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Parametric amplification of topological interface states in synthetic Andreev bands
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A driven-dissipative nonlinear photonic system (e.g., exciton-polaritons) can operate in a gapped superfluid
regime. We demonstrate theoretically that the reflection of a linear wave on this superfluid is an analog of the
Andreev reflection of an electron on a superconductor. A normal region surrounded by two superfluids is found to
host Andreev-like bound states. These bound states form topological synthetic bands versus the phase difference
between the two superfluids. Changing the width of the normal region allows us to invert the band topology
and to create “interface” states. Instead of demonstrating a linear crossing, synthetic bands are attracted by the
nonlinear non-Hermitian coupling of bosonic systems, which gives rise to a self-amplified strongly occupied
topological state.
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Topological physics relies on the specific structure of the
eigenstates of Hamiltonians in a parameter space. It has be-
come one of the most active fields of research of the past
few decades. Topological invariants were successively used to
characterize superfluid excitations (quantum vortices) [1,2],
solitons in polyacetylene [3], Landau levels [4], electronic
Bloch bands in solids [5], and more generally energy bands
in periodic media [6]. A related concept is the bulk-boundary
correspondence [7,8], which associates the change of the band
topology with a gap closing and therefore with the existence
of an interface state between media of different topologies.
Such interface states demonstrate unique properties, like the
one-way transport in topological insulators [9].

The recent proposals and implementations of topological
media supporting protected edge states in nonlinear systems
opened new possibilities [10–18]. The most well-known ex-
amples are topological lasers, where lasing occurs in the
topological edge states of a photonic lattice [19–22]. Another
recent orientation is synthetic topological matter, where the
parameters of the Hamiltonian are not imposed by the system
itself (such as the wave vector in Bloch bands), but rather ex-
ternally by experimental conditions. This approach allows one
to explore inaccessible regimes, such as the four-dimensional
(4D) quantum Hall effect [23]. One implementation of syn-
thetic topological matter relies on using Josephson junctions
between conventional superconductors [24]. The dependence
of Andreev bound states versus the phase difference be-
tween the superconductors forming the junction allows one
to define synthetic bands with the synthetic dimensionality
controlled by the number of terminals. These bands were
found to be topological, showing Weyl singularities, and sig-
nificant efforts are being made to implement them [25,26].
Andreev reflection occurs at the interface of a superconductor
[27], where an incoming electron undergoes an anomalous

reflection, becoming a hole excitation with reversed wave
vector, charge, and mass. The analogy between Andreev re-
flection and the reflection of a wave over a Bose-Einstein
condensate has been studied theoretically [28]. In photonics,
one can implement a superconductor analog using resonant
driving, typical for cavity exciton-polaritons [29,30]. In such a
case, a gap opens in the spectrum of excitations of the pumped
modes, which corresponds to the formation of a “gapped
superfluid.” It is possible to spatially modulate the pump in-
tensity to realize two or more gapped regions with controllable
phase, separated by normal (nonsuperfluid) regions [31–33].

In this work, we study the analog of the 1D Andreev
reflection on a gapped driven-dissipative polariton superfluid.
We show the existence of Andreev-like bound states between
two driven superfluids. The topology of the synthetic bands
defined versus the phase difference between the superfluids is
nontrivial. The interface states between the regions of inverted
topology are found to be self-amplified. They are macroscop-
ically occupied topologically protected Andreev-like states.

I. THE MODEL

We consider a 1D strongly coupled microcavity [29,30,34].
The 1D superfluid wave function ψ is described by the driven-
dissipative Gross-Pitaevskii (GP) equation for scalar particles
[29], analogous to the equation describing the electric field
amplitude in a nonlinear system [35]:

ih̄
∂ψ

∂t
=

[
− h̄2

2m

∂2

∂x2
− iγ + α|ψ |2

]
ψ + P. (1)

P = e−iωpt is the quasiresonant pumping term at normal inci-
dence, α > 0 is the repulsive interaction constant, and γ is the
decay rate. The bare mode dispersion is quasiparabolic (mass
m), typical for photons or exciton-polaritons in a microcavity.
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The cavity is pumped through the mirrors at normal incidence
(in the z direction), and the in-plane propagation occurs in the
x direction. The polariton density |ψ (x, t )|2 determines the
intensity of the light emitted by the cavity, which can be de-
tected from the outside by optical means. Polarization effects
are neglected. The spatially homogeneous solution ψse−iωpt

shows a bistable behavior [36] with a large occupation above
the bistable threshold. To simplify the analytics, we consider
the limits γ → 0 and T = 0 K, which is appropriate for
low-temperature experiments [29,30,34]. The wave function
describing weak superfluid excitations (“bogolons”) reads

ψ (x, t ) = e−iωpt (ψs + ueikxe−iωt + v∗e−ikxeiω∗t ). (2)

Here, one plane-wave excitation is coupled to its complex
conjugate. Inserting this wave function into Eq. (1) yields the
Bogoliubov–de Gennes (BdG) equations:(

L αψ2
s

−αψ∗2
s −L∗

)(
u
v

)
= E

(
u
v

)
, (3)

where L = (εk − Ep + 2αn); u, v are the Bogoliubov coeffi-
cients, εk = h̄2k2/2m, and ψs = √

neiφ . The energy E = h̄ω,
measured with respect to the laser Ep = h̄ωp, is found by
canceling the determinant, and it reads

E2 = (εk + αn − Ep)(εk + 3αn − Ep). (4)

A bogolon is formed by the superposition of two plane
waves of amplitude u and v∗ at energies E ,−E . With E
positive, the ratio |u|/|v| is fixed by Eq. (3) and is larger
than 1. The specific choice of the normalization condition
|u|2 − |v|2 = 1 defines a bogolon as a particle of a positive
total energy (|u|2 − |v|2)E , but containing amplitudes at both
E and −E . When αn > Ep, the energy spectrum (containing
both positive and negative parts) shows a gap 2	 centered at
the pump energy:

	 = √
(αn − Ep)(3αn − Ep). (5)

II. ANDREEV REFLECTION ANALOG

We consider two semi-infinite regions [Fig. 1(a)]. The nor-
mal (left) part is not pumped and is described by the 1D
Schrödinger equation. The superfluid (right) part is resonantly
pumped and is described by the 1D GP equation (1). We
consider an incident wave, created by a weak probe laser
and coming from the N-region toward the superfluid at an
energy within the gap. The in-plane wave vector of the probe
is controlled by the angle of incidence of the probe laser θ as
kx = ω sin θ/c. We therefore consider evanescent bogolons:

ψ (x, t ) = e−iωpt (ψs + ue−κxe−iωt + v∗e−κxe+iω∗t ). (6)

The BdG equations read as Eq. (3), but with L =
(−εκ − Ep + 2αn) and εk = h̄2κ2/2m. Because of the non-
Hermiticity of the BdG equations, the characteristic equation
yields purely evanescent modes with an inverse decay length:

κ± =
√

2m(2αn − Ep ±
√

(αn)2 + E2)/h̄. (7)

Here, the solutions are not propagative-decaying modes as in
the fermionic case [37], but purely evanescent. There exist two
evanescent waves at a given positive E , associated with the
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FIG. 1. (a) Wire microcavity based on distributed Bragg reflec-
tors (DBRs) with embedded quantum wells (QWs). The S-region is
pumped by a laser under normal incidence, while the N-region is not.
A weak probe laser creates a wave in the N-region moving toward the
superfluid. (b) Schematic energy bands. Black: energy dispersion of
propagative modes. Green: pump laser energy. Blue: incident probe
and normal reflection. Red: Andreev reflection. (c) Bogolon energy
versus the wave vector k (propagative states, solid lines) and vs the
inverse decay lengths κ± (evanescent states, dashed lines), discussed
in Appendix A. k0 = k|E=0 = √

2mEp/h̄. (d) Normal and Andreev
reflection coefficients vs energy.

two different decay lengths:

u± =
√√

(αn)2 + E2 ∓ E
√

2E
eiφ,

v± = ±
√√

(αn)2 + E2 ± E
√

2E
e−iφ. (8)

The “minus” state has a longer decay length and |u−| >

|v−|. Its dominant component u− has an energy E ′ = E > 0
(the minority component v− has E ′′ < 0) and the state is
normalized as |u−|2 − |v−|2 = 1. It is quite similar to prop-
agative bogolons, continuing their dispersion within the gap
[Fig. 1(c)]. We call this type of state, where the positive energy
component dominates, a “particle.” The “plus” state has a
shorter decay length and |u+| < |v+|. Its dominant component
has a negative energy E ′ = −E < 0 and |u+|2 − |v+|2 = −1.
This evanescent solution has no propagative counterpart. The
κ+ branch shown in Fig. 1(c) is disconnected from the prop-
agative states dispersion and can be assimilated to “hole”
states. They are associated with a local decrease of the particle
density with respect to the homogeneous superfluid.

We now consider a plane wave of energy −	 < E < 	

created by a probe laser in the N-region [Fig. 1(b)] and
propagating toward the superfluid. It excites the two above-
mentioned types of evanescent bogolons, provoking reflection
at both E and −E . The N-region wave function reads

ψN =
(

Aeik1x + Be−ik1x

Ceik2x + De−ik2x

)
, (9)
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FIG. 2. (a) Schematic representation of a bosonic SNS junction
with its principal characteristics. The matrices depicting each scatter-
ing event are also represented. (b)–(d) Probability density (solid line:
majority component; dashed line: bogolon image) for a = 2.6 μm
and a phase difference of (b) 0, (c) π/4, and (d) π/2.

with k1,2 = √
2m(Ep ± E )/h̄, valid for 	 < Ep (Appendix B

considers evanescent states in the N-region). The superfluid
wave function combines two evanescent waves:

ψS = η+

(
u+
v+

)
e−κ+x + η−

(
u−
v−

)
e−κ−x. (10)

To compute the reflection coefficients, we take A = 1/
√

v1,
C = 0. In that case, B = rN p/

√
v1 and D = rAp/

√
v2 are the

normal and Andreev reflection coefficients for an incident
“particle,” respectively (dominant positive energy compo-
nent E ′ > 0). The group velocities allow us to conserve the
current. Similarly, A = 0, C = 1/

√
v2 corresponds to B =

rAh/
√

v1, D = rNh/
√

v2, the reflection coefficients for an in-
cident “hole” having a dominant negative energy component
E ′ < 0. The continuity of the wave functions and of their
derivatives at the interface gives an analytical expression for
these reflection coefficients (see Appendix C). They are plot-
ted in Fig. 1(d) for m = 5 × 10−5m0, Ep = 0.5 meV, and
αn ≈ 1.11Ep, characteristic for GaAs-based microcavities.
This yields a gap 	 ≈ 0.5Ep. The Andreev-like reflection
is comparable in amplitude with the normal reflection, and
the reflection is total (|rN p,h|2 + |rAp,h|2 = 1). Here, the su-
perfluid gap really acts as a potential barrier, providing finite
backscattering as in electronic Josephson junctions with an
oxide barrier [37]. Ultimately, this phenomenon can also be
interpreted [38,39] as a nonlinear frequency conversion (op-
tical phase conjugation), studied in the 1970s in nonlinear
optics [40].

III. ANDREEV BOUND STATES ANALOG

We next consider a superfluid-normal-superfluid (SNS)
junction [Fig. 2(a)]. The superfluids have different phases,
φL = 0 and φR ≡ φ, fully controlled by the phases of the
pumping lasers. The width of the N-region is a. In the ab-
sence of Andreev reflection, this structure is equivalent to a
potential well (the superfluids forming the barriers) and shows
quantized eigenstates E ′

n, labeled by integer quantum numbers

n. Andreev reflection provides a correction to these quantized
states and generates a second energy component E ′′

n = −E ′
n.

We call this second component a “bogolon image,” by analogy
with the well-known concept of “phonon replica.” Indeed, this
second frequency appears because of the properties of the
excitations of the system, which are bogolons, but it is not
an exact replica, as we will see below, so the word “image” is
more relevant.

The Andreev bound states are found using the scattering
matrix formalism. The matrix describing the reflections at the
interfaces reads

SR(L) =
(

rR(L)
N p rR(L)

Ah

rR(L)
Ap rR(L)

Nh

)
. (11)

The total scattering matrix reads ST = SLSN SRSN [see
Fig. 2(a)], where SN describes the propagation in the N-region
(see Appendix C). A bound eigenstate exists if ±E satisfy [41]

det[I − ST ] = 0. (12)

Depending on parameters, the eigenenergies can be either
real (stationary bound states) or, due to non-Hermiticity of
the BdG matrix, complex (self-amplified bound states). The
eigenvectors of ST determine the wave function via Eqs. (9)
and (10) and whether a state is either particlelike (E ′ > 0)
or holelike (E ′ < 0). Figures 2(b)–2(d) show an example of
a holelike bound state (n = 1). In Fig. 2(b), φ = 0 and both
energy components are s-like. In Fig. 2(d), φ = π/2. The
main component keeps its parity, whereas the bogolon image
becomes p-like, because of the phase shift. Interestingly, the
probability current J± associated with each energy component
+E ,−E in the N-region (see Appendix D for details) takes
a form similar to the Josephson current in superconducting
junctions:

J± ≈ ±J0 sin 2φ. (13)

The total current J = J+ + J− is zero.

IV. TOPOLOGICAL SYNTHETIC BANDS

Both positive and negative energy components of a bound
state form synthetic energy bands [42], where the phase φ

plays the role of the wave vector. For a given band, the wave
function is a superposition of two counterpropagating plane
waves, as defined by Eq. (9). As for Bloch bands in solids, the
amplitudes of these two plane waves define a pseudospinor
X + ∼ (A, B)T for positive energies and X − ∼ (C, D)T for
negative energies.

The pseudospinor evolution along the band allows us to
compute the Zak phase [43,44]:

�±
Zak =

∫ 〈
X ±

∣∣∣∣ i
∂X ±

∂φ

〉
dφ. (14)

The dissipative character of the system is by itself not an ob-
stacle to the computation of topological quantities and to the
use of the bulk-boundary correspondence, provided that the
bands, broadened by dissipation, remain well separated [45].

Figures 3(a)–3(c) show the synthetic bands and their Zak
phases for three thicknesses a. In Figs. 3(a) and 3(c) all
energies are real. The bands shown in blue are particlelike
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FIG. 3. Synthetic band energies vs φ (a)–(c) and a (d), (e). Blue
lines: particlelike states. Red lines: holelike states; the dominant (mi-
nority) component is shown as a solid (dashed) line. (a) a = 6.8 μm;
0,π—Zak phases. (b) a = 7.6 μm; dashed lines: imaginary part of
energy. (c) a = 8.4 μm; 0,π—Zak phases. (d) φ = 0. (e) φ = π/2.
(d), (e) The numbers indicate the quantum number of original trapped
states from which stem the crossing bands.

states with a dominant positive energy part (E ′ > 0, solid
lines). Their negative energy counterpart (E ′′ < 0, bogolon
image) is smaller in amplitude (dashed lines) and shows
a nonzero Zak phase, which translates the change of the
wave-function symmetry versus φ illustrated in Fig. 2. The
corresponding nontrivial band topology can also be under-
stood in terms of the motion of the pseudospinors X +, X −
on a Bloch sphere versus φ. Indeed, at φ = 0, C′ = ±D′.
The current is zero, and the associated pseudospin lies in the
plane of a Bloch sphere representation. At φ ≈ π/4, D′ = 0.
The current at each energy is maximal, and the pseudospin
points toward the pole. Finally, at φ = π/2, C′ = ∓D′: the
symmetry of the state has changed. Between φ = −π/2 and
π/2, the pseudospin covers a full great circle of the Bloch
sphere, constrained by the mirror symmetry of the problem
as shown in Appendix E. The accumulated Zak phase is π .
On the other hand, the pseudospin of the majority component
moves slightly toward the pole at φ ≈ π/4 to go back to its
original position at φ = π/2. In general, the band associated
with the dominant energy component of the bogolon E ′ shows
a zero Zak phase, whereas the minority component E ′′ is
topologically nontrivial.

The band topology is inverted between Figs. 3(a) and 3(c),
which are computed for different a values. This implies a
gap closing for a critical thickness a0. This topological band
crossing in parameter space is reminiscent of a topological
phase transition in HgTe QWs versus the well thickness [46].
Such band inversion gives rise to Jackiw-Rebbi states [47]
in 2D and Su-Schrieffer-Heeger solitons [3] in 1D. It is at
the heart of topologically protected edge or interface states
through the bulk-boundary correspondence.

In our bosonic system of interacting particles, cross-
ing bands interact through a non-Hermitian coupling [29]
[Eq. (3)]. Hamiltonians with non-Hermitian perturbations are

known to exhibit complex eigenvalues close to the degeneracy
points of the original unperturbed Hermitian Hamiltonians
[48,49]. A degeneracy point (diabolical point) is thus trans-
formed into a pair of exceptional points, between which the
eigenvalues are complex (and conjugate). This also happens
in our system. Figure 3(b) shows the synthetic bands at the
critical thickness a0. Instead of simply crossing, the bands
merge and opposite imaginary parts appear, meaning that one
of the states gets amplified. This amplification occurs when
a bogolon image is resonant in energy and overlaps (this is
called a “phase-matching condition” for parametric amplifi-
cation [50]) with the linear eigenstate of the potential trap
formed by the superfluid gaps. Figures 3(d) and 3(e) show for
φ = 0 and φ = π/2, respectively, the mode energy versus a.
For φ = 0, amplification occurs when the majority and mi-
nority component have the same parity E ′

n = E ′′
m (m − n = 2i,

i ∈ Z), which occurs, for example, when the potential well
states n = 1, 2, . . . are resonant with the laser. For φ = π/2,
the amplification occurs when the bogolon image of a state of
given parity becomes resonant with an original trapped state
of different parity E ′

n = E ′′
m (m − n = 2i + 1, i ∈ Z). These

conditions can also be considered as a particular example of
selection rules for the transitions from the pumped mode to
the bogolon modes due to nonlinear interactions.

To summarize, when the bands are well-separated, the
topological invariants are well-defined in spite of the non-
Hermiticity of the system [45]. Since the band topology is
inverted for a > a0 and a < a0, the bands must cross in be-
tween the two limits. This crossing provides a degeneracy,
which gives rise to complex eigenvalues and mode amplifica-
tion [49] thanks to the non-Hermiticity. We note that when the
bands are crossing each other, the topological invariants for
each of them cannot be calculated anymore, independently of
the Hermiticity of the system.

In conservative quantum fluids, such as atomic Bose-
Einstein condensates, a positive imaginary part of the energy
of weak excitations is considered as a signature of an instabil-
ity. Indeed, the growth of such modes occurs at the expense
of the condensate, and moreover, these modes with positive
imaginary parts usually form a continuum. When their popu-
lation becomes macroscopic, it means the destruction of the
condensate, because of a strong decrease of its population. In
our case, there are two important qualitative differences. First
of all, the modes with positive imaginary parts do not form
a continuum: their number is finite. Even in a conservative
system, this configuration does not lead to an instability, but
to periodic oscillations of the population between the initially
populated state and the two other states with energy conserva-
tion. Even if the population of the initial state drops to zero,
it does not mean that the condensate is destroyed, because the
coherence of the whole system is conserved, and the initial
state is then repopulated from the two other states. This is
the fundamental difference between the coupling to a contin-
uum and the coupling to a countable (even infinite) number
of modes, as shown by the revival phenomenon in quantum
optics [51,52]. Second, the system is a driven-dissipative one,
with a continuous pump, constantly replenishing the original
state with macroscopic population. A constant and compa-
rable population is established in all three states. In optics,
such an effect is called optical parametric oscillations [53–55].
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Together with optical parametric amplification [50,56], it has
important practical applications, including the generation of
entangled photon pairs [57]. While the initial growth of the
amplified modes (called “signal” and “idler” in optics) is in-
deed exponential, the saturation occurs due to the pump deple-
tion, and the behavior of the modes in this case is described by
the elliptic sine function [56]. In our particular case, the ampli-
fied modes are localized in the N-region, and the amplifying
nonlinearity is taking place at the superfluid interfaces. These
modes cannot propagate within the gap of the superfluid. So,
their growth does not lead to the instability of the semi-infinite
superfluids, as confirmed by numerical simulations. Our pre-
dictions are valid for all optical systems with nonlinearities
(waveguides [58], atomic vapors [59], photorefractive crystals
[60]), because in all of them a confinement in two dimensions
(to a 1D propagative channel) can be organized.

V. NUMERICAL SIMULATIONS

The analytical solution shown in the previous sections ap-
plies to a 1D system. We have demonstrated that it follows
from the topological reasoning that for a certain width of the
N-region, the two modes in this region get amplified. While
studying a full 2D problem analytically is complicated and
goes beyond the scope of the present work, it is natural to
check if the main conclusions could be verified in a 2D system
with a varying width of the N-region. In addition to the modes
with zero ky found above, the system also contains multiple
modes with nonzero ky. However, the conclusions for the
modes with ky = 0 still hold, because they are unaffected by
the presence of the other modes, and they still must cross each
other for a particular critical width because of the topology
inversion. The extra modes can be seen as additional losses,
which do not change the situation qualitatively, since the sys-
tem nevertheless exhibits losses through the cavity mirrors.
It means that the width of the N-region should not vary too
rapidly, and the disorder should be sufficiently low, otherwise
the total losses might overcome the gain.

To show this, we numerically solve the 2D Gross-
Pitaevskii equation over time with a weak probe exciting the
bogolon states, and a finite lifetime τ = h̄/2γ = 30 ps. The
width a varies versus y as a(y) = a0 + y/l , where l = 64 μm.
The calculated spectra are presented in Fig. 4 for a < a0 for
φ = 0 (a) and φ = π/2 (b). The two energy components of
each of the Andreev states are marked in the figure (e.g., 1′
is the “original” trapped state and 1′′ is its bogolon image).
The symmetries of the bogolon images 1′′ and 2′′ clearly
change. The gap closes at a = a0, where each original state
is resonant with the bogolon image of the other: E ′

2 = E ′′
1 and

E ′
1 = E ′′

2 , and their symmetries also coincide for φ = π/2. As
a result, the Andreev states are amplified and dominate the
spectrum [Fig. 4(d)]. Figure 4(c) shows the spatial distribu-
tion of emission, with the amplified Andreev state visible at
y = 0. γ should be 5–10 times smaller than the gap for the
amplification to be experimentally observable, which is
clearly realistic. We stress that the N-region is a noninter-
acting medium, otherwise solitons form [31–33], and the
approximations used become invalid.

To summarize, we predict an Andreev reflection analog
in a photonic driven-dissipative gapped superfluid. Such sys-

FIG. 4. Numerically calculated spectrum of the Andreev states.
Two energy components are visible for each of the two states
(marked 1′, 1′′ and 2′, 2′′) for a < a0: (a) φ = 0, (b) φ = π/2. (c) Nu-
merically calculated emission intensity for a system with varying
width a. The amplified states are visible at y = 0. (d) The spectrum
of the resonantly amplified states at y = 0. The laser energy is cut
out for all images. False color shows the polariton density |ψ |2.

tems can be used to form bosonic SNS junctions hosting
Andreev-like bound states. These bound states form topolog-
ically nontrivial synthetic bands versus the phase difference
between the pumping lasers. By changing the width of the
N-region, one can invert their topology, and the associated
topologically protected interface states get self-amplified, giv-
ing rise to strongly emitting topologically protected photonic
modes.
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APPENDIX A: PROPAGATIVE AND EVANESCENT
BOGOLONS

In the main text, the spectrum of elementary excitations
is proven to present a gap. This gap directly comes from the
dispersion relation:

E2 = (εk + αn − Ep)(εk + 3αn − Ep). (A1)

Outside of the gap, for energies E > 	, this provides two
solutions for the square wave vector k2 (that is, four solutions
for the wave vector k):

k2
∓ = 2m(Ep − 2αn ±

√
(αn)2 + E2)/h̄2. (A2)
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FIG. 5. Andreev particlelike bound states for a = 3 μm and for
a phase difference of (a) 0 and (b) π/2. The dominant (minority)
component is shown as a solid (dashed) line. Note the symmetry
inversion for the minority component.

However, the solution k+ is actually imaginary, since
the condition E > 	 exactly corresponds to Ep − 2αn −√

(αn)2 + E2 < 0. This evanescent solution is a continuation
of the intragap evanescent “hole”-like state with an inverse
decay length κ+, as shown in Fig. 1(c) of the main text.

The solution k− is real, thus leading to propagative states.
There are two solutions with the same norm, but opposite
propagation direction:

k− = ±
√

2m(Ep − 2αn +
√

(αn)2 + E2)/h̄. (A3)

This is obviously different from the case of evanescent bo-
golons considered in the main text, where the two inverse
decay lengths are different.

For comparison, the energy E = h̄ω of a bogolon in the
evanescent case can be expressed with respect to the inverse
decay length κ:

E2 = (−εκ + αn − Ep)(−εκ + 3αn − Ep). (A4)

This expression should be compared with Eq. (A1).
Finally, we note that the descriptions of the normal region

based on the Schrödinger equation and on the Bogoliubov–de
Gennes equations (BdG) with exactly zero interactions are
equivalent. While it may seem that the BdG equations have
two solutions with opposite energies, zero interactions mean
that the BdG matrix is already diagonal and the negative
energy enters the wave function only with the minus sign.
Thus, these two components simply correspond to two waves
propagating in opposite directions with the same energy. This
energy is positive when measured from the bottom of the
band.

APPENDIX B: EVANESCENT STATES IN THE NORMAL
REGION

In the main text, the case Ep > 	 is considered because
it leads to propagative states in the normal region for both

positive and negative values of E , which is the most inter-
esting case. However, the case with Ep < 	 is possible as
well. Then, for incident particles with energies E > Ep, the re-
flected part at the energy symmetric with respect to the pump
detuning is evanescent. We have solved the reflection problem
in this case and obtained a nonzero amplitude of the reflected
evanescent wave. Our calculations show that SNS junctions
with this type of states can exist as well. They present the same
global behavior as for the propagative states [see Figs. 5(a)
and 5(b) for the two configurations with a different phase],
with the wave function in the normal region being a linear
combination of hyperbolic functions. However, the bands they
form no longer cross. Indeed, the crossing of the bands in
the main text occurred when an original state of the potential
well formed by the superfluid gaps had the same energy as the
bogolon image of another state. This is not possible when the
original states are propagative and the images are evanescent,
since they are always at the opposite sides of zero (the bottom
of the band in the normal region). Thus, the topologically
protected self-amplified interface states discussed in the main
text cannot be observed for these bands.

APPENDIX C: ANALYTICAL EXPRESSIONS FOR
ANDREEV REFLECTION COEFFICIENTS

In this Appendix, we present explicit expressions for the
reflection coefficients for normal and Andreev reflection.

We start by commenting on the limit of vanishing lifetime
used for the analytical calculations. A finite γ reduces both
reflection coefficients. Its effect is stronger for the case of
large penetration length 1/κ±, discussed in the main text. This
occurs especially for E → 	. Therefore, the analytical results
that we obtain should not be applied for energies close to the
edge of the gap and for particularly narrow gaps, 	 → 0.

As was mentioned in the main text, both the wave functions
and their derivatives have to be continuous at the interface.
This imposes

1√
v1

[1 + rNp]

(
1
0

)
+ rAp√

v2

(
0
1

)

= η+

(
u+
v+

)
+ η−

(
u−
v−

)
,

ik1√
v1

[1 − rNp]

(
1
0

)
− ik2rAp√

v2

(
0
1

)

= −κ+η+

(
u+
v+

)
− κ−η−

(
u−
v−

)
. (C1)

Matching the wave functions and their derivatives at the
interface gives an analytical expression for the reflection
coefficients:

rNp = (k2 + iκ−)(k1 − iκ+)u+v− − (k1 − iκ−)(k2 + iκ+)u−v+
(k2 + iκ−)(k1 + iκ+)u+v− − (k1 + iκ−)(k2 + iκ+)u−v+

,

rAp = 2ik1(κ+ − κ−)v−v+
(k2 + iκ−)(k1 + iκ+)u+v− − (k1 + iκ−)(k2 + iκ+)u−v+

√
v2√
v1

. (C2)
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The preceding expressions can be reformulated to make the phase appear explicitly by considering the group velocities
v1,2 = h̄k1,2/m and the relation between the Bogoliubov coefficients u+ = −v−e2iφ and v+ = u−e−2iφ :

rNp = (k1 − iκ−)(k2 + iκ+)|u−|2 + (k2 + iκ−)(k1 − iκ+)|v−|2
(k1 + iκ−)(k2 + iκ+)|u−|2 + (k2 + iκ−)(k1 + iκ+)|v−|2 ,

rAp = 2i
√

k1k2(κ+ − κ−)|u−||v−|
(k1 + iκ−)(k2 + iκ+)|u−|2 + (k2 + iκ−)(k1 + iκ+)|v−|2 e−2iφ. (C3)

This form makes explicit the role played by φ, and more specifically the change of sign of the Andreev reflection coefficient
when φ = π/2. The reflection coefficients for holes are given as rNh (E ) = rNp (−E ) and rAh = rApe

4iφ = rAe2iφ .
The dependence on the different energies at stake is hidden in the complexity of the formulas. However, for E � Ep, an

approximate expression can be given for both coefficients:

rN0 = Ep + √
(αn − Ep)(3αn − Ep)

Ep − √
(αn − Ep)(3αn − Ep) + i

√
Ep(

√
αn − Ep + √

3αn − Ep)
,

rA0 = i
√

Ep(
√

αn − Ep − √
3αn − Ep)

Ep − √
(αn − Ep)(3αn − Ep) + i

√
Ep(

√
αn − Ep + √

3αn − Ep)
. (C4)

With these expressions, we clearly notice that the three cru-
cial energies to consider are Ep, αn − Ep, and 3αn − Ep. The
maximal value for Andreev reflection coefficients, |rA0 |2 =
2/3 = 2|rN0 |2, is achieved for αn → Ep (	 → 0). However,
we note that these values are beyond the domain of the validity
of the theory, since for E = 	 = 0 any finite decay γ plays a
non-negligible role. For realistic 	, |rA|2 < |rN |2.

In the main text, we also consider the case of a SNS junc-
tion with a normal region of width a. In the derivation of the
energy components of a bound state, based on the scattering
matrices of the interfaces formed by the reflection coefficients
discussed above, we also need the expression of the scattering
matrix describing the propagation of the wave in the normal
region SN . Regardless of the direction of propagation, this
matrix reads

SN =
(

eik1a 0
0 eik2a

)
. (C5)

This matrix, together with the ones describing the reflection
processes on both interfaces, allow one to find a condition for
the existence of a bound state that takes the form of a cancel-
lation of a determinant (see the main text). This condition is
equivalent to

|rA|2 cos(2φ) = Re

[
r∗

Nh

(
rNpe

ik−a − 1

rNp

e−ik+a

)]
, (C6)

where k± = k1 ± k2, which is more compact and makes ex-
plicit the reflection coefficients.

APPENDIX D: PROBABILITY CURRENT

The probability current J± of each energy component ±E
can be computed numerically from the expression

J+ = v1(|A|2 − |B|2), J− = v2(|C|2 − |D|2). (D1)

Physically, the probability current of each energy component
measures the exchange between particles at +E and particles

at −E . Thus, it follows that

J+ ∝ rR
Ah

− rR
Ap

, J− ∝ rR
Ap

− rR
Ah

. (D2)

The currents calculated from (D1) can be plotted on the same
graph as ±J0 sin(2φ), where J0 (which is phase-independent)
is the maximum absolute value of J± (see Fig. 6). One
can notice that there is an excellent match between J± and
±J0 sin(2φ). This can be understood from the expressions of
the current (D2), together with the expressions of the reflec-
tion coefficients given in Eq. (C3), which yield

J± ∝ ± sin(2φ). (D3)

Finally, we retrieve the expression

J± = ±J ′
0 sin(2φ), (D4)

where J ′
0 has a small phase dependence, contrary to J0. This

phase dependence comes from the dependence of the energy
of the components of a bound state on the phase difference
(via the norm of the reflection coefficients). Although the cur-
rent of each energy component is nonzero, they are opposite
and equal in norm, J+ = −J−. Thus, they compensate for each

FIG. 6. Numerically calculated probability current of the dom-
inant (red straight line) and minority (red dashed line) energy
components for a holelike state. Both follow ± sin(2φ) behavior
(black dashed lines).
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other, and the total current Jtot is null:

Jtot = J+ + J− = 0. (D5)

APPENDIX E: ZAK PHASE AND BLOCH SPHERE

To compute the Zak phase, we use equations already intro-
duced in the main text:

�Zak =
∫ 〈

X

∣∣∣∣ i
∂X

∂φ

〉
dφ. (E1)

The wave function in the normal (central) region is written
as

ψN =
(

Aeik1x + Be−ik1x

Ceik2x + De−ik2x

)
, (E2)

and the associated vectors for each energy component ±E are
written as

X + =
(

A′
B′

)
and X − =

(
C′
D′

)
, (E3)

where the coefficients are the ones defined in (E2) but nor-
malized to 1 (|A′|2 + |B′|2 = 1 and |C′|2 + |D′|2 = 1). The
coefficients themselves are computed numerically. Such vec-
tors can indeed be plotted on the Bloch sphere. The vector
corresponding to the dominant energy always gives �Zak = 0,
while the other one gives �Zak = π .

We note that both spinors are constrained to the great
circle of the Bloch sphere by the symmetry of the probability
density distribution. Indeed, since the problem is completely
symmetric with respect to x = 0, the probability density has
to exhibit mirror symmetry with respect to this point. For this,
the relative phase between A and B and also between C and
D has to be either 0 or π , which means that the pseudospin
can only make a circle through the constant longitude plane
(azimuthal angles 0◦ and 180◦). If one allows an arbitrary
phase between these coefficients, the probability density is
shifted and becomes asymmetric. Indeed,

Aeik1x + Be−ik1x = (A + B) cos k1x + i(A − B) sin k1x. (E4)

If the phase difference between A and B is 0 or π , we can
assume that both are real. In this case, the probability density
simply reads

|Aeik1x + Be−ik1x|2
= (A + B)2 cos2 k1x + (A − B)2 sin2 k1x

= 1 + 2AB cos2 k1x, (E5)

which is symmetric. We can now introduce the phase differ-
ence between the two coefficients explicitly:

Aeik1x + Beiϕe−ik1x = eiϕ/2(Ae−iϕ/2eik1x + Beiϕ/2e−ik1x )

= eiϕ/2[(A + B) cos(k1x − ϕ/2)

+ i(A − B) sin(k1x − ϕ/2)], (E6)

which gives an asymmetric probability density

|Aeik1x + Beiϕe−ik1x|2 = 1 + 2AB cos2(k1x − ϕ/2). (E7)

We conclude that the azimuthal angle on the Bloch sphere ϕ

has to be zero, and that the pseudospin has to follow the great
circle.

APPENDIX F: NONTOPOLOGICAL CONFIGURATION
OF ANDREEV BOUND STATES

To confirm that the band crossing and amplification ob-
served in the main text are indeed due to the topology of
the bands, we consider an alternative configuration where the
bands do not exhibit any inversion of the topology with the
variation of the parameter, and thus they anticross instead of
crossing each other.

We introduce an additional potential barrier at x = 0, split-
ting the trap into two parts with two distinct trapped states
(left- and right-localized) having the same symmetry (s for the

0
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L R

R L

0
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�
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0
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m
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(a)

0
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FIG. 7. (a) The intensity of the Andreev states as a function of
position and energy for U1y/l �= 0 and ϕ = π/2. The two original
states are strongly detuned, and their bogolon images are detuned as
well. (b) The variation of the energies of the original states and their
images as a function of left-right detuning U1y/l . The anticrossing is
due to the tunneling. The Zak phase indicates that the topology of the
bands does not change. (c) The real-space image with the detuning
varied along y: no instability is visible at y = 0.
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lowest state). We also introduce a potential step, responsible
for the detuning of these two states. Instead of varying the
width of the trap a, we vary the height of the step as a function
of the second coordinate y. The total potential therefore reads

U (x, y) = U0 exp

(
− x2

2σ 2

)
+ U1

y

l
sgn(x), (F1)

where U0 = 2 meV is the barrier height, σ = 0.6 μm is its
width, U1 = 0.2 meV is the characteristic step height, and l =
50 μm is the characteristic variation length of the step height.

The results of numerical simulations of this configuration
are shown in Fig. 7. Panel (a) presents an example of the
calculated spectrum of the Andreev bound states for a partic-
ular value of U1y/l = 0.15 meV (the total detuning between
the left and right states is 0.3 meV). The original (s-type)
states are clearly visible, as well as their bogolon images
exhibiting p-symmetry due to the laser phase φ = π/2. Each
of the four visible states belongs to a band (as a function of
the synthetic variable φ). The Zak phases of the bands are
calculated as in the main text. They are shown in Fig. 7(b),

together with the energies of the band extrema at φ = π/2
plotted as a function of the step height. The two lowest bands,
formed from the original s-symmetric states, have a zero Zak
phase. Their symmetry is the same. Thus, when the step height
changes sign and the detuning inversion leads to the state
inversion (the lowest state changes localization from left to
right), the topology of the system does not change. There
are no topological reasons for the crossing of the bands, and
indeed, it does not occur: their anticrossing is controlled by
the tunneling t across the barrier in the center (controlled by
its height U0). The same concerns the two upper bands, shar-
ing the same topology (Zak phase π , different from the two
lowest bands). Finally, panel (c) confirms that no amplification
due to a band crossing occurs in this case (since the crossing
is actually avoided): as the step height changes with y, the
detuning of the states with respect to the laser changes, and we
observe the transfer of maximal intensity from left to right, but
no signs of macroscopically populated oscillating modes are
visible. This confirms that the band crossing and the resulting
mode amplification discussed in the main text are indeed of a
topological origin.
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[49] Ş. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity–time sym-
metry and exceptional points in photonics, Nat. Mater. 18, 783
(2019).

[50] G. Cerullo and S. De Silvestri, Ultrafast optical parametric
amplifiers, Rev. Sci. Instrum. 74, 1 (2003).

[51] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Pe-
riodic Spontaneous Collapse and Revival in a Simple Quantum
Model, Phys. Rev. Lett. 44, 1323 (1980).

[52] G. Rempe, H. Walther, and N. Klein, Observation of Quantum
Collapse and Revival in a One-Atom Maser, Phys. Rev. Lett.
58, 353 (1987).

[53] S. A. Akhmanov, A. I. Kovrigin, A. S. Piskarskas, V. V. Fadeev,
and R. V. Khokhlov, Observation of parametric amplification in
the optical range, JETP Lett. 2, 191 (1965).

[54] J. A. Giordmaine and R. C. Miller, Tunable Coherent Para-
metric Oscillation in Linbo3 at Optical Frequencies, Phys. Rev.
Lett. 14, 973 (1965).

[55] C. Ciuti, P. Schwendimann, and A. Quattropani, Theory of po-
lariton parametric interactions in semiconductor microcavities,
Semicond. Sci. Technol. 18, S279 (2003).

[56] R. Baumgartner and R. Byer, Optical parametric amplification,
IEEE J. Quantum Electron. 15, 432 (1979).

[57] J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S.
Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, Generation
of correlated photons in nanoscale silicon waveguides, Opt.
Express 14, 12388 (2006).

[58] X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. Green, Mid-
infrared optical parametric amplifier using silicon nanophotonic
waveguides, Nat. Photon. 4, 557 (2010).

[59] A. Schilke, C. Zimmermann, P. W. Courteille, and W. Guerin,
Optical parametric oscillation with distributed feedback in cold
atoms, Nat. Photon. 6, 101 (2012).

[60] B. I. Sturman, S. Odoulov, and M. Y. Goulkov, Parametric four-
wave processes in photorefractive crystals, Phys. Rep. 275, 197
(1996).

214504-10

https://doi.org/10.1038/ncomms11167
https://doi.org/10.1021/acs.nanolett.8b04330
https://doi.org/10.1103/PhysRevX.10.031051
http://www.jetp.ac.ru/cgi-bin/e/index/e/19/5/p1228?a=list
https://doi.org/10.1103/PhysRevLett.102.180405
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1103/PhysRevLett.117.217401
https://doi.org/10.1103/PhysRevLett.123.215301
https://doi.org/10.1364/OPTICA.405946
https://doi.org/10.1038/nphys1750
https://doi.org/10.1103/PhysRevLett.58.2209
https://doi.org/10.1103/PhysRevA.69.023809
https://doi.org/10.1103/PhysRevB.25.4515
https://doi.org/10.1016/0921-4526(91)90712-N
https://doi.org/10.1103/PhysRevA.56.4216
https://doi.org/10.1109/JQE.1978.1069870
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevB.84.195452
https://doi.org/10.1103/PhysRevLett.120.146402
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevD.13.3398
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1063/1.1523642
https://doi.org/10.1103/PhysRevLett.44.1323
https://doi.org/10.1103/PhysRevLett.58.353
http://jetpletters.ru/ps/1601/article_24526.shtml
https://doi.org/10.1103/PhysRevLett.14.973
https://doi.org/10.1088/0268-1242/18/10/301
https://doi.org/10.1109/JQE.1979.1070043
https://doi.org/10.1364/OE.14.012388
https://doi.org/10.1038/nphoton.2010.119
https://doi.org/10.1038/nphoton.2011.320
https://doi.org/10.1016/0370-1573(96)00006-3

