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The electronic states near the Fermi level of recently discovered superconductor Ba2CuO4−δ consist primarily
of the Cu dx2−y2 and d3z2−r2 orbitals. We investigate the electronic correlation effect and the orbital polarization
of an effective two-orbital Hubbard model mimicking the low-energy physics of Ba2CuO4−δ in the hole-rich
regime by utilizing the dynamical mean-field theory with the Lanczos method as the impurity solver. We find
that the hole-overdoped Ba2CuO4−δ with 3d8 (Cu3+) is in the orbital-selective Mott phase (OSMP) at half-filling,
and the typical two-orbital feature remains in Ba2CuO4−δ when the electron filling approaches ne ∼ 2.5, which
closely approximates to the experimental hole doping for the emergence of the high-Tc superconductivity. We
also obtain that the orbital polarization is very stable in the OSMP, and the multiorbital correlation can drive
orbital polarization transitions. These results indicate that in hole-overdoped Ba2CuO4−δ the OSMP physics
and orbital polarization, local magnetic moment, and spin or orbital fluctuations still exist. We propose that our
present results are also applicable to Sr2CuO4−δ and other two-orbital cuprates, demanding an unconventional
multiorbital superconducting scenario in hole-overdoped high-Tc cuprates.
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I. INTRODUCTION

The involvement of two Cu 3d orbitals in the super-
conducting (SC) states in the recently discovered high-Tc

superconducting (HTSC) compound Ba2CuO4−δ with Tc =
73 K [1], as well as the early discovered compound
Sr2CuO4−δ with Tc = 95 K [2–4], greatly challenges the pre-
vailing single-orbital scenario in conventional HTSC cuprates.
In the previous cuprates La2CuO4, and YBa2Cu3O6, etc., the
parent phases of these undoped compounds are charge trans-
fer insulator or Mott insulator, where the active Cu 3dx2−y2

orbital is singly occupied and the ground state is Néel an-
tiferromagnetic insulator. Once holes are doped into the O
2px and 2py orbitals, the strong O 2p-Cu 3d hybridization
and large charge transfer gap form the Zhang-Rice singlet
[5], and an effective single-orbital t-J model is proposed
for describing the low-energy physics of doped cuprates [6].
Such an effective single-orbital scenario addressed many ex-
perimental results [7], demonstrating the reasonability of the
model. The essential electronic states in Ba2CuO4−δ do not
fall into this scenario: first, neither Ba2CuO3 nor Ba2CuO4 is
a charge transfer insulator, instead, its charge transfer gap is
rather small; second, both the Cu 3d3z2−r2 and 3dx2−y2 orbitals
appear near the Fermi energy in SC Ba2CuO4−δ [1]. This
suggests that Ba2CuO4−δ is a multiorbital superconductor.
This scenario, which is completely different from that of the
well-known t-J model, brings about the assumptions of two
SC dome phases and orbital selective superconductivity [8,9].

*yunsong@bnu.edu.cn
†zou@theory.issp.ac.cn

The detail inspections to the electronic properties of
Ba2CuO4−δ will provide new insight or even new scenario,
especially the electronic states of SC Ba2CuO4−δ lie in
Ba2CuO4 and in Ba2CuO3. It is well known that La2CuO4

and derivative cuprates are strongly correlated systems. We
expect that Ba2CuO4−δ is a correlated system, though it can
be viewed as a hole-overdoped compound. Recently, Liu
et al. proposed that Ba2CuO3 is an antiferromagnetic insulator
[10] and should be the parent phase; however, Maier et al.
suggested that Ba2CuO4 should be the parent phase [8]. To
resolve such a dispute, it is crucial to clarify the role of the
electronic correlation in Ba2CuO4−δ in the hole-rich regime.
Correspondingly, one may also ask what the role of Hund’s
rule coupling plays in such a multiorbital system and how
the quantum phases evolve with increasing hole concentration
[8–12]. These issues are important since orbital and magnetic
fluctuations are closely related to the ground-state magnetism.

On the other hand, we notice that compared with an-
tiferromagnetically insulating Ba2CuO3, Ba2CuO4 exhibits
a paramagnetically metallic ground state [10], though it
is stoichiometric 3d7 configuration. How can such a para-
magnetically metallic phase be stable in an integer-filling
correlated electron system? At present it is not clear that what
role the electronic correlation plays in the paramagnetically
metallic ground states of Ba2CuO4. Meanwhile, the orbital
polarization character of the hole-overdoped Ba2CuO4−δ ,
which is essential for SC pairing symmetry, is also profoundly
affected by the electronic correlation. These facts urge us to
clarify the role of electronic correlations in the two-orbital
compound Ba2CuO4−δ , as well as Sr2CuO4−δ .

In this paper we use the dynamical mean-field theory
(DMFT) [13–15] with the Lanczos method as its impurity
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solver to investigate the influences of Coulomb correlation
and hole doping on the electronic states in a two-orbital
Hubbard model, which is applicable for the compressed
Ba2CuO4−δ compound. Our results suggest that Ba2CuO4−δ

compound has a typical two-orbital character, even when the
electron filling approaches ne ∼ 2.5, which is very close to
the optimal hole doping of the high-Tc superconducting phase
[1]. We demonstrate that the hole-overdoped Ba2CuO4−δ is in
the orbital-selective Mott phase (OSMP) at half-filling with
two electrons in the two eg orbitals, which is regarded as the
parent phase of Ba2CuO4−δ compound. Our results also show
that the orbital polarization is extremely stable in the OSMP
region, providing a direct evidence for the occurrence of the
OSMP. The orbital polarization transitions can be driven by
the multiorbital correlations in the Ba2CuO4−δ , especially in
the hole-rich region.

This paper is organized as follows. In Sec. II we intro-
duce a two-orbital Hubbard model for the hole-overdoped
Ba2CuO4−δ , and we explain the numerical method adopted
in our study: the DMFT approach with the Lanczos solver.
In Sec. III we demonstrate the effects of electronic correla-
tion and hole doping on the electronic states by analyzing
the phase diagrams of the hole-overdoped Ba2CuO4−δ . The
principal findings of this paper are summarized in Sec. IV.

II. MODEL AND METHOD

On account of the crossing to the Fermi energy for both the
two bands formed from the Cu 3dx2−y2 and 3d3z2−r2 orbitals
of the compressed Ba2CuO4−δ compound, we investigate
the electronic states described by a two-orbital Hamiltonian
H = Ht + HI , where the tight-binding (TB) Hamiltonian Ht

reads [8]

Ht = −
∑

i j

∑
lσ

t (i j)
ll d†

ilσ d jlσ −
∑

i j

∑
l �=l ′,σ

t (i j)
ll ′ d†

ilσ d jl ′σ

+
∑
ilσ

(εl − μ)d†
ilσ dilσ . (1)

d†
ilσ (dilσ ) is an electron creation (annihilation) operator for

orbital l (=1 for dx2−y2 and 2 for d3z2−r2 ) at site i with spin
σ . t (i j)

11/22 and t (i j)
12 represent the intraorbital and interorbital

hoppings between sites i and j, respectively. εl represents the
on-site energy of orbital l , and the crystal-field splitting is
given as εd = ε1 − ε2. μ denotes the chemical potential.

The interaction Hamiltonian HI is exactly the same as the
correlation part of the standard two-orbital Hubbard model
[16,17],

HI = U

2

∑
ilσ

nilσ nilσ̄ +
∑

i,l<l ′,σσ ′
(U ′ − δσσ ′JH )nilσ nil ′σ ′

+JH

2

∑
i,l �=l ′,σ

d†
ilσ d†

ilσ̄ dil ′σ̄ dil ′σ

+JH

2

∑
i,l �=l ′,σσ ′

d†
ilσ d†

il ′σ ′dilσ ′dil ′σ , (2)

where U (U ′) corresponds to the intraorbital (interorbital) in-
teraction, and JH is the Hund’s rule coupling. For the systems
with spin rotation symmetry, we have U = U ′ + 2JH .

TABLE I. Model parameters of the TB Hamiltonian of
Ba2CuO4−δ at half-filling in eV [8].

on-site 1st hop- 2nd hop- 3rd hop-
energy (ε) ping (t) ping (t ′) ping (t ′′)

orbital dx2−y2 −0.222 0.504 −0.067 0.130
orbital d3z2−r2 0.661 0.196 0.026 0.029
interorbital 0 −0.302 0 −0.051

Ba2CuO4−δ can be viewed as a hole-overdoped compound.
The nominal 2(1-δ) holes per Cu are doped in the Ba2CuO4−δ

compound [1], giving a relation between δ and the hole
concentration xh as δ = 1 − xh/2. Accordingly, the copper
valence can be expressed as Cu2+xh for a hole concentration
xh [8]. At half-filling with δ = 0.5, there are two electrons in
the dx2−y2 and d3z2−r2 orbitals of Cu3+ in Ba2CuO4−δ .

Based on the DFT-calculated band structures of the com-
pressed Ba2CuO4−δ compound with hole concentration xh =
1 [8], the model parameters of the TB Hamiltonian Ht in
Eq. (1) are given in Table I, including the hopping parameters
for the first (t), second (t ′), and third (t ′′) nearest neighbors, as
well as the on-site energy εl . Through the Fourier transforma-
tion, Ht is changed to

H0(k) =
∑
kσ

∑
ll ′

{ξll ′ (k) + [εl − μ]δll ′ }d†
lσ (k)dl ′σ (k), (3)

with

ξ11/22(k) = 2t11/22(cos kx + cos ky) + 4t ′
11/22 cos kx cos ky

+ 2t ′′
11/22(cos 2kx + cos 2ky), (4)

and

ξ12(k) = ξ21(k)

= 2t12(cos kx − cos ky) + 2t ′′
12(cos 2kx − cos 2ky). (5)

The energy of the d3z2−r2 orbital varies as ε2 = 0.661 −
5(1 − xh) with decreasing hole concentration xh, while the
energy ε1 of the orbital dx2−y2 is kept as a constant [8]. For
the conditions with xh < 1, the chemical potential μ has been
adjusted to keep an electron filling ne = 1 + 2δ (ne = 3 − xh)
for the hole-overdoped Ba2CuO4−δ .

We map the lattice Hamiltonian on to an impurity model
with fewer degrees of freedom,

Himp =
∑
mlσ

εmlσ c†
mlσ cmlσ +

∑
lσ

(εl − μ)d†
lσ dlσ

+
∑
ll ′mσ

Vll ′mσ (d†
lσ cml ′σ + c†

ml ′σ dlσ ) + H imp
I (6)

with

H imp
I = U

2

∑
lσ

nlσ nlσ̄ +
∑

l<l ′,σσ ′
(U ′ − δσσ ′JH )nlσ nl ′σ ′

+JH

2

∑
l �=l ′,σ

d†
lσ d†

lσ̄ dl ′σ̄ dl ′σ + JH

2

∑
l �=l ′,σσ ′

d†
lσ d†

l ′σ ′dlσ ′dl ′σ ,

(7)
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where c†
mlσ (cmlσ ) denotes the creation (annihilation) operator

for the bath lattice of orbital l , εmlσ denotes the energy of
the mth environmental bath of orbital l , and Vll ′mσ represents
the coupling between the orbital l of the impurity site and
environmental bath of orbital l ′.

The Green’s function of the two-orbital impurity model can
be expressed as a 2 × 2 matrix,

Gimp(iωn) =
(

G11(iωn) G12(iωn)

G21(iωn) G22(iωn)

)
. (8)

The Green’s function Gimp at zero temperature is calculated
by the Lanczos solver [18–20]. We choose a bath size nb = 3
in our calculations. It has been proved that the critical values
of the OSMT in a two-orbital Hubbard model are almost the
same when the bath size is taken as nb � 3 in the DMFT
calculations with Lanczos solver [21].

In the Lanczos procedure [18], the diagonal matrix ele-
ments of the Green’s function Gll are expressed as

Gll (ω) = G(+)
ll (ω) + G(−)

ll (ω), (9)

where

G(+)
ll (ω) = 〈φ0|dld

†
l |φ0〉

ω − a(+)
0 − b(+)2

1

ω−a(+)
1 − b(+)2

2
ω−a(+)

2 −...

, (10)

and

G(−)
ll (ω) = 〈φ0|d†

l dl |φ0〉
ω + a(−)

0 − b(−)2
1

ω+a(−)
1 − b(−)2

2
ω+a(−)

2 −...

. (11)

|φ0〉 is the ground state. a(+)
n and b(+)

n are the elements
of tridiagonal form of the Hamiltonian matrix, constructed
from the initial state d†

l |φ0〉/
√

〈φ0|dld
†
l |φ0〉, and a(−)

n and
b(−)

n are correspondingly obtained by another initial state
dl |φ0〉/

√
〈φ0|d†

l dl |φ0〉. The off-diagonal elements G12 and
G21 can be also obtained by the Lanczos method, based on
the relation

G12(iωn) = G21(iωn)

= 1

2

[
G1+2,1+2(iωn) −

∑
l

Gll (iωn)

]
, (12)

where G1+2,1+2 is a combined Green’s function, G1+2,1+2 =
〈〈d1 + d2|d†

1 + d†
2 〉〉, which is calculated in the Lanczos

method by replacing the operators d†
l and dl as d†

1 + d†
2 and

d1 + d2, respectively.
The Weiss function of the impurity model can be obtained

through the parameters of the impurity Hamiltonian by

Gimp
0 (iωn)−1 = (iωn + μ)I − �(iωn), (13)

where Gimp
0 (iωn) and �(iωn) are 2 × 2 matrices, and symbol I

denotes the identity matrix. The hybridization matrix �(iωn)
is defined as

�(iωn) =
(

	11(iωn) 	12(iωn)

	21(iωn) 	22(iωn)

)
, (14)

with

	l1l2 (iωn) ≡
∑
ml

Vl1lmVl2lm

iωn − εml
. (15)

We calculate the 2 × 2 self-energy matrix �imp(iωn) of the
impurity Hamiltonian by the Dyson equation

�imp(iωn) = Gimp
0 (iωn)−1 − Gimp(iωn)−1, (16)

and the 2 × 2 lattice Green’s function matrix Glat (iωn) is
obtained by

Glat (iωn) = 1

N

∑
k

G(iωn, k)

= 1

N

∑
k

1

iωnI − H0(k) − �imp(iωn)
,

(17)

where H0 is the matrix representation of Eq. (3).
We build the DMFT self-consistent loop with Gimp(iωn) =

Glat (iωn) to determine the parameters εml and Vll ′m. Analytic
continuation is also performed to obtain the real frequency
Green’s function G(ω) [13].

We calculate the orbital-resolved spectral density of each
orbital by

Al (ω) = − 1

π
ImG(lat )

ll (ω + iη), (18)

where η is an energy broadening factor. Then, the orbital
projected optical conductivity can be expressed approximately
as

σl (ω) = π

∫ ∞

−∞
dεDl (ε)

∫ ∞

−∞

dω′

2π
Al (ω

′)Al (ω
′ + ω)

×n(l )
f (ω′) − n(l )

f (ω′ + ω)

ω
, (19)

where n f (ω) is the Fermi function, and Dl represents the
density of states (DOS) of the TB Hamiltonian. We neglect the
vertex correction to the current operator, and the off-diagonal
elements are also neglected in our calculations.

To explore possible orbital polarization and orbital order-
ing in Ba2CuO4−δ , we also calculate the local orbital squared
moment 〈T 2

z 〉 of the two orbitals by [22]〈
T 2

z

〉 = 〈(
n̂l1 − n̂l2

)2〉
, (20)

from which we could obtain the evolution of orbital polariza-
tion with increasing electronic correlation.

III. RESULTS AND DISCUSSIONS

We study the electronic states in Ba2CuO4−δ as the hole
doping varies from intermediate doping region to highly over-
doped region, and we also pay close attention to the optimal
hole-doping region around the electron filling ne ∼ 2.5, where
the high-Tc superconductivity occurs in Ba2CuO4−δ . First,
we study the orbital selective Mott transition (OSMT) in the
strongly overdoped system for 3d8 (Cu3+) with two electrons
in the two eg orbitals, i.e., at half-filling with ne = 2, which is
regarded as the parent phase of Ba2CuO4−δ compound.
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FIG. 1. (a) Orbital-resolved quasiparticle weight Zl and (b) elec-
tron occupation nl as a function of interaction U when JH = 0.25U
for Ba2CuO4−δ at half-filling. Between the metallic (yellow) and
insulating (gray) phases, an OSMP (orange) occurs in a narrow
interaction region with 3.55 eV � U < 3.75 eV.

A. OSMT at half-filling

Half-filled Ba2CuO4−δ with ne = 2 displays prominent
OSMP character under the correlated effect. In Fig. 1(a) we
present the orbital-dependent quasiparticle weight Zl , Zl =
(1 − ∂

∂ω
Re
l (ω)|ω=0)−1 [23], as a function of the intraor-

bital interaction U when JH = 0.25U at half-filling. When
U < 3.55 eV, the two-band system is metallic with finite
quasiparticle weights of the two orbitals. By contrast, the
insulating phase with zero Zl is stable for both orbitals when
U > 3.75 eV. An OSMP occurs between the metallic and
insulating phases with 3.55 eV � U < 3.75 eV, in which the
narrow d3z2−r2 band behaves insulating, while the wide dx2−y2

band is still metallic. The U dependence of the electron occu-
pations nl are shown in Fig. 1(b). We find that the electrons
transfer from the wide dx2−y2 band to the narrow d3z2−r2 band
with increasing U at half-filling. Both bands become singly
occupied (nl = 1) after the OSMT, indicating that the two
electrons in the two Cu eg orbitals distribute uniformly in
both the OSMP and insulating phase, as observed in other
degenerate two-orbital systems [24–27].

Figure 2 shows the orbital-resolved spectrum Al (ω) and
optical conductivity σl (ω) obtained in different phases. In
the metallic phase with U = 3.5 eV, both bands have a finite
spectral weight at the Fermi level, and there is a Drude peak
in the optical conductivity accordingly, as shown in Figs. 2(a)
and 2(b), respectively. At U = 3.6 eV a small resonance peak
can be found in the DOS of the metallic wide dx2−y2 band,
accompanied with a small Drude peak in its optical conduc-
tivity. Meanwhile, a Mott gap opens around the Fermi level in
the narrow d3z2−r2 band, and the Drude weight is zero for its
optical conductivity, demonstrating the well-defined OSMP
character [28–30]. Insulating phase appears at U = 3.8 eV,

FIG. 2. Effect of interaction U on the orbital-resolved spectral
density Al (ω) (left panel) and the corresponding orbital-dependent
optical conductivity σl (ω) (right panel) of the two bands of
Ba2CuO4−δ with JH = 0.25U at half-filling. The Fermi energy is
denoted by a blue dotted line, and the energy broadening is given
as η = 0.05 eV.

where a Mott gap opens in the DOS and there is no Drude
peak in the optical conductivity for both bands as shown in
Figs. 2(e) and 2(f), respectively.

Decreasing the Hund’s rule coupling to JH = 0.125U , the
Mott transitions in the two bands occur simultaneously at
U = Uc1 = Uc2 = 4.6 eV, as shown in Fig. 3(a). This find-
ing is in agreement with the early result that a large JH

FIG. 3. (a) Quasiparticle weight and (b) electron occupation as a
function of interaction U when JH = 0.125U at half-filling. A direct
transition from metallic phase to insulating phase is found.
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FIG. 4. Phase diagram of Ba2CuO4−δ at half-filling. The critical
values of Mott transitions in the narrow and wide bands decrease with
increasing JH/U , leading the OSMP region to be wider accordingly.
The OSMT vanishes if JH/U is smaller than 0.2.

promotes the OSMT at half-filling by strongly suppressing the
coherence scale to block the orbital fluctuations [28,31–33].
Figure 3(b) shows that both bands become half-filled after the
Mott transition.

We construct the U -JH phase diagram in Fig. 4. One ob-
serves that there exists a narrow region of the OSMP between
the weakly correlated metallic phase and strongly correlated
Mott insulating phase when JH > 0.2U , which is getting to
broaden with increasing JH . It is obvious that large JH is ben-
eficial to the occurrence of OSMP. The OSMP vanishes when
JH < 0.2U because Coulomb correlation and Hund’s rule
coupling are inferior to the crystal-field splitting, in agreement
with the previous results [31–34]. In the region of JH > 0.2U ,
the system undergoes the transitions of a metallic phase to an
OSMP and of an OSMP to an insulating phase as U increases.
Because Ba2CuO4−δ at half-filling is at least an intermediate
correlated system [8], it should be an OSMP compound, or
near the edge of the OSMP.

There have been two possibilities regarding the parent
compound of the SC Ba2CuO4−δ . One candidate is Ba2CuO4

[8], and the other one is Ba2CuO3 [10]. Our study suggests
an alternative possibility that the half-filled Ba2CuO3.5 is the
parent compound. Increasing the electron filling by remov-
ing some oxygens from Ba2CuO3.5, high-Tc superconductivity
emerges in Ba2CuO4−δ when ne ∼ 2.5 [1].

B. Hole-overdoping effect

Focussing on the optimal hole doping for the occurrence
of the high-Tc superconductivity, in Fig. 5 we present the
evolution of the orbital-resolved quasiparticle weight Zl with
increasing multiorbital interactions U and JH in Ba2CuO4−δ

when the electron filling ne is around 2.5. Although the two
bands are both good metal with large Zl in the weakly corre-
lated region, a significant difference between the quasiparticle
weight distributions for the two bands can be found in the
strongly correlated region. It is obvious that the decline of
the quasiparticle weight of the narrow d3z2−r2 band is mainly

FIG. 5. Effects of Hund’s rule coupling JH and interaction U on
quasiparticle weight Zl of the wide band dx2−y2 (top panel) and the
narrow band d3z2−r2 (bottom panel) for Ba2CuO4−δ when ne ∼ 2.5.

driven by the intraorbital interaction U . On the other hand, a
bad metallic character appears in the wide dx2−y2 band when
the Hund’s rule coupling is strong enough. The two orbitals
of Ba2CuO4−δ display different correlation features in the
strongly correlated region when ne ∼ 2.5.

We present the spectral density Al (ω) and electron occupa-
tion nl at different JH/U in Fig. 6. In Fig. 6(a) both bands
have finite spectral weight at Fermi level and the system
displays prominent metal character when U = 2.4 eV and
JH = 0.5 eV. With increasing correlations, we find two soft

FIG. 6. Orbital-resolved spectral density Al (ω) of Ba2CuO4−δ

with ne ∼ 2.5 for different interactions: (a) U = 2.4 eV and JH =
0.5 eV and (b) U = 4.8 eV and JH = 1.5 eV. The energy broadening
is η = 0.05 eV. (c) Orbital-resolved electron occupation nl as a
function of JH/U for different interactions: U = 2.4 eV, 3.6 eV, and
4.8 eV when the electron filling ne is around 2.5.
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FIG. 7. The orbital-resolved spectral density Al (ω) (left panel)
and the corresponding orbital-dependent optical conductivity σl (ω)
(right panel) on different electron filling ne of Ba2CuO4−δ when JH =
0.25U and U = 3.6 eV. The energy broadening is η = 0.05 eV.

gaps in the DOS of both orbitals when U = 4.8 eV and JH =
1.5 eV shown in Fig. 6(b), indicating that the system becomes
a bad metal in the strongly correlated region. We show the
orbital-dependent electron occupation in Fig. 6(c) when the
electron filling is around 2.5. Different from the results of
half-filled systems shown in Figs. 1(b) and 3(b), electrons
prefer to occupy the narrow d3z2−r2 band. It is worth noticing
that both JH and U tend to uniformly distribute electrons
within the two orbitals, and a finite Hund’s rule coupling can
make the wide dx2−y2 band to be around half-filled, indicating
that both orbitals have significant contributions. Therefore,
our results give strong evidences of the two-orbital charac-
ter in Ba2CuO4−δ when ne ∼ 2.5, which corresponds to the
experimental hole-doping concentration for the occurrence of
the high-Tc superconductivity.

To find out the influence of the hole doping in Ba2CuO4−δ ,
we extend our study to a wide doping region with 2.0 �
ne � 2.5. In Fig. 7 we present the spectral density Al (ω)
and optical conductivity σl (ω) for different electron filling ne

when JH = 0.25U and U = 3.6 eV, where the system should
be in an OSMP at half-filling (ne = 2) based on the phase
diagram shown in Fig. 4. When we change the electron filling
to ne = 2.04, a Mott gap still opens in the narrow d3z2−r2 band
and its optical conductivity is zero at ω = 0 correspondingly,
as shown in Figs. 7(a) and 7(b). Also, the wide dx2−y2 band
has a finite resonance peak and a large Drude peak, indicating
that the wide band is in a metallic phase. This indicates that
an OSMP also occurs near half-filling. When the electron
filling is changed to ne = 2.3, the finite spectral weights at
Fermi level and the large Drude peaks for both bands indicate
that Ba2CuO4−δ transfers to a metallic phase, as shown in
Figs. 7(c) and 7(d).

In the phase diagram shown in Fig. 8(a), an OSMP is found
in a highly overdoped region near half-filling, which looks
like an OSMP peninsula in the sea of metallic phase. If the
electron filling ne is more than 2.1, Ba2CuO4−δ with U =
3.6 eV can only be a metal no matter how large the Hund’s
rule coupling is. On the other hand, the Mott insulating phase
occurs only at half-filling with a strong Hund’s rule coupling

FIG. 8. (a) Phase diagram of Ba2CuO4−δ from the intermediate
hole-doping region to the overdoped region with 2.0 � ne < 2.5
when U = 3.6 eV. (b) Orbital-resolved electron occupation as a
function of ne for different JH . The green dotted line indicates the
half-filling of an orbital with n = 1. The OSMP occurs in a hole-rich
regime 2.0 � ne � 2.1 for a not weak JH , but the Mott insulating
phase can only occur at half-filling with ne = 2.0 when the Hund’s
rule coupling is larger as JH > 0.3U .

as J > 0.3U . The critical value Jc
H for the OSMT takes the

minimum value at ne ≈ 2.04. Besides, the disappearance of
the OSMP when JH � 0.2U provides further evidence that
the Hund’s rule coupling can promote the OSMT [35], even
away from half-filling. Although the difference between the
electron occupancies of the two orbitals increases with in-
creasing ne, as shown in Fig. 8(b), the wide dx2−y2 band is still
approximately half-filled with n1 ≈ 0.95 when ne = 2.5 and
JH = 0.3U . Our calculations demonstrate that Ba2CuO4−δ

compound displays a typical two-orbital character from the
intermediate hole-doping region to the overdoped region, in-
cluding the optimal doping ne ∼ 2.5 for the occurrence of the
high-Tc superconductivity. In Sec. III C, we detect the cor-
relation driven orbital polarization transitions in Ba2CuO4−δ ,
resulting from the electron transfer between the two orbitals.

C. Orbital polarization

In Fig. 9 we present the local orbital squared moment
〈T 2

z 〉 as a function of the intraorbital interaction U at half-
filling. The model Hamiltonian employed in our calculations
is orbitally asymmetric, in which a large orbital polarization
can exist in the metallic phase. Based on the obtained phase
diagram shown in Fig. 4, we find that the orbital squared
moments are finite when the system is metallic or in the
OSMP, whereas a zero squared moment 〈T 2

z 〉 = 0 corresponds
to the insulating phase. As a result, the U dependence of
the squared moment 〈T 2

z 〉 displays a stair-step profile with a
quickly drop point, which corresponds to the happening of the
Mott transition.

It is worth noticing that there exists a platform in the 〈T 2
z 〉-

U curve within the interaction region 3.55 eV � U < 3.75 eV,
indicating that the orbital polarization is especially stable in
the OSMP when JH = 0.25U . Because the narrow d3z2−r2

band with localized electron keeps half-filled in the OSMP,
the itinerant electrons in the wide dx2−y2 can not transfer to
the lower Hubbard sub-band of the narrow orbital, leading
the orbital polarization to be fixed. Therefore, the orbital
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FIG. 9. U dependence of the squared moment 〈T 2
z 〉 for different

Hund’s rule coupling JH = 0.25U (black line) and JH = 0.125U (red
line) at half-filling.

polarization can also provide strong evidence for the occur-
rence of the OSMP.

The effect of the electron filling on the local orbital squared
moments is presented in Fig. 10 for Ba2CuO4−δ when 2.0 �
ne � 2.5. As shown in Fig. 10(a), the local orbital squared mo-
ments slightly increase with the increasing of electron filling
when the system is in the metallic phase for ne > 2.2. Near
the half-filling region, the Hund’s rule coupling plays an es-
sential role: 〈T 2

z 〉 decreases with increasing ne for JH = 0.1U ,
because more electrons transfer to the low-energy wide dx2−y2

band when the system has a large crystal-field splitting and
a small JH [36]. When the Hund’s rule coupling increases
to JH = 0.3U , an OSMT happens when ne � 2.1, and the
squared moments keep almost unchanged in the OSMP. This
can also be seen in Fig. 10(b).

Totally speaking, the orbital polarization is suppressed by
the Hund’s rule coupling in the metallic phase, but it becomes
almost constant in the OSMP, as one sees in Figs. 10(a) and
10(b). As a result, the orbital polarizations in the OSMP

FIG. 10. Orbital polarization in the hole-overdoped Ba2CuO4−δ

when U = 3.6 eV. (a) Local orbital squared moment as a function
of ne for different Hund’s rule couplings. (b) Comparing the JH

dependencies of 〈T 2
z 〉 for different ne.

or near the edge of the OSMP may be helpful for the oc-
currence of orbital-selective superconductivity in Ba2CuO4−δ

compound [8]. Meanwhile, the orbital polarization in metallic
phase does not lead to orbital order due to the absence of
lattice distortion.

D. Discussion

Thus far, we may expect that in the SC Ba2CuO4−δ , there
exist two types of electrons: the narrow-band electrons near
the edge of the Mott localized state, and the wide-band
electrons, resemble to an earlier two-band hypothesis by Xi-
ang et al. [37]. Intuitively the multiorbital model for HTSC
cuprates is more reasonable than the single-orbital model:
in conventional BCS superconductors, the ionic background
and phononic vibrations provide the SC pairing force field of
Cooper pairs, and paired carriers are responsible for carrying
the supercurrent; in contrast, the carriers of the single-orbital
t-J model play duplicate roles, they not only create spin
fluctuations to provide a SC pairing force but also carry a
supercurrent. Thus, the single-orbital t-J model leads to a
dilemma: the creation of the pairing force and carrying of the
supercurrent are competitive; the more the carriers participate
in spin fluctuations, the less the carriers participate in carrying
the supercurrent, and vice versa [38–40]. As a comparison, a
multiorbital superconductor could avoid such a difficulty: the
electrons in one or two orbitals can contribute spin or orbital
fluctuations, and electrons in another one or two orbitals con-
tribute SC pairs and carry supercurrent. In the same time, the
multiorbital and OSMP characters of the compressed com-
pound Ba2CuO4−δ , as well as of the compound Sr2CuO4−δ ,
imply that the spin fluctuations along with the orbital fluc-
tuations may enhance the SC pairing force and greatly lift
Tc in Ba2CuO4−δ and Sr2CuO4−δ , resembling to multiorbital
high-Tc iron pnictide superconductors. Thus one could under-
stand why the SC critical temperatures of Ba2CuO4−δ and
Sr2CuO4−δ are about 70 and 90 K, significantly larger than
those of La2CuO4−δ , which is about 30–40 K.

IV. CONCLUSIONS

In summary, we study the orbital selectivity of the effective
two-orbital Hubbard model of Ba2CuO4−δ compound by us-
ing the dynamical mean-field theory with the Lanczos method
as the impurity solver. We demonstrate that Ba2CuO4−δ is
an OSMP compound at half-filling or is near the edge of the
OSMP in the optimal hole-doping region, and a stable orbital
polarization can be observed in the OSMP regime. These
suggest that a local magnetic moment and spin or orbital fluc-
tuations still exist, and the OSMP and the orbital polarization
are significant features of the hole-overdoped Ba2CuO4−δ .
Our results are also applicable to Sr2CuO4−δ and other two-
orbital cuprates. Regarding the half-filled Ba2CuO3.5 as the
parent phase, our work provides a new perspective to under-
stand the physics in the superconducting Ba2CuO4−δ .
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