments align ferromagnetically along the ladder rung direction
and are coupled antiferromagnetically along the legs of the
ladder [25]. This exciting experimental progress in quasi-
one-dimensional iron-based compounds provides a promising
platform to explore the magnetism and superconductivity
in iron-based materials [24,25,29–36], particularly from a
theoretical perspective. In particular, due to the availability
of powerful numerical many-body techniques for quasi-one-
dimensional systems, it is possible to address fairly accurately
the ground state properties of iron-based ladder compounds
using complex two-orbital Hubbard models incorporating
quantum fluctuations, without resorting to crude many-body
approximations [37–40].

Already exotic theoretical predictions for iron ladders
have been confirmed experimentally. For example, using
inelastic neutron diffraction applied to powder BaFe2Se3,
an exotic block-AFM state (involving blocks of 2 × 2 iron
atoms aligned ferromagnetically, coupled antiferromagnet-
ically along the leg direction) was observed after theory
predicted such a state [29,31,41,42]. The compound BaFe2Se3

shows insulating behavior, with an energy gap � ∼ 0.13–
0.178 eV [41,42]. This compound displays long-range
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antiferromagnetic order at ∼250 K, presumably from in-
terladder coupling, with large individual magnetic moments
2.8μB [29,30,41]. Interestingly, another compound where K
replaces Ba, i.e., KF2Se3, shows a magnetic arrangement with
ferromagnetic rungs coupled antiferromagnetically along the
legs [31].

Because the work in the related field of computational
studies of superconducting Cu-oxide ladders was extremely
useful in showing that pairing can emerge from repulsive
interactions [24,43–46], this provides additional motivation
to proceed with the numerical studies of iron-based ladder
models as well. Experimental work has shown that both
Fe- and Cu-based compounds induce superconductivity via
a magnetic pairing mechanism [13,17,21]. However, techni-
cally there is a practical difference. While Cu-oxide ladders
can be described by a one-orbital Hubbard U model [47], the
Fe-based ladders require a multiorbital Hubbard U description
that must also include the Hund’s coupling [21]. Increasing
the number of orbitals quickly increases the computational
effort. However, the competition between charge, spin, and
orbital degrees of freedom in Fe-based compounds can also
lead to various exotic novel phases with insulating or metallic
ground states [13,21].

In the present paper, we study the magnetic and pair-
ing properties of the hole-doped two-orbital Hubbard model
using the density matrix renormalization group method
(DMRG) [48]. For our DMRG calculations, we use realistic
hopping parameters for the compound BaFe2S3, originally
derived in Ref. [40] using ab initio calculations. In a previous
work by some of us [40], indications of hole pairing were
shown using cluster sizes L = 2 × 8. Moreover, the magnetic
ordering of the undoped compounds involving an FM rung
and AFM leg was observed, as in neutron scattering experi-
ments for BaFe2S3 [25]. However, in those early calculations
the DMRG accuracy with regards to the number of states was
limited. The present study moves considerably beyond our
previous accuracy by using more modern DMRG codes and
computational facilities. Now the cluster size L = 2 × 12 is
reachable. Even more importantly, considerable progress in
the physics is reported here.

In particular, we explore the magnetic properties for var-
ious values of hole doping and varying interaction strengths
over broad ranges. We have observed that the magnetic or-
der could evolve from the canonical (π, 0) order to a more
exotic (0, π ) state, with AFM rungs and FM legs. We have
also carefully analyzed the real-space charge density. The
number of minima in this quantity is always half the number
of holes, suggesting hole pairing, as long as the magnetic
background remains antiferromagnetic of any kind. The pairs
are arranged in what resembles a charge density wave made of
pairs. Remarkably, in regimes where there is no AFM order,
such as in fully ferromagnetic regions at large hole doping
and Hubbard strength, pairing disappears. Moreover, we study
pair-pair correlations and find regions where pairing is robust
(in our previous study [40] pair-pair correlations were not
addressed). Here, we have calculated both singlet and triplet
pair correlations using operators defined along the rungs of the
ladder, and for various hole concentrations. We also study pair
correlations employing operators along plaquette diagonals, a
hole configuration also prominent in the two-hole bound state.

While the rung operator correlations dominate, the diagonal
plaquette correlations are similar.

Due to the simultaneous presence of a charge density
profile and robust pair-pair singlet correlations, both in a
nontrivial magnetic background, we believe our results can be
interpreted in a similar manner as recent efforts in the context
of cuprates within the umbrella of intertwined order param-
eters [49,50]. In particular, a recent scenario in the context
of cuprates proposed by Tranquada [51] expresses that la-
tent tendencies toward superconductivity in individual ladders
could lead to an emergent global superconducting state by
antiphase Josephson coupling. While the antiphase nature of
the coupling is needed in d-wave superconductors, in our case
simply a mere interladder coupling may be sufficient for the
entire ensemble to become superconducting. Thus, our results
raise the exciting possibility that intertwined order could also
be of relevance in iron superconductors.

The organization of the paper is as follows. Section II
contains the two-orbital Hubbard model employed here for
two-leg ladders, as well as details of the numerical methods
used. Section III starts presenting the DMRG results with a
focus on the various magnetic orders upon hole doping, as
well as the presence of bound states for the case of two holes.
Section IV deals with the pair correlations at various dopings
and the real-space hole distributions, presenting the idea that
intertwined orders could be of relevance for isolated ladders,
potentially leading to superconductivity in an ensemble of
weakly coupled ladders. Finally, in Sec. V we present our
conclusions.

II. TWO-ORBITAL HUBBARD MODEL AND METHODS

In this section, we describe the multiorbital Hubbard model
for the iron-based ladder compound BaFe2S3 used in this
work. The multiorbital Hubbard model for a two-leg ladder
can be written as the sum of kinetic and interaction energy
terms H = Hk + Hin [37]. The kinetic portion contains the
nearest-neighbor hopping along the leg and rung directions,
and also next-nearest-neighbor hopping along the plaquette
diagonals of the two-leg ladder. Following the convention
employed in Ref. [40], the tight-binding term is

Hk =
∑

i,σ,γ ,γ ′,�α
t �α
γ ,γ ′ (c†

iσ,γ ci+�α,σ,γ ′ + H.c.) +
∑
i,γ σ

�γ ni,σ,γ ,

(1)
where t �α

γ ,γ ′ is the hopping matrix along the directions �α in-
dicated in Fig. 1 and the orbital space includes two orbitals
γ = {dx2−y2 , dxz}. For notation simplicity, these two orbitals
will be denoted as γ = {a, b}, respectively. �γ denotes the
crystal-field splitting of those two orbitals at P = 12.36 GPa.
ni,σ,γ represents the orbital-resolved number operator at site
i. For our numerical calculations, we used the same hopping
matrices t �α

γ ,γ ′ introduced in Ref. [40]. The actual values of t �α
γ ,γ ′

were obtained from fitting the tight-binding bands with the ab
initio downfolded band structure calculations [40]. The 2 × 2
hopping matrix between sites i and i + x̂ along the legs of the
ladder t x

γ ,γ ′ is given by (in eV units)

t x
γ ,γ ′ =

[−0.334 −0.177
+0.177 +0.212

]
,
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FIG. 1. Schematic representation of a two-leg ladder and the
two-orbital Hubbard model used in this work. At each site, the red
circle represents orbital a and the blue square orbital b. The 2 × 2
hopping matrix along the legs is indicated by t x and along the rung
by t y. We have also considered plaquette diagonal hopping matrices
t x+y and t x−y. For details, see text.

where γ is the orbital index for site i and γ ′ for i + x̂. t y
γ ,γ ′ is

the 2 × 2 hopping matrix along the vertical rung direction:

t y
γ ,γ ′ =

[−0.024 0.000
0.000 +0.216

]
.

The t x+y and t x−y are 2 × 2 hopping matrices along the pla-
quette diagonals of the ladder:

t x+y
γ ,γ ′ = t x−y

γ ,γ ′ =
[+0.085 +0.216
−0.216 +0.109

]
.

The crystal fields �γ at P = 12.36 GPa for each orbital are
�a = 0.423 eV and �b = −0.314 eV. The kinetic energy
bandwidth is W = 2.2533 eV.

The electronic interaction portion of the Hamiltonian is

Hin = U
∑

iγ

ni↑γ ni↓γ +
(
U ′ − JH

2

) ∑
i,γ<γ ′

niγ niγ ′

− 2JH

∑
i,γ<γ ′

Si,γ · Si,γ ′ + JH

∑
i,γ<γ ′

(P+
iγ Piγ ′ + H.c.).

(2)

The first term is the standard on-site Hubbard repulsion be-
tween ↑ and ↓ electrons in the same orbital. The second term
contains the on-site electronic repulsion between electrons at
different orbitals and the same site. As often employed in
previous publications, the standard relation U ′ = U − 2JH is
here assumed, due to the SU(2) symmetry of the Hamilto-
nian. Also, the widely employed ratio JH/U = 0.25 is also
used here because iron superconductors are known to have a
relatively large Hund’s coupling. The third term is the ferro-
magnetic Hund’s interaction between electrons occupying the
active two orbitals γ = {dx2−y2 , dxz}. The operator Si,γ is the
total spin of orbital γ at site i. The last term is the pair hopping
between different orbitals at site i, where Piγ = ci↓γ ci↑γ . This
pair-hopping term arises from Coulomb interaction matrix
elements and has no influence on the more extended pairing of
holes due to magnetic short-range order discussed in this pa-
per. Moreover, to confirm this perspective, in many examples
we turned off the on-site pair-hopping term in the Hamiltonian
and our results were barely modified.

To solve this two-orbital Hubbard model for the ladder
compound BaFe2S3 we employed the DMRG method. Here,
we focused on a cluster of size L = 2 × 12 and with various
values for the hole doping. The number of holes Nh was

obtained by removing Nh electrons from the half-filled system
with N = 48 electrons (i.e., 24 sites and two electrons per
site due to the two orbitals). Due to a recent improvement
in our computational capabilities, we are able to keep up to
m = 3800 states for our DMRG calculation. As a result we
can perform the DMRG calculation quite accurately, with var-
ious hole doping concentrations employed for the L = 2 × 12
cluster. To characterize the magnetic and superconducting
properties, we have calculated various observables, such as
the charge and spin correlations, spin structure factors, and
the pair-pair correlations. For the DMRG calculations we em-
ployed open-boundary conditions and we used the DMRG++
software [52].

III. MAGNETIC ORDER IN DOPED LADDERS

A. Effect of doping on magnetic ordering at intermediate
Hubbard coupling

For iron-based high-Tc compounds, it is widely believed
that magnetic fluctuations play a crucial role to induce su-
perconductivity [21,47]. For this reason, it is important to
determine the magnetic ordering varying the hole doping,
starting with the undoped state. At half filling, BaFe2S3 is
a Mott insulator and displays stripe-type magnetic ordering,
namely antiferromagnetic order along the legs and ferro-
magnetic along the rungs [25]. When changing the coupling
values and hole concentrations [53], there are possibilities of
various types of magnetic ordering, due to the competition
between the kinetic energy of holes, the superexchange be-
tween local Fe moments, and the Hund’s coupling. To find
the magnetic ordering for different numbers of holes and
interaction strength U/W , we calculate the spin-structure fac-
tor S(kx, ky) = 1

L

∑
i, j ek·ri j 〈Si · S j〉 (where Si = ∑

γ Si,γ ) for
cluster size L = 2 × 12 for the allowed set of wave vectors
(kx, 0) and (kx, π ).

Figure 2(a) contains the spin structure factor S(kx, 0) vs
wave vector kx at U/W = 2.0 for various values of hole
doping. At half filling (Ne = 48 in the L = 2 × 12 cluster),
S(kx, 0) displays a sharp peak at (π, 0), which is equivalent
to AFM order in the x direction (leg) and FM order along
the y direction (rung) of the ladder. This type of magnetic
ordering is compatible with neutron experiments for BaFe2S2

at ambient pressure [25]. Interestingly, increasing the number
of holes, the peak of S(qx, 0) starts splitting and the height
of the peak decreases. This peak splitting at (π, 0) increas-
ing with the hole concentration indicates the appearance of
spin incommensurability (IC) in the system [54]. These spin
incommensurate spin fluctuations have been observed in the
hole-overdoped iron-based high-Tc compound KFe2As2 [27].
The decrease in intensity of the peak at (π, 0) is due to the
scrambling of spin ordering by the holes, and also by the
reduction in the number of electrons. Eventually, for large
enough hole doping, S(kx, 0) displays no prominent ordering,
while S(kx, π ) shows a commensurate peak at (π/2, π ), as
shown in Fig. 2(b). At half filling and for U/W � 1 and
JH/U = 0.25, the local spin moments are fully developed
and approach their maximum value S = 1 at each site for
the two-orbital model used here (corresponding to a magnetic
moment 2.0μB) [40]. We find that the averaged spin-square
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FIG. 2. Spin structure factors (a) S(kx, 0) and (b) S(kx, π ) vs
wave vector kx for various values of hole doping. (c), (d) Spin-spin
correlation at a fixed and site-projected arrangement of holes along
the rungs of the ladder. (c) is for four holes projected at the four
red circles indicated, using only orbital a because this is the orbital
populated by hole doping due to the crystal-field splitting. (d) is for
eight holes projected at the eight red circles (again using only orbital
a). Blue color lines represent AFM bonds, whereas FM bonds are
represented with red color. These results were obtained using DMRG
at U/W = 2.0 and JH/U = 0.25, for a cluster size L = 2 × 12.

expectation value 〈S2〉 = 1
L

∑
i〈Si · Si〉 decreases linearly with

hole doping (Nh) [see the inset of Fig. 3(b)], again suggesting
the scrambling of local spin order with increasing holes Nh.

To better visualize in real space the spin IC and scrambling
of spin ordering when increasing the number of holes Nh,
we have calculated the spin-spin correlations when the holes
are projected into their most probable locations [55,56]. We
found that the holes primarily reside in orbital a due to the
crystal-field splitting. For each number of holes, we focused
on the configuration of holes with the highest probability in
the wave function. In this case, to project out the dominant
configuration of Nh holes residing on orbital a, we use the
projection operator [57] Pha(h) = Pha(h1)Pha(h2) · · · Pha(hm)
[with Pha(i) = cia↑c†

ia↑cia↓c†
ia↓ acting as projectors on the

ground state, namely finding the portion of the wave function
where site i and orbital a are vacant (hole)].

After projecting the holes into their most probable loca-
tions, we calculate the local spin-spin correlations [40,55,56]
〈�|Si,a · S j,aPha�〉/〈�|Pha�〉. In Ref. [40] the authors ex-
plored the spin-spin correlations for one and two holes
at U/W = 2.0, where they found robust AFM correlations
“across the holes.” Here, in Figs. 2(c) and 2(d), we analyze
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FIG. 3. Spin structure factor (a) S(kx, 0) and (b) S(kx, π ) vs wave
vector kx for various values of interaction strength U/W at a fixed
number of holes Nh = 8. The inset shows site averaged 〈S2〉 vs the
number of holes Nh at U/W = 3.0. (c) Sketch of the magnetic phase
diagram at fixed JH/U = 0.25 and Nh = 8.

the spin-spin correlation for the cases of four and eight holes,
respectively, which are of more relevance for our focus on
pairing. We find at U/W = 2 that with four and eight holes
the spin AFM correlation “across the holes” is still robust.
The AFM correlations in the leg direction and FM correla-
tions along the rung, characteristic of the undoped regime, are
mostly preserved in locations away from the hole positions.
However, near the holes, AFM correlations appear across the
holes, leading to spin-IC tendencies and broadening of the
(π, 0) peak.

B. Evolution of magnetic order with increasing U/W towards
the strong-coupling regime

Figure 3 displays the spin structure factors S(kx, 0) and
S(kx, π ) for different values of U/W and at a fixed number
of holes Nh = 8. In the weak-coupling limit 0.2 � U/W �
0.8, the spin structure factor S(kx, 0) shows no prominent
spin ordering. In the range 0.8 � U/W � 2.5, S(kx, 0) shows
incommensurate spin ordering, where we find short-range
AFM-spin correlation along the legs and FM correlation along
the rungs of the ladder. Further increasing U/W , we find that
the magnetic ordering evolves continuously and eventually
ferromagnetic tendencies emerge along the leg direction. For
an interaction strength 2.5 � U/W � 8.5 the S(0, π ) order-
ing, opposite to the previously discussed S(π, 0) at smaller
U/W , dominates [see Fig. 3(b)], which is equivalent to FM-
spin ordering in the leg direction and AFM-spin ordering
along the rung of the ladder.

Surprisingly, for U/W � 8.5, the structure factor S(kx, 0)
shows a strong peak at wave vector (0,0) [Fig. 3(a)], indicating
the appearance of ferromagnetic spin order both along the leg
and the rung directions of the ladder. As already explained,
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FIG. 4. (a), (b) Spin-spin correlation at a fixed and site-projected
arrangement of Nh = 8 holes along the rungs of the ladder, using only
orbital a because this is the orbital that is the most relevant for the
location of the holes. (a) At U/W = 3, (b) at U/W = 5. Blue color
lines represent AFM bonds, whereas FM bonds are represented with
red color. (c) Real-space density 〈na(i)〉 vs site index i with Nh = 8
holes and for various values of U/W .

holes mainly reside on orbital a, while the population of
orbital b stays close to one electron/site (see Fig. 5). For this
reason the orbital b behaves as a localized spin-1/2 system,
while orbital a provides delocalized holes. The movement
(kinetic energy) of holes can improve if all spins aligned in
the same direction [53], particularly at large U/W because
the Hund’s coupling is growing linearly with the Hubbard
strength via JH/U = 0.25. This scenario is compatible with
the double-exchange mechanism for manganites and results
in ferromagnetic tendencies with increasing U/W [58,59]. We
find that for large doping the ferromagnetic tendency appears
at smaller values of U/W in comparison to the low-hole dop-
ing case [40].

The above described numerical results show that the mag-
netic order changes with increasing U/W . To understand the
connection between magnetic ordering and pairing of holes,
in Fig. 4 we analyze the projected spin correlation 〈�|Si,a ·
S j,aPha�〉/〈�Pha�〉 and the real-space charge density at or-
bital a for different values of U/W . Figure 4(a) shows the
projected spin correlations for Nh = 8 at U/W = 3.0. The FM
magnetic order along the rung found at U/W = 2.0 [Fig. 2(d)]
now has changed to AFM order along the same rungs at
U/W = 3.0. Along the leg direction, at U/W = 2.0 the order
was fully AFM but at U/W = 3.0 now there is a mixture:
Some bonds are FM and others are AFM. Once the FM vs
AFM intensities are added, overall the leg magnetic ordering
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FIG. 5. (a) Binding energy �E vs interaction strength U/W at
JH/U = 0.25 for cluster sizes L = 2 × 8 and 2 × 12 for comparison.
(b) Real-space charge density 〈nα〉 vs site index i for the case of Nh =
2 holes and at U/W = 3.0. Bottom: Schematic representation of a
two-leg ladder with the snakelike counting of sites appropriate for
DMRG. Orbital a is represented by red circles (this is the orbital
populated by holes) while orbital b is represented by blue squares
(this orbital is mainly undoped at low doping).

becomes ferromagnetic, consistent with the previously shown
spin structure factor S(0, π ) [Fig. 3(b)]. Interestingly, at
U/W = 5.0 [Fig. 4(b)] the magnetic order along the legs
switches completely to a FM order, whereas along the rung
it is completely AFM order, i.e., the ordering is fully reversed
as compared to U/W = 2.0 where the rungs are FM and legs
are AFM. For this reason at this coupling we find a peak at
(0, π ) for the spin structure factor S(kx, π ).

Figure 4(c) shows the real-space charge density of orbital
a for different values of U/W with Nh = 8 holes. It is clear
from Fig. 4(c) that pairs still exist, and they are still primarily
located along the rungs of the ladder, at all values of U/W
where there is a mixture of FM and AFM tendencies, namely
whether favoring (0, π ) or (π, 0) ordering. On the other hand,
both in the limits of small U/W with no magnetic order
[Fig. 6(c)] and at very large U/W such as U/W = 10.0 [see
Fig. 4(c), where the order is FM in both the rung and leg
directions], we find that the density remains approximately
uniform and there are no indications of pair formation because
the density profile does not show four minima for the case of
Nh = 8.

IV. PAIRING TENDENCIES OF HOLES

A. Formation of hole pairs

In this section, we investigate the pairing tendencies after
the addition of holes to the undoped state. The formation of
individual hole pairs in iron ladders is a precursor, in the sense
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FIG. 6. Real-space density profile at U/W = 3.0 for (a) Nh = 4
holes and for (b) Nh = 8 holes. (a) contains two hole pairs, while
(b) contains four hole pairs. (c) Real-space density profile at weak
coupling U/W = 0.2 with Nh = 8 holes. The results suggest no hole
pairs at this small Hubbard U . All these numerical calculations were
performed using DMRG for a cluster size L = 2 × 12 and at fixed
JH/U = 0.25.

of having Cooper pairs, of a superconducting state [40,53,54].
Recent investigations indicate that in the high-Tc cuprates,
the region of intertwined charge order (pairs) and supercon-
ducting order could become globally superconducting by a
weak coupling between them [51]. In two dimensions there
are current scenarios that refer to this ensemble as a “pair
density wave” [51], but considering that we can only study
one ladder, and thus we cannot judge on the possible nodal
structure between ladders, then here we only use the milder
expression intertwined.

In order to find the hole-pairing region as a function of
interaction parameter U/W , we calculated the binding energy
�E . The binding energy of a pair of holes is defined as �E =
E (N − 2) + E (N ) − 2E (N − 1), where E (N ) is the ground
state with N electrons [40,54]. For a finite cluster, � < 0
is indicative of the bound state of holes, while � > 0, or
approximately zero, suggests two holes do not form a bound
state. In Fig. 5(a), we show the binding energy for two cluster
sizes L = 2 × 8 and L = 2 × 12 versus interaction parameter
U/W and at fixed JH/U = 0.25. Interestingly, the binding
energies � become negative in the region 1.6 � U/W � 4.0,
indicating the formation of stable bound pairs of holes in this
regime. The similarity among the values of binding energies
for both cluster sizes L = 2 × 8 and 2 × 12 indicates small
finite-size effects in the binding region. Note that in the bulk
limit, when there is no pairing the binding energy should be

zero because the energy of two holes is the same as two times
the energy of one hole, measured with respect to the undoped
ground state. The case 2 × 12 already shows this behavior in
a broad range of robust U/W . At weak coupling, where size
effects are often larger than in strong coupling, the tendency
for increasing L is in the right direction: 2 × 12 has a smaller
binding energy than 2 × 8 before true binding occurs.

To further verify the pairing of holes, we analyze the real-
space charge density 〈nα〉 with two holes at U/W = 3.0. As
shown in Fig. 5(b), the occupancy of orbital b is close to one,
while there is a deep minimum in the density of orbital a.
This indicates that holes reside mainly at orbital a. This charge
profile is also compatible with a bound state, as opposed to
two unbounded holes where two minima would be expected.

The real-space density 〈na(i)〉 of orbital a also suggests that
the binding of holes occurs near the center of the cluster, either
along the same rung or along the plaquette diagonals, consis-
tent with the negative value of binding energy at U/W = 3.0.

The intuitive reason for pairing was clarified in our previ-
ous paper on the subject [40]. Essentially, the pairing occurs
because one hole distorts the magnetic background, and a sec-
ond hole energetically prefers to be located in the vicinity of
the first to reduce the damage to the spin background. In these
regards pairing by magnetic fluctuations is similar to phononic
pairing: One electron distorts the lattice, and a second electron
takes advantage of that distortion by following the first elec-
tron. In Fig. 10 of Ref. [40] the dynamical configuration of
holes was presented for just one hole pair, showing how the
spin and holes adapt to each other to minimize the damage to
the magnetic background leading to the formation of a bound
date. In this paper our main focus is on results for many pairs.

To understand the pairing tendencies for more than two
holes, in Figs. 6(a) and 6(b), we plot the real-space charge
densities for each orbital with Nh = 4 and Nh = 8 holes at
U/W = 3.0. The densities of orbital b remain approximately
one, and holes reside mainly on orbital a. These tendencies re-
semble the orbital selective Mott phase discussed extensively
in recent literature related to ladders and chains [60–64], at
doping Nh = 4 and Nh = 8.

For orbital a and with four holes [Fig. 6(a)], there exist two
minima in the real-space charge density, compatible with two
bound pairs of holes. These four holes are primarily located
along the rungs with site indices (i = 7, 8) and (i = 17, 18) in
the snake-geometry convention. For the case of Nh = 8 holes
there exist four minima [see Fig. 6(b)], and these minima
are also located with the highest chances along the rungs of
the ladder. Figure 6(c) shows the density of orbital a and b
at lower values of the interaction U/W = 0.2, for the case
of Nh = 8 holes. In this weak-coupling example, the density
of orbitals, both 〈na〉 and 〈nb〉, takes nearly uniform values.
There are no minima in the density profile, compatible with no
bound pair formation in this range of U/W . The results above
suggest that for larger hole doping, holes form bound pairs
along the rungs of the ladder and these holes reside mainly on
orbital a, a result compatible with our previous investigations.

B. Superconducting correlations

Superconductivity involves the pairing of holes, as in
Cooper pairs, followed by the development of coherence
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among pairs in the system forming a condensate [47,65]. In
this last section, we showed computational evidence com-
patible with the pairing of holes in some narrow regions of
doping using one ladder. If we were able to carry out an
accurate study in two dimensions, we could have a uniform
(nodeless) coherent superconductor, or instead we could have
a pair density wave with nodes [51]. In fact, as already ex-
plained, recent neutron scattering results for two-dimensional
cuprates are compatible with the presence of a pair density
wave involving ladders in the stripe regime, followed by phase
coherence induced by the coupling among ladders [51]. Either
way, we believe our results are evidence of superconductivity
tendencies in our models of iron-based ladders.

Another subtle issue is whether or not the state we are de-
scribing belongs to the Luther-Emery liquid variety of states,
with quasi-long-range order in the charge and pairing sectors,
and with a finite spin gap and a particular value of the central
charge c = 1 [65,66]. However, due to the high computational
cost of the calculations for multiorbital Hubbard models, and
the need to do a finite-size scaling to arrive at reliable conclu-
sions, we must postpone this interesting issue to future work.
Here, we can only state that our present results are compatible
with a Luther-Emergy liquid state.

First, let us analyze the pair correlations for various values
of hole dopings. We calculate the pair-pair correlations at a
fixed value of the interaction strength U/W = 3.0, and for
cluster size L = 2 × 12. For our model with two-leg ladder
geometry and two orbitals (a and b) at each site, we could have
a variety of pair operators to use in the pair-pair correlations.
Early investigations suggested that properly selecting the pair
operator enhances the signal for superconductivity [67]. How-
ever, such a task is complicated. For simplicity, here we have
focused on intraorbital nearest-neighbor site pairing operators
(certainly, the presence of local on-site Hubbard repulsion
U and U ′ renders the possibility of electron on-site pairing
negligible, opposite to the negative U Hubbard model) [54].
As discussed in previous sections, the holes reside mainly
on orbital a and form pairs along the rungs and diagonals
of the ladder. For this reason, we calculate the correlation
functions focusing only on orbital a and along both the rung
and plaquette diagonal directions of the ladder. We have also
checked the pair correlations along the leg directions, but we
found they decay at a much faster rate compared to all other
correlations. To avoid colliding with one another, the optimal
case for the holes in the pair is to have one hole at one leg, and
the other hole at the other leg.

As a consequence, in order to examine the nature of
the dominating superconducting correlation, we analyzed the
singlet and triplet pair correlation functions [43,68] along
the vertical and diagonal rungs (see the schematic shown
in Fig. 7). The nearest-neighbor singlet pairing operator for
orbital a along the vertical rung is defined as

O†
rung,S (i, a) = 1√

2
[c†

i,a,1,↑c†
i,a,2,↓ − c†

i,a,1,↓c†
i,a,2,↑], (3)

where i is the site index, while 1 and 2 are the leg index. The
nearest-neighbor triplet pairing operator for orbital a along the
vertical rung is

O†
rung,T (i, a) = 1√

2
[c†

i,a,1,↑c†
i,a,2,↓ + c†

i,a,1,↓c†
i,a,2,↑]. (4)
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FIG. 7. Singlet and triplet pair correlations, Prung
a (S) and

Prung
a (T ), calculated along the vertical rung, whereas Pdiag

a (S) and
Pdiag

a (T ) are calculated along the diagonal of the ladder, as indi-
cated in the sketch at the bottom of the figure, and using orbital a
which is the orbital where holes are located. All results obtained at
U/W = 3.0 and JH/U = 0.25 for a cluster size L = 2 × 12. Bottom:
Schematic diagrams of vertical Orung and diagonal Odiag pairing op-
erators involving orbital a (red ovals) and orbital b (blue squares).

The singlet pairing operator for orbital a along the ladder
plaquette diagonal is

O†
diag,S (i, a) = 1√

2
[c†

i,a,2,↑c†
i+1,a,1,↓ − c†

i,a,2,↓c†
i+1,a,1,↑]. (5)

Finally, the intraorbital spin-triplet pairing operator along the
ladder plaquette diagonal is

O†
diag,T (i, a) = 1√

2
[c†

i,a,2,↑c†
i+1,a,1,↓ + c†

i,a,2,↓c†
i+1,a,1,↑]. (6)

Using these pairing operators, we have calculated the av-
eraged superconducting pair-pair correlations for orbital a
defined as

Pa(d ) = 1

Nd

∑
i

〈O†
a(i)Oa(i + d )〉, (7)

where d = |i − j| is the distance along the leg of the ladder,
and Nd is the number of equidistant pairs from site i. In
other words, we consider all the distances within our clusters,
properly normalized.

In Fig. 7, we show the spin-singlet pair correlations
[Prung

a (S) and Pdiag
a (S)] and triplet pair correlations [Pruang

a (T )
and Pdiag

a (T )] for orbital a with Nh = 8 holes. While cal-
culating the pair correlations, we have discarded the first
and last rungs, to reduce boundary effects. We find that the
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spin-singlet correlation along the rung Prung
a (S) is the most

dominating pair correlation. This is to be expected due to that
fact that holes form a bounded pair along the vertical rung
with the highest probability. The spin-singlet correlation along
the diagonal rung Pdiag

a (S) also decays similarly, although with
slightly less amplitude, becoming the second most dominating
pair-pair correlation. On the other hand, the spin-triplet pair
correlations Prung

a (T ) and Pdiag
a (T ) decay exponentially (i.e.,

approximately linearly in the logarithmic scale used). These
numerical results show that the pair correlation is robust in
the spin-singlet channel and primarily along the rungs of the
ladder.

In a quasi-one-dimensional system, the slowest decaying
correlation functions at long distance determine the domi-
nant type of ordering. It is expected that once interchain
or ladder couplings are turned on, this slowest decaying
channel will become dominant. In order to compare the
pair-pair correlations with spin and charge correlations for
orbital a, we have calculated the rung-spin and rung-charge
correlations [69]. We define the combined rung spin as
Sa,i = (Sa,i,1 + Sa,i,2), where 1 and 2 refer to the leg in-
dex of the ladder. The averaged run spin correlation then
becomes Spa(d ) = 1

Nd

∑
i〈Sa,i · Sa,i+d〉. For the rung charge

we use the definition Na,i = (Na,i,1 + Na,i,2), and the charge-
charge correlations for orbital a are calculated via Na(d ) =
1

Nd

∑
i〈Na,iNa,i+d〉 − 〈Na,i〉〈Na,i+d〉. For spin and charge cor-

relations also we have discarded the first and last rungs of the
ladder, to reduce boundary effects.

Figure 8 contains the comparison of pair-pair correlations
versus rung-spin and rung-charge correlations, for various
values of hole dopings, at U/W = 3.0. For low doping Nh = 2
and Nh = 4, the spin correlation Sprung

a (d ) clearly dominates
over all other correlations [see Figs. 8(a) and 8(b)]. This is un-
derstandable: Even with pair formation, the spin channel has
not been fully scrambled and coherence over long distances
remains. A typical high-Tc superconductor remains antiferro-
magnetic over a finite range of doping starting in the undoped
parent compound. For this reason, the singlet pair correlations
Prung

a (d ) and Pdiag
a (d ) decay with a much faster rate for lower

dopings.
Interestingly, when we increase the hole doping to Nh = 8

and 10 (the latter not shown), we find that the rung-singlet pair
correlation Prung

a (d ) starts competing with the charge correla-
tion N rung

a (d ). At large doping, the spin correlation Sprung
a (d )

decays with a faster rate due to the scrambling of spin order-
ing in the presence of holes [see Figs. 8(c) and 8(d)]. With
a further increase in the hole concentration the rung-charge
correlation N rung

a (d ) dominates over all other correlations and
the singlet correlation also decreases in magnitude [Fig. 8(d)].

Remarkably, as shown in Figs. 8(c) and 8(d), the rung-
singlet pair correlation Prung

a (d ) decays at a similar rate as the
rung-charge correlation N rung

a (d ) for Nh = 8 holes and Nh =
12. We find oscillations in rung correlation functions Prung

a (d )
and N rung

a (d ). Interestingly, the oscillations in pair correlation
have the same period as the charge correlations [see Fig. 8(d)],
suggesting a strong coupling between the charge density and
superconducting orders, leading to our label of orders as
“intertwined.” A similar decay rate of rung-singlet pair cor-
relation with charge correlations suggests the existence of an
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FIG. 8. Comparison of spin-spin Sprung
a (d ) correlations, sin-

glet pair-pair Prung
a (d ) and Pdiag

a (d ) correlations, and charge-charge
N rung

a (d ) correlations. The various panels correspond to (a) Nh = 2,
(b) Nh = 4, (c) Nh = 8, and (d) Nh = 12 holes, all at U/W = 3.0 and
JH/U = 0.25 and using a system size L = 2 × 12. We use orbital a
in all cases because this is the orbital where holes are located due to
the crystal-field splitting.

exotic intertwined state at U/W = 3.0 with a charge wave
made of pairs and robust pair-pair correlations [49–51]. We
believe superconductivity can be achieved by weak interlad-
der Josephson coupling [51], which can transform the one-
dimensional ladder with robust power-law pairing tendencies,
to a two-dimensional coherent superconducting state. In a re-
cent experiment it has been shown that the superconductivity
found in BaFe2S3 has a bulk origin [25]. Also, they found
that increasing pressure leads to an increase in the interladder
transfer of Fe 3d electrons, and as a result the system turns
more metallic [25]. In the case of an array of Cu-based two-leg
doped ladders, namely with one active orbital, it was found
that intraladder coupling leads to a superconducting state as
well [70,71]. In summary, our results at present, with the same
sign oscillations in the pair-pair correlations correlated to the
charge-charge oscillations along the ladder, are compatible
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(b) Binding energy �E vs interaction strength U/W for different
values of Hund’s coupling JH/U , using a cluster size L = 2 × 8.

with a possible pair density wave state in two dimensions, but
only future work can fully establish this conclusion. At the
minimum two two-leg ladders with two orbitals per site are
needed. This is equivalent to an eight-leg ladder one-orbital
Hubbard model, a very challenging task for DMRG.

C. Effect of interaction and Hund’s coupling

In Fig. 9(a), we show a comparison of the rung-singlet pair
correlation Prung

a (d ) at U/W = 3.0 and for three different val-
ues of Hund’s coupling JH/U , with Nh = 8 holes. As shown
in Fig. 9(a), the singlet pair correlation Prung

a (d ) decays with
a faster rate at JH/U = 0.1. On the other hand, the singlet
pair correlation Prung

a (d ) is enhanced by increasing JH/U . The
increase in magnitude of Prung

a (d ) is clearly consistent with the
results for the binding energy (i.e., �E become negative for
JH/U � 0.15).

We have also studied the effect of Hund’s coupling JH/U
on the bindings of holes. In Fig. 9(b), we display the binding
energy �E versus interaction strength U/W for three different
values of JH/U . At JH/U = 0.1 the binding energy remains
positive or close to zero for all values of U/W , indicating no
binding occurs for lower values of Hund’s coupling. However,
for JH/U = 0.2 and 0.3 the binding energy becomes negative
in a wide range of U/W . The (negative) value of �E increases
as JH/U increases. These results suggest that the Hund’s
coupling JH/U plays an important role in inducing pairing
and in the enhancement of singlet pair correlations.

D. Pairing tendencies with an alternative
set of hopping parameters

Let us examine now the binding of holes using an alter-
native set of hopping parameters. The new set of hopping
parameters at pressure P = 12.36 GPa was derived also using
first-principles density functional theory band structure cal-
culations [based on the Vienna ab initio simulation package
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4 8 12 16 20 24
i

0.8

0.9

1.0

<n
a
(i)>

<n
b
(i)>

J
H

/U =  0.25

N
h
 = 4

U/W = 8.0

(a)

(b)

FIG. 10. Results using an alternative set of hoppings. (a) Binding
energy �E vs interaction strength U/W at JH/U = 0.25 for cluster
sizes L = 2 × 8 and 2 × 12. (b) Real-space charge density 〈nα〉 vs
site index i with Nh = 4 holes and at U/W = 8.0.

(VASP) code [72–74] and the maximally localized Wannier
function as implemented in the WANNIER90 code [75,76]].
To obtain the hopping matrices, we only focus on the band
around the Fermi level and considered the hopping matrix
with distance up to

√
2 Fe-Fe. Thus, modifications on the

hopping matrix were introduced accordingly, to render the
tight-binding band structure to fit better the ab initio results.
It must be clarified that the technical need to constrain the
matching between band structure and tight-binding results us-
ing only two orbitals (for practical reasons, because a DMRG
study of a two-leg three-orbital ladder would be too costly)
renders the set of hoppings not unique. Thus, it is convenient
to analyze what physics is obtained with alternative hopping
sets.

Thus, here we will repeat part of the previous results using
the following 2 × 2 hopping matrix between sites i and i + x̂
along the legs of the ladder t x

γ ,γ ′ defined by (in eV units)

t x
γ ,γ ′ =

[−0.65 +0.25
−0.25 +0.216

]
,

where γ is the orbital index for site i and γ ′ for i + x̂, as
before. t y

γ ,γ ′ is the 2 × 2 hopping matrix along the vertical
rung direction:

t y
γ ,γ ′ =

[−0.10 0.00
0.00 +0.181

]
.

The hoppings t x+y and t x−y are 2 × 2 hopping matrices along
the plaquette diagonals of the ladder:

t x+y
γ ,γ ′ = t x−y

γ ,γ ′ =
[ +0.05 −0.322
+0.322 +0.084

]
.

The crystal fields �γ at P = 12.36 GPa for each orbital are
in this case �a = 0.70 eV and �b = −0.297 eV. The kinetic
energy bandwidth is W = 3.238 eV.

Figure 10(a) shows the binding energy �E versus inter-
action strength U/W , using these new hopping parameters
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for cluster sizes L = 2 × 8 and L = 2 × 12 at JH/U = 0.25.
With the new set of hoppings the binding energy takes neg-
ative values at larger values of U/W , compared to the older
hopping parameters. Both sets of hoppings lead to a simi-
lar magnitude of �E ≈ −0.04 eV in the binding region, in
spite of the different U/W range for the binding. Clearly,
the pairing of holes is possible for both sets of hopping
parameters.

The binding of holes is further confirmed by calculating
the real-space density 〈na(i)〉 for different numbers of holes
Nh = 4, 6, 8, where we find two minima for four holes, three
minima for six holes, and four minima for eight holes. Fig-
ure 10(b) shows the real-space density plots for orbitals a and
b. The density of orbital b remains close to one, while there
are two minima in the density 〈na(i)〉 of orbital a, showing
the formation of two hole pairs at U/W = 8.0. The pairing of
holes along the rung and negative values of binding energy,
namely the qualitative similarities with the other set, suggest
that the new hoppings will likely also develop a pair density
wave or a uniform superconductor, when adding couplings
among ladders.

V. CONCLUSIONS

In this paper, we have studied the doped two-orbital
Hubbard model for two-leg ladders with hopping parame-
ters corresponding to the compound BaFe2S3. Using DMRG
calculations for cluster sizes up to L = 2 × 12, we have in-
vestigated magnetic and pairing tendencies for various doping
strengths. We find different types of magnetic ordering when
increasing the interaction strength U/W and hole concentra-
tions. For moderate values of interaction strength, the system
shows incommensurate magnetic ordering, involving a short-
range AFM correlation along the leg and FM correlation along
the rung direction, as in the compound at ambient pressure that
in our case corresponds to the undoped limit.

Remarkably, in the presence of holes and with an increase
in U/W , the AFM order along the leg direction changes to FM
ordering, whereas FM order along the rungs changes to AFM

order. For even larger values of U/W , FM order appears along
both the leg and rung directions. Interestingly, we find robust
evidence of the pairing of holes. The binding energy becomes
negative (pair formation) for wide ranges of the interaction
parameter U/W . Analyzing the sign of the pair correlations,
our preliminary conclusion is that pairs are s-wave-like, as
opposed to d-wave, although these issues will be discussed
in more detail in future work.

The real-space density profile of orbital a shows a clear
indication of the pairing of holes along the rungs of the lad-
der. Moreover, we have presented a comparison of rung-spin,
rung-charge, and pair-pair correlations. At a lower doping
concentration, we find the rung-spin (magnetic) correlation
dominates over other correlations. For moderate values of
doping of holes we find an exotic intertwined state, with
coexisting rung-singlet pair correlation and rung-charge cor-
relation, together with a modulation in the charge due to
pair formation. Furthermore, we have shown that the Hund’s
coupling plays an important role in the pairing of holes. In
addition, we have also shown that the qualitative aspects of
the pairing of holes are similar, employing two sets of hopping
matrices, suggesting that our study is generic and survives in
a wide range in parameter space.
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