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Spin waves and high-frequency response in layered superconductors with helical magnetic structure
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We evaluate the spin-wave spectrum and dynamic susceptibility in a layered superconductor with helical
interlayer magnetic structure. We especially focus on the structure in which the moments rotate 90◦ from layer to
layer realized in the iron pnictide RbEuFe4As4. While in nonmagnetic superconductors low-frequency magnetic
field decays on the distance of the order of the London penetration depth, spin waves mediate its propagation to
much larger distances limited by external dissipation mechanisms. The spin-wave spectrum in superconductors
is strongly renormalized due to the long-range electromagnetic interactions between the oscillating magnetic
moments. This leads to strong enhancement of the frequency of the mode coupled with uniform field and this
enhancement exists only within a narrow range of the c-axis wave vectors of the order of the inverse London
penetration depth. The key feature of materials like RbEuFe4As4 is that this uniform mode corresponds to the
maximum frequency of the spin-wave spectrum with respect to the c-axis wave vector. As a consequence, the
high-frequency surface resistance acquires a very distinct asymmetric feature spreading between the bare and
renormalized frequencies. We also consider excitation of spin waves with the Josephson effect in a tunneling
contact between helical-magnetic and conventional superconductors and study the interplay between the spin-
wave features and geometrical cavity resonances in the current-voltage characteristics.
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I. INTRODUCTION

Experimental realization, characterization, and under-
standing of quantum materials have emerged as central topics
in modern physics research. Quantum materials have the po-
tential to offer new functionalities enabling novel applications
and therefore provide a fundamental basis for future tech-
nological advances. Superconductors supporting long-range
magnetic order represent a rare class of quantum materi-
als with unique properties caused by the interplay between
magnetic and superconducting subsystems [1–4]. As singlet
superconductivity and ferromagnetism are strongly incom-
patible states, the ground-state configurations are always
characterized by nonuniform structures of either magnetic
moments or superconducting gap parameter. The nature of
nonuniform configurations ultimately determines transport
and thermodynamic properties of these materials. In the case
of strong superconductivity and soft magnetism, it was theo-
retically predicted that the exchange interaction between two
subsystems favors a nonuniform magnetic state either in the
form of small-size domains [5] or helical structure [6] for
strong and weak magnetic anisotropy, respectively.

Several classes of magnetic singlet superconductors have
been discovered and thoroughly characterized. The mag-
netism in these materials is hosted in the rare-earth-element
sublattice spatially separated from the conduction-electron
sublattice. In spite of high density of rare-earth (RE ) local mo-
ments, the superconductivity survives because the exchange
interaction between two sublattices is relatively weak. Various
nonuniform magnetic structures have been revealed in the
coexistence regions.

The first two groups of magnetic superconductors dis-
covered half a century ago are ternary molybdenum chalco-
genides (Chevrel phases), such as HoMo6S8, with supercon-
ducting transition at Tc ≈ 1.2 K [7], and ternary rhodium
borides, such as ErRh4B4, with Tc ≈ 8.5 K [8]; see detailed
reviews [1,3,4]. In these materials the exchange interaction
between magnetic and superconducting subsystems is actually
not very weak: The emerging ferromagnetism at sub-Kelvin
temperatures destroys superconductivity and causes the reen-
trance of the normal state. Nevertheless, a narrow coexistence
region does exist near the reentrance where an intermediate
oscillatory magnetic state is formed [9–11], in qualitative
agreement with theoretical expectations.

Another important class of magnetic superconductors is
the rare-earth nickel borocarbides RENi2B2C; see reviews
[12–14]. In contrast to the nearly cubic ternary compounds,
these are layered materials composed of magnetic REC layers
and conducting Ni layers. The superconductivity coexists with
different kinds of magnetic order in four compounds with
RE → Tm, Er, Ho, and Dy. The magnetic moments typically
order ferromagnetically within REC layers and alternate from
layer to layer (A-type antiferromagnets). This basic configu-
ration, however, is perturbed in some compounds. Particularly
interesting are Er and Ho compounds where the magnetic
transition takes place inside the superconducting state at
temperatures comparable with the superconducting transition
temperature (10.5 K and 8 K, for Er and Ho, respectively).
Magnetic structure in the ErNi2B2C is characterized by ad-
ditional in-plane modulation, which is probably caused by
interaction with the superconducting sublattice. In addition,
a peculiar weak ferromagnetic state appears below 2.3 K,
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and, contrary to HoMo6S8 and ErRh4B4, it coexists with su-
perconductivity at lower temperatures. In the Ho compound
the magnetic phase diagram is also very rich: The transition
to the low-temperature A-type antiferromagnetic state occurs
via two intermediate incommensurate spiral configurations,
one with helix direction along the c axis and another with
additional in-plane modulation.

Contrary to singlet Cooper pairing, a rare triplet supercon-
ducting state may coexist with uniform ferromagnetism. Such
triplet state is realized in uranium-based compounds UGe2,
URhGe, and UCoGe, which become superconducting at sub-
Kelvin temperature range, inside the ferromagnetic state; see
reviews [15–17]. In spite of low transition temperatures, due
to triplet pairing, the superconducting state survives up to
remarkably high magnetic field, 10–25 teslas. The triplet state
is also likely realized in the recently discovered compound
UTe2, even though this material is not magnetic [18].

Interest in the physics of magnetic singlet superconduc-
tors has been recently reinvigorated by the discovery of the
magnetically ordered iron pnictides, in particular, europium-
based 122 compounds; see review [19]. The layered structure
of these materials is similar to borocarbides: They are com-
posed of the magnetic Eu and conducting FeAs layers. The
parent material EuFe2As2 is a nonsuperconducting compen-
sated multiple-band metal which has the spin-density-wave
transition in the FeAs layers at 189 K and the A-type an-
tiferromagnetic transition in the Eu2+ layers at 19 K with
the magnetic moments aligned along the layers [20–22].
The superconducting state emerges under pressure with the
maximum transition temperature reaching 30 K at 2.6 GPa
exceeding the magnetic transition temperature in the Eu sub-
lattice [23]. Superconducting compounds with Eu magnetic
order also have been obtained by numerous chemical sub-
stitutions on different atomic sites of the parent compound,
including isovalent substitutions of P on the As site [24–29]
and of Ru on the Fe site [30], electron doping via substitu-
tions of Co [31] or Ir [32] on the Fe site, and hole doping
via substitutions of K [33] or Na [34] on the Eu site. The
maximum superconducting transition temperature for differ-
ent substitution series ranges from 22 to 35 K exceeding
the magnetic transition temperature in Eu layers. Therefore
the key feature of these materials is that they have magnetic
transition in the Eu2+ sublattice at the temperature scale,
comparable with the superconducting transition in FeAs sub-
lattice. The most studied substituted superconductor in this
family is EuFe(As1−xPx )2. The superconducting transition
temperature reaches a maximum of 26 K for x ≈ 0.3, followed
by the ferromagnetic transition at 19 K. Contrary to the parent
compound, the Eu moments align ferromagnetically along the
c axis at 19 K [29]. At lower temperatures, the coexistence of
ferromagnetism with superconductivity leads to the formation
of the composite domain and vortex-antivortex structure visu-
alized by the decorations [35] and magnetic-force microscopy
[36]. This structure has been explained assuming purely elec-
tromagnetic coupling between the magnetic moments and
superconducting order parameter [37].

A recent addition to the family of Eu-based iron pnic-
tides is the stoichiometric 1144 compounds AEuFe4As4 with
A = Rb [38–42] and Cs [39,43] in which every second layer
of Eu in the parent material is replaced with the layer of

nonmagnetic Rb or Cs. These materials have the supercon-
ducting transition temperature of 36.5 K, higher than the
doped 122 Eu compounds. Such high transition temperature is
achieved because of close-to-optimal hole concentration and
the absence of disorder caused by random substitutions. On
the other hand, the magnetic transition temperature 15 K is
4 K lower than in the parent 122 compound, probably due
to the weaker interaction between the magnetic layers. These
materials are characterized by highly anisotropic easy-axis
Eu magnetism [41,44,45]. With increasing pressure the super-
conducting transition temperature decreases and the magnetic
transition temperature increases so that at pressures larger
that ∼7 GPa the superconducting transition already takes
place in the magnetically ordered state [46,47]. Recent res-
onant x-ray scattering and neutron diffraction measurements
demonstrated that the magnetic structure is helical: The Eu
moments align ferromagnetically inside the layers and rotate
90◦ from layer to layer [48,49].

New materials frequently host new physical phenomena.
In this paper we investigate spin waves and related properties
for layered superconductors with helical magnetic structure
with the modulation perpendicular to the layer direction. Spin
waves are the most important dynamic characteristic of mag-
netic materials [50–52] and their properties are essential for
the emerging spintronics [53,54] and magnonics [55–57] ap-
plications. As the ground-state configuration, the spin-wave
spectrum is determined by the exchange and electromag-
netic interactions between the moments and by magnetic
anisotropy. A key feature of superconducting materials is that
the long-wave part of the spin-wave spectrum is renormalized
in a nontrivial way by long-range electromagnetic interactions
between the oscillating magnetic moments. In the case of a
ferromagnetic triplet superconductor with uniform magneti-
zation, the spectrum of spin waves, their excitation by the
external electromagnetic waves, and related features in the
surface impedance have been considered in Refs. [58,59]. The
spectrum of spin waves in antiferromagnetic singlet super-
conductors has been evaluated in Ref. [60]. Here we extend
these considerations to superconductors with helical magnetic
structure. While some of our results are valid for a general
modulation period, we mostly focus on the case relevant for
RbEuFe4As4, namely, the structure in which the moments
rotate 90◦ from layer to layer and the easy-plane anisotropy
exceeding the interlayer exchange interaction. We evaluate the
spin-wave spectrum as a function of the c-axis wave vector
and find that the mode having a c-axis uniform component of
the oscillating spins corresponds to the spectrum maximum.
This mode is strongly renormalized by the long-range elec-
tromagnetic interactions; its frequency increases by the factor
of the square root of the magnetic permeability with respect
to the bare value determined only by local interactions. This
enhancement rapidly drops when the c-axis wave vector shift
exceeds the inverse London penetration depth. This behav-
ior is qualitatively different from the case of ferromagnetic
alignment [58,59], where the frequency of the uniform mode
is the smallest frequency of the spectrum. We evaluate the
high-frequency surface resistance and find that it acquires a
very asymmetric feature with a sharp maximum at the bare
uniform-mode frequency and a tail extending up to the renor-
malized frequency.
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We also investigate excitation of spin waves with AC
Josephson effect in a tunneling contact between helical-
magnetic and conventional superconductors and study the
interplay between spin-wave features and geometrical Fiske
resonances in the current-voltage characteristics. This consid-
eration is somewhat related to the excitation of the spin waves
by the Josephson effect in the ferromagnetic interlayer in SFS
junctions [61,62]. In our case, however, the spin-wave feature
in current-voltage characteristic has a very distinct shape due
to the unusual spectrum in helical-magnetic superconductor,
similar to the feature in the frequency dependence of the sur-
face resistance. Namely, the current is sharply enhanced when
the Josephson frequency matches the bare uniform-mode fre-
quency and at higher frequencies this excess current has a long
tail extending up to the renormalized frequency.

The paper is organized as follows. In Sec. II, we introduce
the model and write general relations determining the spin-
wave spectrum via the dynamic magnetic susceptibility. In
Sec. III, we consider the helical magnetic ground state. The
bare spin-wave spectrum due to the short-range interactions
is derived in Sec. IV. In Sec. V, we investigate the response
to nonuniform magnetic field, and derive the nonlocal dy-
namic susceptibility. Electromagnetic renormalization of the
spectrum is considered in Sec. VI. In Sec. VII, we con-
sider the dynamic equation for smooth magnetization, derive
the magnetic boundary condition, and evaluate the frequency
dependence of the surface impedance. In Sec. VIII, we inves-
tigate the excitation of spin waves by the Josephson effect.

II. MODEL AND GENERAL EQUATIONS

We consider a layered magnetic superconductor described
by the energy functional

E = Em + Es

+
∫

d3r
(

B2

8π
− BM + 2πM2 − HeB

4π

)
, (1)

where the term

Es =
∫

d3r
∑

i=x,y,z

1

8πλ2
i

(
Ai − �0

2π
∇iϕ

)2

(2)

is the kinetic energy of the superconducting subsystem in
the London approximation determined by the components of
the penetration depth λi and A is the vector potential de-
termining the local magnetic induction, B = ∇ × A. In the
following, we consider the Meissner state and drop the phase
of the superconducting order parameter ϕ. We assume that the
magnetic subsystem is described by the classical quasi-two-
dimensional easy-plane Heisenberg model

Em = −J
∑
〈i, j〉,n

Si,nSj,n

+ K
∑
i,n

(
2S2

z,i,n − 1
) −

∑
i,n,�>0

Jz,�Si,nSi,n+�, (3)

where Si,n is the spin at the site i and in the layer n with the
absolute value equal to S, J is the in-plane exchange constant,
K is the easy-plane anisotropy, and Jz,� are the interlayer
exchange constants. The exchange constants likely have a

substantial RKKY contribution. The behavior of Jz,� for � >

ξc/d is strongly affected by superconductivity [6,63], where
d is the separation between the magnetic layers and ξc is the
c-axis coherence length. Local spins determine local magnetic
moments mi,n = gμBSi,n where μB is the Bohr magneton.
Therefore, the bulk magnetization M(r) in Eq. (1) is related
to the coarse-grained spin distribution as M(r) = nMgμBS(r),
where nM is the bulk density of spins. S(r) in this relation is
obtained by averaging of Si,n over distances much larger than
neighboring spin separations.

Slowly varying in space oscillating magnetization gen-
erates macroscopic magnetic fields which couple with this
magnetization. This effect is especially important in super-
conductors where it leads to significant renormalization of
the spin-wave spectrum [58,59]. We will assume that the
supercurrent response to the slowly oscillating magnetization
can be treated quasistatically. The corresponding equation is
obtained by variation of the energy with respect to the vector
potential A,

(λ̂−2 − �)A − 4π ∇× M = 0. (4)

We can transform this equation into the equation connecting
the local magnetic field strength H = B − 4πM and magne-
tization

H + ∇ × λ̂2∇ × H = −4πM. (5)

For time-dependent fields, this equation is modified by quasi-
particle currents. We neglect this contribution assuming that
the time variations are slow. On the other hand, the oscil-
lating magnetic field generates oscillating magnetization due
to dynamic magnetic response and the relation between their
Fourier components is determined by the dynamic magnetic
susceptibility χ̂ (k, ω),

M(k, ω) = χ̂ (k, ω)H (k, ω). (6)

Note that the poles of χ̂ (k, ω) give the bare spin-wave spec-
trum due to local interactions unrenormalized by long-range
fields. From Eqs. (5) and (6), we obtain the general linear
equation for H (q, ω) which determines the spectrum of spin
waves

H − k × λ̂2k × H = −4πχ̂ (k, ω)H. (7)

In the following, we consider a simple geometry of the wave
vector oriented along the z direction and isotropic in-plane
case, λx = λy ≡ λ. In this case, Eq. (7) becomes(

1 + λ2k2
z

)
Hα (kz, ω) = −4πχαβ (kz, ω)Hβ (kz, ω),

with α = x, y. Note that the off-diagonal susceptibility
χxy(kz, ω) is finite in the helical magnetic state. Since
χyx(kz, ω) = −χxy(kz, ω), we obtain the following equation
for the spin-wave spectrum renormalized by long-range elec-
tromagnetic interactions,

1 + 4π [χxx(kz, ω) ± iχxy(kz, ω)]

1 + λ2k2
z

= 0. (8)

The dynamic susceptibility χαβ (k, ω) can be evaluated by
solving the Landau-Lifshitz equation

dM
dt

= −γ

[
M × δEm

δM

]
+ γ [M × H] (9)
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in the linear order with respect to small deviations of the
magnetization from the equilibrium configuration. Here γ =
gμB/h̄ is the gyromagnetic factor. We neglected the damping
terms.

III. MAGNETIC GROUND-STATE CONFIGURATION

A. Arbitrary modulation wave vector

We start with consideration of the helical interlayer mag-
netic ground state determined by the energy in Eq. (3). In
the classical description, it is convenient to introduce the unit
vectors si,n = (cos φi,n cos θi,n, sin φi,n cos θi,n, sin θi,n) along
the direction of Si,n, Si,n = Ssi,n. Then we can rewrite the
energy in Eq. (3) as

Em = − J
∑
〈i, j〉,n

si,ns j,n + K
∑
i,n

(
2s2

z,i,n − 1
)

−
∑

i,n,�>0

Jz,�si,nsi,n+�, (10)

with new parameters J = J S2, K = KS2, and Jz,� = Jz,�S2.
The advantage of the constants K , J , and Jz,� is that they
immediately represent the energy scales of the corresponding
interactions. Frustrated interlayer interactions may lead to the
helical ground state corresponding to φ

(0)
i,n = qn and θ

(0)
i,n = 0

[64,65]. The energy per spin for such a state is given by

E0(q) = −Jz(q)/2, (11)

where

Jz(q) = 2
∞∑

�=1

Jz,� cos(q�) (12)

is the discrete Fourier transform of the interlayer interactions.
The total energy also has an electromagnetic (dipole) con-

tribution, which is substantially affected by superconductivity.
As follows from Eq. (5), the magnetic field generated by
uniformly polarized layers with arbitrary in-plane orientation
of magnetization, M(z) = ∑

n Mnδ(z − zn), is given by

H (z) = −
∑

n

(2πMn/λ) exp(−|z − zn|/λ), (13)

where Mn = dnMmn is the two-dimensional moment den-
sities, d is the separation between the magnetic layers, and
zn = nd . Note that the superconducting environment leads
to the finite magnetic field outside a uniformly polarized
layer, contrary to the normal-state case, in which such field
is absent. The corresponding magnetic induction and vector-
potential are

B(z) = 4π
∑

n

Mn[δ(z − zn) − (1/2λ) exp (−|z − zn|/λ)],

A(z) = −2π
∑

n

nz × Mn sgn(z − zn) exp (−|z − zn|/λ).

Substituting these distributions into superconducting and
magnetic energy terms in Eq. (1), we derive the bulk elec-
tromagnetic energy density

Fem = π

λLz

∑
n,m

MnMm exp (−|zn − zm|/λ). (14)

Therefore, for the helical order, Mx,n = M0 cos(Qn),
My,n = M0 sin(Qn), the bulk electromagnetic-energy cost is

Fem(Q) = π

λd
M2

0
sinh (d/λ)

cosh (d/λ) − cos Q

≈ 2πM2
0

1 + 2λ2(1 − cos Q)/d2
, (15)

where M0 = M0/d = nMm0 is the bulk saturation mag-
netization. The corresponding energy per spin Eem(Q) =
Fem(Q)/nM has to be compared with the exchange energy in
Eq. (11). In the range 2λ2(1 − cos Q)/d2 � 1, this amounts
to comparison of the typical dipole energy scale Ed0 =
πd2nMm2

0/λ
2 with the interlayer exchange constants Jz,�. Typ-

ically the dipole interactions are much weaker than exchange
ones. For example, for parameters of RbEuFe4As4, d =
1.33 nm, nM = 5 × 1021 cm−3, m0 = 7μB, and λ = 100 nm,
we estimate Ed0 ≈ 10−4 K, while the typical magnitude of Jz,�

is 0.1–0.2 K. In the following, we neglect the electromagnetic
energy contribution.

We proceed with evaluation of the ground-state modulation
wave vector Q. Equation (11) determines the minimum-
energy condition at q = Q,∑

�

�Jz,� sin(Q�) = 0. (16)

If we keep only three nearest neighbors, this equation be-
comes

Jz,1 + 4Jz,2 cos Q + 3Jz,3(4 cos2 Q − 1) = 0. (17)

The energy has a minimum at q = Q if

E ′′
0 (Q) =

∞∑
�=1

�2Jz,� cos(Q�) > 0. (18)

The last two equations determine the optimal modulation vec-
tor in the case of frustrating interlayer exchange interactions.

B. Case Q = π/2

In the following, we will pay special attention to the
case of commensurate modulation with Q = π/2 realized in
RbEuFe4As4. In this case, assuming Jz,� = 0 for � > 3, the
relation in Eq. (17) gives Jz,1 = 3Jz,3 and

Jz(q) = 2Jz,1
[
cos(q) + 1

3 cos(3q)
] + 2Jz,2 cos(2q). (19)

The condition for the minimum, Eq. (18), simply gives Jz,2 <

0, i.e., the antiferromagnetic next-neighbor interaction. The
case Q = π/2, however, is special, because within the sim-
plest exchange model, the energy is degenerate with respect
to the relative rotation of the two sublattices composed of
odd and even layers. Adding interactions with more remote
layers does not resolve this issue. The continuous degen-
eracy is eliminated by the 4-fold crystal anisotropy term,
−K4(s4

x,i,n + s4
y,i,n). In addition, such anisotropy locks the Q =

π/2 state within a finite range of the interlayer exchange con-
stants around the relation Jz,1 = 3Jz,3. Such 4-fold anisotropy,
however, does not completely eliminate the ground-state de-
generacy, because the helical state, φ(0)

n = πn/2, still has
the same energy as the double-periodic state with φ(0)

n =

214503-4



SPIN WAVES AND HIGH-FREQUENCY RESPONSE IN … PHYSICAL REVIEW B 103, 214503 (2021)

(0, 0, π, π, 0, 0, . . .). The simplest term eliminating the lat-
ter degeneracy is the nearest-neighbor biquadratic term
Jz,b(si,nsi,n+1)2 with Jz,b > 0. Without the 4-fold anisotropy
term, this yields the modified energy

E0(q) = −
∞∑

�=1

Jz,� cos(q�) + Jz,b cos2(q)

and the modified ground-state condition

∞∑
�=1

�Jz,� sin(Q�) − 2Jz,b cos(Q) sin(Q) = 0.

For three nearest neighbors this gives

Jz,1 + 4Jz,2 cos Q + 3Jz,3
(
4 cos2 Q − 1

) − 2Jz,b cos Q = 0.

For Q = π/2 the condition Jz,1 = 3Jz,3 remains unchanged,
while the condition for minimum becomes 2Jz,2 − Jz,b < 0.
In the following analysis, we will assume the hierarchy of
the energy constants Jz,b, K4  Jz,� < K  J . In this case,
the degeneracy-breaking terms ∝ Jz,b, K4 select the Q = π/2
state but have only a minor impact on the properties discussed
in this paper.

IV. BARE SPIN-WAVE SPECTRUM

A. Arbitrary modulation wave vector

In this section, we investigate a bare spectrum of spin
waves due to the local exchange interactions neglecting
coupling to macroscopic fields. We consider spin waves prop-
agating along the direction of helical modulation (z axis)
assuming that spin oscillations are uniform in the layer direc-
tion. In the following derivations, we drop the in-plane index
i, Si,n → Sn. A useful trick allowing for analytical solution is
to introduce a local coordinate system ς , ξ , η following local
equilibrium spin orientation [64]. We assume that the ς axis
coincides with the equilibrium spin direction at each layer, the
ξ axis is perpendicular to this direction in the layer xy plane,
and the η axis is parallel to the z axis, as illustrated in Fig. 1.
Then the ς , ξ axes at the layer m are rotated with respect to
those at the layer n by an angle of Q(m − n) corresponding to
the coordinate transformation

ζm = ζn cos [Q(m − n)] + ξn sin [Q(m − n)],

ξm = −ζn sin [Q(m − n)] + ξn cos [Q(m − n)].

To fix the global coordinate system, we assume (x, y) =
(ζ0, ξ0) meaning that

ζn = x cos (Qn) + y sin (Qn),

ξn = −x sin (Qn) + y cos (Qn).

Correspondingly, the spin components in the rotated and
global coordinates are related as

Sζn = Sxn cos (Qn) + Syn sin (Qn), (20a)

Sξn = −Sxn sin (Qn) + Syn cos (Qn). (20b)

FIG. 1. Local coordinate system (ς , ξ , η) used for computation
of the spin-wave spectrum.

This and inverse transformations can also be presented in
the complex form

Sζn + iδSξn = (Sxn + iδSxn) exp (−iδQn), (21a)

Sxn + iδSyn = (Sζn + iδSξn) exp (iδQn) (21b)

with δ = ±1.
The Landau-Lifshitz equation for spin dynamics in the

rotated basis can be written as

Ṡξn = Sηnhζn − Sζnhηn, (22a)

Ṡηn = Sζnhξn − Sξnhζn, (22b)

where hn = −∂Em/∂Sn is the local reduced magnetic field
acting on spins in the layer n, which, according to Eq. (3),
has the components

hζn =
∑

m

Jz,n−m{Sζm cos[Q(n − m)]

− Sξm sin[Q(n − m)]}, (23a)

hξn =
∑

m

Jz,n−m{Sζm sin[Q(n − m)]

+ Sξm cos[Q(n − m)]}, (23b)

hηn =
∑

m

Jz,n−mSηm − 4KSηn. (23c)

For small spin oscillations, the local ζ component of each
spin can be taken as a constant, Sζm → S. Substituting h jn

into Eqs. (22a) and (22b), we obtain equations for linear
oscillations, Sun(t ) = Sun exp(iωt ) with u = ξ, η,

iωSξn = S
∑

m

Jz,n−m{cos[Q(n − m)]Sηn − Sηm}

+ 4SKSηn, (24a)

iωSηn = S
∑

m

Jz,n−m cos[Q(n − m)](Sξm − Sξn). (24b)
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We can see that, in spite of the helical structure, in the rotating coordinates this system is uniform. Fourier transformation
Suq = ∑

n Sun exp(−iqn) yields the 2 × 2 linear system

iωSξq = S[Jz(Q) − Jz(q) + 4K]Sηq, (25a)

iωSηq = S

[Jz(Q + q) + Jz(Q − q)

2
− Jz(Q)

]
Sξq, (25b)

from which we obtain the spectrum

ωs(q) = S

√
[4K + Jz(Q) − Jz(q)]

[
Jz(Q) − Jz(Q + q) + Jz(Q − q)

2

]
(26)

in terms of the reduced wave vector q. Since Q is the ground-
state modulation wave vector, Jz(q) has maximum at q = Q,
as discussed in Sec. III. This property influences the spectrum
shape near q = 0 and Q. Spin oscillations in the propagating
wave have both in-plane and out-of-plane components. Sub-
stituting ωs(q) into Eq. (25b), we derive the relation between
the spin components in the mode

Sηq = i

√
Jz(Q) − Jz (Q+q)+Jz (Q−q)

2

4K + Jz(Q) − Jz(q)
Sξq. (27)

From Eq. (21b), we obtain the in-plane oscillating spin com-
ponents in real space

(
Sxn

Syn

)
= Sξq exp (iqn)

(− sin (Qn)
cos (Qn)

)
. (28)

We should emphasize that, as q represents the wave vector in
the rotating-coordinates basis, the real-space spin components
Sx,y do not behave as exp(iqn). In particular, the mode with
q = 0 corresponding to the uniform helix rotation does not
generate spin variations uniform in real space.

The mode with q = Q will play a key role in the following
consideration. For this mode, the in-plane spin components(

Sxn

Syn

)
= SξQ

2

(−i + i exp (2iQn)
1 + exp (2iQn)

)
(29)

are a superposition of the uniform and 2Q terms. The presence
of the uniform n-independent component in the q = Q mode
implies that it can be excited by the oscillating uniform field.
The frequency of the mode for q = Q is given by the geomet-
rical average of the easy-plane anisotropy and combination of
the interlayer exchange constants,

ωs(Q) = S
√

2K[2Jz(Q) − Jz(2Q) − Jz(0)]. (30)

From Eq. (27), we also obtain the z-axis component of this
mode

SηQ = i

√
2Jz(Q) − Jz(2Q) − Jz(0)

8K SξQ. (31)

We see that it decreases with increase of the easy-plane
anisotropy.

B. Case Q = π/2

In the case Q = π/2 and the three-neighbor model dis-
cussed in Sec. III B, using Eq. (19) and the relation Jz(q) =
Jz(q)S2, we obtain the spectrum

ωs(q) = 2S
√{

2K − Jz,1
[
cos(q) + 1

3 cos(3q)
] + |Jz,2|[1 + cos (2q)]

}|Jz,2|[1 − cos(2q)]. (32)

This frequency vanishes at q = 0 and π . The q = 0 mode
corresponds to uniform helix rotation. Zero frequency at q =
π is a consequence of the degeneracy with respect to the
relative rotation of two sublattices, which is the property of
the exchange model in Eq. (3) for Q = π/2. These degen-
eracies are eliminated by the additional terms considered at
the end of Sec. III: The in-plane 4-fold anisotropy and the
nearest-neighbor biquadratic term. The former term generates
spin-wave gaps at both q = 0 and π , while the latter term only
generates a gap at q = π . We assume that both these terms
are small. We mostly focus on the mode with q = π/2 which
couples with uniform field. This mode is weakly influenced
by the additional degeneracy-eliminating terms and we will
neglect them below.

Consider the behavior near q = π/2. Expansion
of the frequency in Eq. (32) near this wave vector

yields

ωs

(π

2
+ q

)
≈ 4S

√
K|Jz,2|

[
1 −

(
1 − |Jz,2|

K

)
q2

2
+ Jz,1

3K q3

]
.

(33)

We see that the frequency has a maximum at q = π/2 for K >

|Jz,2|. Moreover, one can check that in this case ωs(π/2) is the
largest frequency in the spectrum. We will focus on this case
because it is likely realized in RbEuFe4As4.

Transformation to magnetic unit cell and folded Brillouin zone

For the modulation vector π/2, the magnetic unit cell
contains four layers. Correspondingly, the folded magnetic
Brillouin zone is four times smaller than the crystalline Bril-
louin zone. It is therefore useful to present the spin-wave
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spectrum in the folded Brillouin zone, which better corre-
sponds to a standard crystallographic description. Introducing
the index j numbering magnetic unit cells, we present the
layer index as n = 4 j + ν with ν = 1, 2, 3, 4. Correspond-
ingly, the spins can be represented as

S j,ν = Aν (k) exp (ik j),

where k is the wave vector within the folded Brillouin zone.
Using the presentation in Eq. (21b) for Sξn = S0 exp(iqn), we
write

Sx, j,ν + iδSy, j,ν = iδS0 exp
[
i
(
q + δ

π

2

)
(4 j + ν)

]
,

meaning that k = 4( π
2 m + q) and

A(m)
x,ν (k) + iδA(m)

y,ν (k) = iδS0 exp

[
i

(
k

4
+ mπ + δ

π

2

)
ν

]
.

The integer m should be selected to reduce k to the range
[−π, π ]. This means that the four modes within such folded
Brillouin zone correspond to the frequencies

ω1(k) = ωs(k/4), (34a)

ω2(k) = ωs(π/2 + k/4), (34b)

ω3(k) = ωs(−π/2 + k/4), (34c)

ω4(k) = ωs(π + k/4), (34d)

where ωs(q) is the spectrum for vector q within the origi-
nal crystalline Brillouin zone, Eq. (32). Note that while ω1

and ω4 are symmetric with respect to k = 0, ω2 and ω3

do not have this symmetry and are related as ω2(−k) =
ω3(k). In addition, the boundary values of the frequencies
are connected as ω1(±π ) = ω2(−π ) = ω3(π ) and ω4(±π ) =
ω2(π ) = ω3(−π ).

At the center of the folded Brillouin zone, k = 0, the first
mode corresponds to the uniform spin rotations, A(0)

x,ν (0) =
−S0 sin(πν/2), A(0)

y,ν (0) = S0 cos(πν/2). Its frequency van-
ishes in the absence of the 4-fold anisotropy term. The
second and third modes at k = 0 correspond to the modes
at q = ±π/2 coupled to the uniform field, Eq. (30),
ω2(0) = ω3(0) = ωs(π/2). The corresponding mode ampli-
tudes are A(±1)

x,ν (0) = ±i (−1)ν−1
2 S0, A(±1)

y,ν (0) = (−1)ν+1
2 S0. The

fourth mode at k = 0 corresponds to mutual rotation of
odd and even sublattices, A(2)

x,ν (0) = S0 sin(πν/2), A(2)
y,ν (0) =

S0 cos(πν/2), and its frequency also vanishes without
degeneracy-breaking terms.

V. RESPONSE TO NONUNIFORM OSCILLATING
MAGNETIC FIELD AND DYNAMIC SUSCEPTIBILITY

A. Arbitrary modulation wave vector

In this section, we consider the response to the exter-
nal oscillating nonuniform magnetic field h̃n = gμBH̃n. The

real-space components (h̃xn, h̃yn, h̃zn) correspond to rotating-
coordinates components (h̃ξn, h̃ζn, h̃ηn) with

h̃ζn = h̃xn cos (Qn) + h̃yn sin (Qn), (35a)

h̃ξn = −h̃xn sin(Qn) + h̃yn cos(Qn), (35b)

and h̃ηn = h̃zn. In the presence of such external field, equations
for the linear spin oscillations, Eqs. (25), become

iωSξq − S[Jz(Q) − Jz(q) + 4K]Sηq = −Sh̃ηq,

(36a)

iωSηq + S

[
Jz(Q) − Jz(Q + q) + Jz(Q − q)

2

]
Sξq = Sh̃ξq,

(36b)

where h̃αq is the Fourier transform of h̃αn. The solution of
these equations can be presented as

Sξq = χS
ξξ (q, ω)h̃ξq + χS

ξη(q, ω)h̃ηq, (37a)

Sηq = χS
ηξ (q, ω)h̃ξq + χS

ηη(q, ω)h̃ηq, (37b)

where we defined the susceptibility components in the
rotating-coordinates basis,

χS
ξξ (q, ω) = −S2[Jz(Q) − Jz(q) + 4K]

ω2 − ω2
s (q)

, (38a)

χS
ηη(q, ω) = −S2

[
Jz(Q) − Jz (Q+q)+Jz (Q−q)

2

]
ω2 − ω2

s (q)
, (38b)

χS
ξη(q, ω) = χS∗

ηξ (q, ω) = iωS

ω2 − ω2
s (q)

, (38c)

and ωs(q) is given by Eq. (26).
Equations (38) give the susceptibility components in the

helically rotating coordinates. To study interactions with
macroscopic fields, however, we need the susceptibility in real
space. As follows from Eq. (28), the spin Fourier components
in real coordinates are given by

Sxq = −Sξ,q+Q − Sξ,q−Q

2i
,

Syq = Sξ,q+Q + Sξ,q−Q

2
.

We emphasize that here and below the wave vector q cor-
responding to real space is distinguished from the “fractur”
wave vector q in the rotated basis which we used above. We
use the result for Sξq from Eq. (37a), in which we substitute
the field Fourier components

h̃ξq = 1

2

∑
δ=±1

[iδh̃x,q+δQ + h̃y,q+δQ],

following from Eq. (35b). This yields the spin response in real
coordinates

Sxq = χS
xx(q, ω)h̃x,q + χS

xy(q, ω)h̃yq +
∑
δ=±1

{
χS

ξξ (q + δQ, ω)

4
[h̃x,q+2δQ + iδh̃y,q+2δQ] − δχS

ξη(q + δQ, ω)

2i
h̃z,q+δQ

}
, (39a)

Syq = χS
yx(q, ω)h̃x,q + χS

yy(q, ω)h̃yq +
∑
δ=±1

{
χS

ξξ (q + δQ, ω)

4
[iδh̃x,q+2δQ + h̃y,q+2δQ] + χS

ξη(q + δQ, ω)

2
h̃z,q+δQ

}
(39b)
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with the real-space spin susceptibility components

χS
xx(q, ω) = χS

yy(q, ω) = χS
ξξ (Q + q, ω) + χS

ξξ (Q − q, ω)

4
, (40a)

χS
xy(q, ω) = −χS

yx(q, ω) = −χS
ξξ (Q + q, ω) − χS

ξξ (Q − q, ω)

4i
. (40b)

As expected, in addition to the usual diagonal response at the same wave vector, the helical magnetic structure also generates
nondiagonal susceptibility and responses at the wave vectors shifted by the modulation wave vector Q. Note that the bulk
magnetic susceptibility χαβ (kz, ω) in Eq. (6) is related to the dynamic spin susceptibility as1

χαβ (kz, ω) = nM (gμB)2χS
αβ (dkz, ω). (41)

We will be mostly interested in the smooth spin response to smooth field with the wave vectors much smaller than Q. In this
case, we can drop the short-wave length terms h̃x(q ± mQ) with m �= 0, i.e., keep only the first lines in Eqs. (39a) and (39b). In
addition, to obtain the long-wave length response, we use the small-q expansion [recall that J ′′

z (Q) < 0],

χS
xx(q, ω) ≈ 1

4

∑
δ=±1

−S2
[ |J ′′

z (Q)|
2 q2 + 4K

]
ω2 − ω2

s (Q) + δasq + csq2
, (42)

with as = 2S2KJ ′
z (2Q) and

cs = S2

{
K[J ′′

z (0) + J ′′
z (2Q)] − |J ′′

z (Q)|
2

[
Jz(Q) − Jz(0) + Jz(2Q)

2

]}
.

Note that for incommensurate-modulation wave vector Q, the linear coefficient as is finite meaning that the frequency ωs(q) does
not have an extremum at q = Q. The important particular cases of this result include the response to the uniform oscillating field

χS
xx(0, ω) = − 2S2K

ω2 − 2S2K[2Jz(Q) − Jz(0) − Jz(2Q)]
(43)

which features the antiferromagnetic resonance at the uniform mode frequency, ω = ωs(Q), Eq. (30), and the static uniform
susceptibility

χS
xx(0, 0) ≈ 1

2Jz(Q) − Jz(0) − Jz(2Q)
, (44)

which only depends on the interlayer exchange constants. The long-range off-diagonal component χS
xy(q, ω) is given by

χS
xy(q, ω) ≈ − i

2

S2
[ |J ′′

z (Q)|
2 q2 + 4K

]
asq

[ω2 − ω2
s (Q) + csq2]2 − a2

s q2
. (45)

It vanishes for q → 0 proportionally to q,

χS
xy(q, ω) ≈ −2iS2Kasq

{ω2 − 2S2K[2Jz(Q) − Jz(0) − Jz(2Q)]}2 , (46)

meaning that the transverse spin response is proportional to the field gradient Sx ∝ ∂ h̃y/∂z.

B. Case Q = π/2

For the commensurate modulation with Q = π/2, the spin response, Eq. (39a), simplifies as

Sxq = χS
xx(q, ω)[h̃x,q + h̃x,π−q] + χS

xy(q, ω)[h̃yq + h̃y,π−q] −
∑
δ=±1

δ

2i
χS

ξη

(
q + δ

π

2
, ω

)
h̃z,q+δ π

2
, (47)

where the diagonal susceptibility, Eq, (40a), explicitly is given by

χS
xx(q, ω) = 1

4

∑
δ=±1

−S2[Jz(π/2) − Jz(δq + π/2) + 4K]

ω2 − S2
[
Jz

(
π
2

) − Jz
(
δq + π

2

) + 4K
][
Jz

(
π
2

) − Jz (q)+Jz (π−q)
2

] , (48)

and we used the relation χS
xx(π − q) = χS

xx(q).

1In our notations, kz and q in Eq. (40a) are the dimensional and dimensionless c-axis wave vectors, respectively, with q = dkz.
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In the small-q expansion, Eq. (42), the linear term in the
denominator ∝ as vanishes, since J ′

z (2Q) ≡ J ′
z (π ) = 0, and

the quadratic-term coefficient becomes

cs = S2

[
K[J ′′

z (0) + J ′′
z (π )]

− |J ′′
z (π/2)|

2

(
Jz(π/2) − Jz(0) + Jz(π )

2

)]
. (49)

For the three-neighbor model, Eq. (19), this coefficient ac-
quires a simple form,

cs = 16S2|Jz,2|(K − |Jz,2|). (50)

The behavior of the off-diagonal component is very differ-
ent from the case of incommensurate modulation. It vanishes
in the static case, and for finite frequency in the small-q limit
it behaves as

χS
xy(q, ω) ≈ iS2J ′′′

z (π/2)ω2q3

12
[
ω2 − ω2

s

(
π
2

)]2

≈ − 4iS2Jz,1ω
2q3

3(ω2 − 16S2K|Jz,2|)2 ;

i.e., it vanishes ∝ q3 for q → 0. This behavior allows us to
neglect the off-diagonal component in the further phenomeno-
logical considerations.

VI. ELECTROMAGNETIC RENORMALIZATION
OF SPECTRUM IN SUPERCONDUCTING STATE

A. Arbitrary modulation vector

In this section, we consider the renormalization of the
spin-wave spectrum in the superconducting state due to the
long-range electromagnetic interactions between the local
moments using Eq. (8) in terms of the reduced wave vector
q = dkz. Using Eq. (41) connecting the spin and magnetic

susceptibilities and the relation

χS
xx(q) ± iχS

xy(q) = 1

2
χS

ξξ (Q ∓ q)

= −1

2

S2[Jz(Q) − Jz(Q ∓ q) + 4K]

ω2 − ω2
s (Q ∓ q)

following from Eqs. (40a) and (40b), we obtain the equation

1 + (λ/d )2q2 − 2π
nMm2

0[Jz(Q) − Jz(Q ∓ q) + 4K]

ω2 − ω2
s (Q ∓ q)

= 0

(51)

for the renormalized spin-wave spectrum, ω = �s(Q ∓ q).
The solution of this equation is

�2
s (Q + q) = ω2

s (Q + q)

+ 2πnMm2
0[Jz(Q) − Jz(Q + q) + 4K]

1 + (λ/d )2q2
. (52)

The second term gives the spin-wave frequency enhance-
ment due to the long-range electromagnetic interactions.
The maximum enhancement is realized near q = 0 cor-
responding to the uniform mode, Eqs. (29) and (30).
Using the presentation for the static magnetic susceptibility
χxx(0, 0) = 2nMm2

0K/ω2
s (Q) following from Eqs. (41), (44),

and (30), we can rewrite Eq. (52) for q = 0 as �2
s (Q) = [1 +

4πχxx(0, 0)]ω2
s (Q) meaning that the renormalized frequency

of the uniform mode is

�s(Q) = √
μx0 ωs(Q), (53)

where μx0 = 1 + 4πχxx(0, 0) is the static magnetic perme-
ability. Neglecting a weak q dependence in the nominator of
the second term in Eq. (52), we can rewrite the frequency
renormalization for q  1 in a somewhat more transparent
form as �2

s (Q + q) ≈ ω2
s (Q + q) + 4πχxx(0, 0)ω2

s (Q)/[1 +
(λ/d )2q2].

FIG. 2. The representative spectrum of spin waves for the helical structure with Q = π/2 in (a) original and (b) folded Brillouin zones
for the typical parameters of RbEuFe4As4. The dashed lines in both plots show the bare spectra obtained without taking into account the
renormalization caused by the coupling to macroscopic magnetic field.
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B. Case Q = π/2

The key features of the commensurate state with Q = π/2
are that (i) the frequency ωs(q) has maximum at q = Q (for
K > |Jz,2|) and (ii) the off-diagonal spin susceptibility van-
ishes as q3 for q → 0 and therefore its contribution in Eq. (8)
can be neglected. Based on the results of Sec. V B, we can
represent the dynamics magnetic susceptibility as

χxx(kz, ω) ≈ − χxx(0, 0)ω2
s (Q)

ω2 − ω2
s (Q) + csd2k2

z

(54)

with the static susceptibility χxx(0, 0) = nM (gμB)2/(8|Jz,2|)
and cs is given by Eqs. (49) and (50). The key difference
from the ferromagnetic state [58,59] is the opposite sign of
the quadratic coefficient, since in our case the spin-wave fre-
quency has a maximum at kz = 0 (corresponding to q = π/2).

Solution of Eq. (8) gives the renormalized spectrum in the
vicinity of q = Q in terms of the reduced wave vector q = dkz,

�2
s (Q + q) = ω2

s (Q)

[
1 + 4πχxx(0, 0)

1 + (λ/d )2q2

]
− csq

2. (55)

In particular, the renormalization of the uniform mode is again
given by Eq. (53). In the folded Brillouin zone discussed in
Sec. IV B 1 this mode corresponds to second and third modes
at k = 0, Eqs. (34b) and (34c).

Figure 2 shows spectrum of spin waves in both the orig-
inal and folded Brillouin zone for the parameters typical
for RbEuFe4As4. Namely, we took S = 7/2, Jz,1 = 0.05 K,
Jz,2 = −0.01 K, K = 0.15 K, λ = 70 nm, and μx0 = 3. For
these parameters the bare maximum frequency is ∼11 GHz.
This frequency is strongly enhanced in the superconducting
state due to electromagnetic renormalization. This renormal-
ization rapidly decreases for (λ/d )|q − π/2|, 4(λ/d )k > 1.
We deliberately took a somewhat large value of Jz,1 to en-
hance the difference between f2(k) and f3(k). For a more
realistic choice Jz,1 � |Jz,2| these frequencies become indis-
tinguishable.

VII. DYNAMIC EQUATION FOR SMOOTH
MAGNETIZATION, MAGNETIC BOUNDARY CONDITION,

AND SURFACE IMPEDANCE

In this section we consider magnetization response to the
alternating magnetic field at the surface and derive the mag-
netic boundary condition. Here and below, we limit ourselves
to the commensurate case Q = π/2, for which the frequency
of the z-axis uniform mode is maximal. As follows from
the shape of the susceptibility, Eq. (54), a phenomenological

equation for the in-plane magnetization in the case of uniform
in-plane field is

χ−1
0

(
1 + ω−2

0

∂2

∂t2
+ ζ 2

0 ∇2
z

)
M = H (56)

with χ0 = χxx(0, 0), ω2
0 = ω2

s (Q), and ζ 2
0 = csd2/ω2

s (Q).
This equation is only valid for smoothly varying magneti-
zation, i.e., for ζ0|∇zM|  1. On the other hand, the local
magnetic field H is connected with the magnetization as(

1 − λ2∇2
z

)
H ≈ −4πM. (57)

The magnetic length scale ζ0 is much smaller than the London
penetration depth λ. We find the magnetization response to
the external oscillating magnetic field. This corresponds to the
boundary condition for H (z, t ) at the surface, z = 0,

H (0, t ) = H0 exp (iωt ). (58)

This condition has to be supplemented by the boundary con-
dition for the magnetization, which is usually assumed as

∇zM(0, t ) = 0. (59)

We look for the oscillating magnetization and field at the
semispace z > 0 in the form

M(z, t ) =
∑

α

M0α exp [iωt − κα (ω)z], (60a)

H (z, t ) =
∑

α

H0α exp [iωt − κα (ω)z]. (60b)

In the absence of internal dissipation mechanisms, the param-
eters κα (ω) may be either purely real or purely imaginary. It
is clear that in the former case κα (ω) has to be positive. Care
should taken to select the correct sign for purely imaginary
κα (ω). Since for the spectrum described by Eq. (56) the group
velocity has the opposite sign with respect to the wave vector
q = Im[κα (ω)], the energy flows away from the surface for
negative Im[κα (ω)]. Substituting the above distributions into
Eqs. (56) and (57), we obtain equations connecting the vectors
M0α and H0α , (

1 − λ2κ2
α

)
H0α ≈ −4πM0α, (61a)(

1 − ω2/ω2
0 + ζ 2

0 κ2
α

)
M0α = χ0H0α, (61b)

which give the quadratic equation for κ2
α (ω),(

1 − ω2/ω2
0 + ζ 2

0 κ2
α

)(
1 − λ2κ2

α

) + μx0 − 1 = 0.

Solution of this equation is

κ2
α = λ−2 + (

ω2/ω2
0 − 1

)
ζ−2

0

2
+ δα

√[
λ−2 + (

ω2/ω2
0 − 1

)
ζ−2

0

]2

4
+ ζ−2

0 λ−2
(
μx0 − ω2/ω2

0

)

= λ−2 + (
ω2/ω2

0 − 1
)
ζ−2

0

2
+ δα

√[
λ−2 − (

ω2/ω2
0 − 1

)
ζ−2

0

]2

4
+ ζ−2

0 λ−2(μx0 − 1). (62)

We select δ1 = sgn[λ−2 + (ω2/ω2
0 − 1)ζ−2

0 ] and δ2 = −δ1.
Such choice implies that |κ1(ω)| > |κ2(ω)| in the whole fre-

quency range. Note that this solution is only formally valid
in the frequency range where ζ0|κ1(ω)|  1 corresponding to
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the validity range of Eq. (56). In particular, the result for κ1(ω)
is not valid for the static case at ω = 0.

Consider important special cases of Eq. (62). At the bare
uniform frequency, ω = ω0, we obtain

κ2
α (ω0) = λ−2

2
± λ−1

2

√
λ−2 + 4ζ−2

0 (μx0 − 1)

≈ ±ζ−1
0 λ−1

√
μx0 − 1, (63)

while at renormalized frequency ω = √
μx0ω0, we have

κ2
1 (

√
μx0ω0) = λ−2 + (μx0 − 1)ζ−2

0 ,

κ2
2 (

√
μx0ω0) = 0.

However, in the latter case the value of κ1 is already be-
yond the applicability range of Eq. (56). Since ζ0  λ, the
inequality λ−1  |ω2/ω2

0 − 1|ζ−1
0 is satisfied almost every-

where, except a narrow region where the frequency is very
close to ω0. Away from this region, we can expand κ2

α (ω) with
respect to (ω2/ω2

0 − 1)−1ζ0/λ, which yields

κ2
1 ≈ (

ω2/ω2
0 − 1

)
ζ−2

0 + (μx0 − 1)λ−2

ω2/ω2
0 − 1

, (64a)

κ2
2 ≈ λ−2 ω2/ω2

0 − μx0

ω2/ω2
0 − 1

, (64b)

meaning that the parameters κ1 and κ2 mostly describe
magnetic and superconducting decay, respectively. The
approximation is valid until the second term in κ2

1 is small
with respect to the first one giving a somewhat more accurate
condition for the expansion |ω2/ω2

0 − 1| � √
μx0 − 1ζ0/λ. In

addition, the condition ζ0|κ1|  1 implies that the result for
κ1 is only valid for |ω2/ω2

0 − 1|  1. However, the result for
κ2

2 in Eq. (64b) corresponds to the approximation of local
magnetic response, ζ0 → 0, and it remains valid even when
the condition ζ0|κ1|  1 breaks, e.g., in the limit ω → 0.
In the immediate vicinity of the frequency ω0, in the range
|ω2/ω2

0 − 1|  √
μx0 − 1ζ0/λ, the parameters κ2

α can be eval-
uated as

κ2
α ≈ ±ζ−1

0 λ−1
√

μx0 − 1 + λ−2 + (
ω2/ω2

0 − 1
)
ζ−2

0

2

±
[
λ−2 − (

ω2/ω2
0 − 1

)
ζ−2

0

]2

8ζ−1
0 λ−1

√
μx0 − 1

.

This region is characterized by a very strong mixing of
spin and supercurrent oscillations. The key observation is
that, in contrast to nonmagnetic superconductors, where low-
frequency magnetic field decays on the distance of the order
of the London penetration depth, in our case for frequency
smaller than

√
μx0ω0 one of the parameters κα is complex

meaning that the oscillating magnetic field penetrates at much
larger distance limited by external dissipation mechanisms.

We now proceed with evaluation of the vector coefficients
M0α and H0α from Eqs. (61) using the boundary condi-
tions in Eqs. (58) and (59). Substituting the relation H0α ≈
− 1

1−λ2κ2
α
4πM0α into the boundary condition for H, we obtain

FIG. 3. The frequency dependence of the amplitude of the os-
cillating field Hosc determining the long-range penetration of the
microwave field mediated by the spin waves. We assumed ζ0 =
0.02λ and μx0 = 3. The plot terminates at ω/ω0 = √

μx0, where Hosc

abruptly vanishes.

a 2 × 2 linear system for the magnetization coefficients

κ1M01 + κ2M02 = 0, (65a)

− 1

1 − λ2κ2
1

M01 − 1

1 − λ2κ2
2

M02 = H0

4π
, (65b)

which yields the solution(
M01

M02

)
=

( − λ2κ2
1

)(
1 − λ2κ2

2

)
H0/4π

(κ1 − κ2)
[
1 − λ2

(
κ2

1 + κ1κ2 + κ2
2

)](
κ2

−κ1

)
.

(66)
The corresponding field components are(

H01

H02

)
= H0

(κ1 − κ2)
[
1 − λ2

(
κ2

1 + κ1κ2 + κ2
2

)]
×

(−κ2(1 − λ2κ2
2 )

κ1(1 − λ2κ2
1 )

)
. (67)

The amplitude of the field inside the superconductor with
oscillating coordinate dependence, Hosc, corresponding to
purely imaginary κα is given by H01 for ω < ω0 and by H02

for ω0 < ω <
√

μx0ω0. It determines the long-propagating
microwave field mediated by the spin waves. Figure 3 shows
the frequency dependence of the ratio Hosc/H0. We can see
that the oscillatory component rapidly increases when the
frequency approaches ω0 from below and becomes very close
to unity within the range ω0 <ω<

√
μx0ω0. It abruptly van-

ishes at ω = √
μx0ω0. Figure 4 illustrates the coordinate

profiles of the microwave magnetic field inside superconduc-
tor, H (z) = Re[H1 exp(−κ1z) + H2 exp(−κ2z)], for different
frequencies. We see that the pronounced oscillating contribu-
tion emerges near ω ∼ ω0 and dominates in the range ω0 <

ω<
√

μx0ω0 ≈ 1.73ω0, while the corresponding wave length
of oscillations increases as the frequency approaches

√
μx0ω0.

Slightly above this frequency, the microwave field monotoni-
cally decreases but with very large decay length.

The interaction between the magnetic superconductor and
outside world can be conveniently formulated in terms the
boundary condition connecting the gradient ∇zH with the
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FIG. 4. Series of the coordinate profiles of the microwave mag-
netic field inside superconductor for different frequencies. A key
feature is a pronounced propagating wave in the range 1 � ω/ω0 <√

μx0 ≈ 1.73. Such propagating wave is also present for ω/ω0 < 1,
but, due to a very small amplitude, it is invisible for the used vertical
scale.

field at the surface. From Eq. (67), we obtain

∇zH|z=0 = −κ1H01 − κ2H02

= − κ1κ2(κ1 + κ2)

κ2
1 + κ1κ2 + κ2

2 − λ−2
H0.

Using the relations κ1κ2 = −iζ−1
0 λ−1

√
μx0 − ω2/ω2

0 and
κ2

1 + κ2
2 − λ−2 = (ω2/ω2

0 − 1)ζ−2
0 , we can rewrite this

boundary condition as

∇zH = −ηωH/λ (68a)

with

ηω =
−iζ0

√
μx0 − ω2/ω2

0(κ1 + κ2)

ω2/ω2
0 − 1 − iζ0/λ

√
μx0 − ω2/ω2

0

. (68b)

In the range |ω2/ω2
0 − 1| � √

μx0ζ0/λ the parameters κα

are given by Eqs. (64a) and (64b). In this case |κ1| � |κ2|, λ−1

and we obtain a simple approximate result

ηω ≈ λκ2 ≈ −i

√
μx0 − ω2/ω2

0

ω2/ω2
0 − 1

. (69)

Note that this result corresponds to the approximation of local
magnetic response and it remains valid even in the regime
where ζ0|κ1| > 1. In particular, it gives correctly the static-
case result ηω=0 = √

μx0. On the other hand, at ω = ω0, using
Eq. (63), we obtain

ηω0 ≈ (1 − i)(μx0 − 1)1/4
√

λ/ζ0. (70)

FIG. 5. The frequency dependences of the real and imaginary
part of the parameter ηω, Eq. (68b), which determines the dynamic
magnetic boundary condition, Eq. (68a). The dashed lines show the
approximate result in Eq. (69) valid away from the frequency ω0.
The right inset shows zoom in the region near the frequency ω0.
The navy and wine dotted lines in this inset show the approximate
scaling result in Eq. (71). The left inset shows the logarithmic plot
of −Im[ηω] to illustrate that it remains finite down to zero frequency.
The plots are made for ζ0 = 0.02λ and μx0 = 3.

In the range ω2/ω2
0 − 1  2(μx0 − 1), we derive the follow-

ing approximate scaling form,

ηω ≈
√

λ/ζ0(μx0 − 1)1/4v

(
ω2/ω2

0 − 1

ζ0/λ
√

μx0 − 1

)
,

v(u) = 1

1 + iu

⎛
⎝

√√
u2

4
+ 1 + u

2
− i

√√
u2

4
+ 1 − u

2

⎞
⎠.

(71)

The real and imaginary parts of the complex function v(u)
are connected by the relation Re[v(−u)] = −Im[v(u)]. The
real part reaches the maximum value equal of 1.162 at
u ≈ −0.436. The asymptotics of v(u) in the range u � 1
is v(u) � −i/

√
u yielding ηω ≈ −i

√
μx0 − 1/

√
ω2/ω2

0 − 1.
This matches the result in Eq. (69) in the range ω2/ω2

0 − 1 
1. In the large negative region, u < 0, |u| � 1, the imaginary
part of v(u) decays as Im[v(u)] � −|u|−7/2.

Figure 5 shows plots of the real and imaginary part of
the parameter ηω, Eq. (68b), computed using typical param-
eters ζ0 = 0.02λ and μx0 = 3. We also show in the figure the
approximate result, Eq. (69), valid for frequencies not very
close to ω0, and, in the upper right inset, the approximate
scaling result in Eq. (71) describing behavior near ω0. The
frequency dependence of ηω can be summarized as follows.
In the range ω < ω0, the real part of ηω is much larger than
−Im(ηω ). Both parts increase for ω → ω0 and become equal
in absolute value at ω = ω0. The real part reaches maximum
1.162

√
λ/ζ0(μx0 − 1)1/4 slightly below ω0, at ω ≈ ω0(1 −

0.218ζ0/λ
√

μx0 − 1), while −Im(ηω ) reaches the same maxi-
mum slightly above ω0, at ω ≈ ω0(1 + 0.218ζ0/λ

√
μx0 − 1).

In the range ω0 < ω <
√

μx0ω0, the real part of ηω is much
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FIG. 6. The frequency dependence of the surface resistivity
using the same parameters as in Figs. 2 and 5 corresponding to
RbEuFe4As4. The inset shows the same plot in logarithmic scale for
the better presentation of the low-frequency behavior. The vertical
dashed lines show locations of the frequencies f0 = ω0/2π and√

μx0 f0.

smaller than −Im(ηω ). Finally, in the region ω >
√

μx0ω0

the imaginary part is zero, while the real part monotonically
increases asymptotically approaching unity.

The parameter ηω is directly connected with the con-
ventional parameter characterizing the microwave response,
surface impedance

Z = Ex∫ ∞
0 jx(z)dz

= 4π

c

Ex

Hy
. (72)

To establish this connection, we have to relate the tangential
electric field to the normal gradient of the magnetic field. At
small frequencies, we can use the London relation 4π

c
∂ jx
∂t ≈

cλ−2Ex neglecting a small contribution from the quasiparticle
current and the Maxwell equation −∇zHy = 4π

c jx omitting the
displacement current. This gives −∇zHy = c

iωλ2 Ex and from
Eq. (68a) we obtain

Z = 4π iωηωλ/c2. (73)

The real part of this equation, Rs = Re(Z ), can be converted
to the practical formula for surface resistivity Rs[ohm] =
−8π210−4Im[ηω] f [GHz]λ[μm].

Figure 6 shows the frequency dependence of the surface
resistivity using the same parameters as in Figs. 2 and 5. We
can see that the surface resistivity has a very distinct shape.
It is very small at small frequencies f < f0 = ω0/2π and
starts to increase sharply when the frequency approaches f0.
After reaching a peak value ∼0.06 ohm slightly above f0, it
slowly decreases within extended frequency range f0 < f <√

μx0 f0, and abruptly vanishes at
√

μx0 f0.

VIII. EXCITATION OF SPIN WAVES
WITH AC JOSEPHSON EFFECT

The presence of magnetic order inside superconducting
material provides a unique possibility to generate and manip-
ulate magnons using the AC Josephson effect. In this section,

FIG. 7. Illustration of a planar tunneling contact between a con-
ventional superconductor (1) and magnetic superconductor with
helical magnetic structure (2). Purple arrows illustrate orientation of
the magnetic moments.

we consider the excitation of spin waves in a tunneling contact
between a conventional superconductor marked by the index 1
and a superconductor with helical magnetic structure marked
by the index 2, as illustrated in Fig. 7. We assume that the
system is uniform along the y direction and the interlayer with
thickness t is insulating and nonmagnetic. The magnetic and
conventional superconductors occupy the regions z > 0 and
z < −t, respectively.

A. Dynamic equation for the Josephson phase

We follow the standard derivation of the dynamic equa-
tion for the gauge-invariant phase difference between two
superconductors θ = φ2 − φ1 − 2πt

�0
Az taking into account the

dynamic magnetization response. The starting point of deriva-
tion is the z component of the Maxwell equation,

∇xHy = 4π

c
jz + ε

c

∂Ez

∂t
, (74)

in which the total current density across the junction is com-
posed of the superconducting and quasiparticle contributions,
jz = js,z + jn,z, where the superconducting contribution is
given by the DC Josephson relation,

js,z = jJ sin θ, (75)

and the quasiparticle contribution is determined by tunneling
conductivity σ , jn,z = σEz. The electric field is related to the
phase by the AC Josephson relation

Ez = �0

2πcd

∂θ

∂t
. (76)

To relate ∇xHy in Eq. (74) to the phase gradient, we use
the x component of the Maxwell equations −∇zHy = 4π

c jx
and the London relation for supercurrents along the junction
4π
c jx ≈ λ−2

i ( �0
2π

∇xφ − Ax ). Here, we neglected the displace-
ment current assuming small frequencies and quasiparticle
current inside the superconductors. This leads to the relation
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between the in-plane phase gradient and magnetic fields

∇xθ = 8π2

c�0

(
λ2

2 jx,2 − λ2
1 jx,1

) + 2π t

�0
By

= −2π

�0

(
λ2

2∇zHy,2 − λ2
1∇zHy,1

) + 2π t

�0
By, (77)

where jx,i and Hy,i are the current densities and the mag-
netic fields at the surfaces of two superconductors and By

is the magnetic induction inside the junction. We assume a
nonmagnetic interlayer meaning that By = Hy. Also, for the
nonmagnetic superconductor in the Meissner state at z < −t,
we have ∇zHy,1 = By/λ1. To obtain the close system, we need
the boundary condition connecting ∇zHy,2 with Hy = By at the
surface of the magnetic superconductor at z = 0. Note that
Hy(z) is continuous, while By(z) has a jump at z = 0. Due to
magnetization dynamics, this boundary condition is frequency
dependent. At fixed frequency, such boundary condition has
been derived in Sec. VII and is given by Eq. (68a), which in
our case becomes ∇zHy,2 = −ηωBy/λ2. The complex param-
eter ηω is determined by the general result in Eq. (68b). In the
approximation of local magnetic response valid for frequen-
cies not too close to the bare uniform-mode frequency ω0,
it has a much simpler approximate presentation in Eq. (69).
Therefore, Eq. (77) at finite frequency becomes

∇xθ = 2π (t + λ1 + ηωλ2)

�0
Hy. (78)

Applying ∇x to both sides, substituting ∇xHy from Eq. (74),
and using the Josephson relations for current and electric field,
Eqs. (75) and (76), we obtain the dynamic phase equation at
finite frequency in the form

1

t + λ1 + ηωλ2
∇2

x θ = 8π2

c�0
jJ [sin θ ]ω − εωω2

tc2
θ, (79)

where εω ≡ ε − 4π iσ/ω and [sin θ ]ω notates the time Fourier
transform of sin[θ (x, t )]. The only difference from the stan-
dard phase-dynamics sine-Gordon equation [66,67] is the
presence of the complex factor ηω with complicated fre-
quency dependence; see Fig. 5. In the static case, the phase
equation is

1

t + λ1 + √
μx0λ2

∇2
x θ = 8π2

c�0
jJ sin θ. (80)

Therefore, the effective junction interlayer width t̃ = t + λ1 +√
μx0λ2 is enlarged by the magnetic response. From the last

equation, we can evaluate the static Josephson length

λJ =
{

c�0

[8π2(t + λ1 + √
μx0λ2) jJ ]

}1/2

. (81)

In the next subsection we consider the influence of magnetic
response on the spectrum and damping of the electromagnetic
wave propagating through the Josephson junction.

B. Spectrum and damping of the Josephson plasma mode

The superconductor-insulator-superconductor sandwich
structure with sufficiently large width is a waveguide capable
of supporting a traveling electromagnetic wave [67,68] with
the phase θ (x, t ) ∝ exp[i(ωwt ± kx)]. Such a wave can be

FIG. 8. Spectrum and damping of the electromagnetic wave
inside a Josephson junction between conventional and helical mag-
netic superconductors, Eq. (84). In the lower plot, the dashed and
dash-dotted lines show spectra corresponding to low-frequency and
high-frequency limits, respectively.

resonantly excited by the AC Josephson effect. For the fixed
real wave vector k, Eq. (79) gives the following equation for
the complex frequency ωw(k) = ωw,r (k) + iωw,i(k), with the
real and imaginary part giving the wave spectrum and its
damping, respectively,

ω2
w − 4πσ

ε
iωw = ω2

p + t

t + λ1 + ηωλ2

c2

ε
k2, (82)

where

ωp =
√

8π2ct

ε�0
jJ (83)

is the Josephson plasma frequency. Note that the magnetic
response does not modify this parameter. It is convenient to
rewrite Eq. (82) in the reduced form

ω2
w

ω2
p

− iνσ

ωw

ωp
= 1 + λ1 + √

μx0λ2

λ1 + ηωλ2
λ2

Jk2 (84)

with the static Josephson length λJ , Eq. (81), and the dumping
parameter

νσ = 4πσ

εωp
. (85)

The parameter ηω has the strongest feature around ω = ω0.
Therefore, the spectrum of the Josephson plasmon is substan-
tially affected only if ωp < ω0.

Figure 8 shows the spectrum and damping of the
propagating wave computed from Eq. (84) for parameters
corresponding to the contact between NbN and RbEuFe4As4,
λ1 = 190 nm, λ2 = 70 nm, μx0 = 3, and ς0 = 0.02λ2. We
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also assume ωp = 0.5ω0 and νσ = 0.01. One can distin-
guish three regions with qualitatively different behavior.
In the low-frequency region ωw,r (k) < ω0, the spectrum is
approximately ωw,r (k) �

√
ω2

p + c2
s0k2 , where cs0 is the low-

frequency Swihart velocity

cs0 = λJωp =
√

t

λ1 + √
μx0λ2

c√
ε
. (86)

In this region the spin waves give a small contribution to
the mode damping. The intermediate region ω0 < ωw,r (k) <√

μx0ω0 is characterized by a sharp enhancement of the
damping caused by excitation of the spin waves. Finally, in
the high-frequency region ωw,r (k) >

√
μx0ω0 the damping

caused by spin waves is absent and the spectrum ap-
proaches the high-frequency limit ωw,r (k) �

√
ω2

p + c2
s1k2 �

cs1k, where cs1 is the high-frequency mode velocity,

cs1 =
√

d

λ1 + λ2

c√
ε

=
√

λ1 + √
μx0λ2

λ1 + λ2
cs0. (87)

In this limit the influence of magnetism is weak.

C. Current-voltage characteristics and Fiske
resonances in finite magnetic field

Transport properties of a Josephson junction in the mag-
netic field directly probe its dynamic response [66,67,69,70].
In particular, one can directly excite collective modes in super-
conducting materials and the spectrum of these modes can be
inferred from the dynamic features in the current-voltage char-
acteristics [71]. In this section, we evaluate the current-voltage
characteristics for our system using the standard approach of
the expansion with respect to the Josephson current assuming
fixed voltage [72]. Consider a junction in finite magnetic field
By and in the resistive state with finite voltage drop across
the junction, V = tEz. In this state, in the zeroth order with
respect to the Josephson current, the phase has the shape of a

traveling wave

θ0(x, t ) = kBx + ωt (88)

with the wave vector

kB = 2π

�0
(t + λ1 + √

μx0λ2)By (89)

and the Josephson frequency

ω = 2πc

�0
V. (90)

Representing sin θ0(x, t ) = Re[−i exp(ikBx + iωt )], we ob-
tain from Eq. (79) the equation for the first-order correction
to the dynamic phase, θ̃ (x, t ) = Re[θ̃ (x) exp(iωt )], which we
present as

∇2
x θ̃ + p2

ωθ̃ = −irωλ−2
J exp (ikBx) (91)

with

rω ≡ t + λ1 + ηωλ2

t + λ1 + √
μx0λ2

, (92a)

p2
ω ≡ εωω2

c2

t + λ1 + ηωλ2

t

= ω2 − (4πσ/ε)iω

c2
s0

rω, (92b)

where cs0 is the low-frequency Swihart velocity, Eq. (86).
We look for the solution of Eq. (91) in the form

θ̃ (x) = rωλ−2
J

k2
B − p2

ω

[Ac cos(pωx) + As sin(pωx) + i exp(ikBx)].

(93)

Assuming the nonradiative boundary conditions, ∇x θ̃ = 0 for
x = 0, L, we find the coefficients Ac and As,

As = kB/pω, (94a)

Ac sin (pωL) = kB

pω

[cos (pωL) − exp (ikBL)], (94b)

and substitute them into Eq. (93). This yields the oscillating
phase

θ̃ (x) = rωλ−2
J

k2
B − p2

ω

[
kB

pω

cos [pω(L − x)] − exp(ikBL) cos(pωx)

sin(pωL)
+ i exp(ikBx)

]
. (95)

The average Josephson current density is given by

δ j = jJ
L

∫ L

0
〈sin(kBx + ωt + Re[θ̃ (x) exp(iωt )])〉t dx

≈ jJ
2L

∫ L

0
Re[θ̃ (x) exp(−ikBx)]dx. (96)

Substituting θ̃ (x) from Eq. (95), we obtain

δ j ≈ jJλ
−2
J

2
Im

{[
1 + cos (pωL) − cos(kBL)

pωL sin (pωL)

2k2
B

p2
ω − k2

B

]
rω

p2
ω − k2

B

}
. (97)
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The key difference from the standard result [72] is the pres-
ence of the complex factor ηω in the parameters pω and rω in
Eqs. (92a) and (92b) from the magnetic boundary condition
describing the excitation of spin waves in the magnetic su-
perconductor. The location of the Fiske peaks corresponding
to excitation of the standing electromagnetic waves inside the
junction is determined by the condition Re[pω]L = πn. In the
regions ω < ω0 and ω >

√
μx0ω0 where Im(ηω )  Re(ηω ),

this condition gives the equation for the resonance frequencies

ωn =
√

t + λ1 + √
μx0λ2

t + λ1 + Re(ηω )λ2

πnλJ

L
ωp, (98)

where ωp is the Josephson plasma frequency, Eq. (83).
To facilitate numerical calculations, we rewrite Eq. (97)

in the reduced form. We define the dimensionless size L̃ =
L/λJ and frequency ω̃ = ω/ωp. We also introduce the reduced
wave-vector parameters k̃B = λJkB and

p̃ω = λJ pω =
√

(ω̃2 − iνσ ω̃)rω,

where νσ is the dimensionless damping parameter, Eq. (85).
With these variables, we rewrite Eq. (97) as

δ j

jJ
= 1

2
Im

{[
1 + cos( p̃ωL̃) − cos(k̃BL̃)

p̃ωL̃ sin( p̃ωL̃)

2k̃2
B

p̃2
ω − k̃2

B

]
rω

p̃2
ω − k̃2

B

}
.

(99)

The product k̃BL̃ here may be related to the magnetic field as
k̃BL̃ = πBy/BL = 2π�y/�0, where

BL = �0

2L(t + λ1 + √
μx0λ2)

(100)

is the size-dependent scale determining periodicity of mag-
netic oscillations of the Fiske resonances and �y = L(t +
λ1 + √

μx0λ2)By is the magnetic flux through the junction.
For frequency in Eq. (98), the strongest resonance is real-
ized at B = nBL. For other Fiske resonances, odd peaks with
n = 2m + 1 are maximal for By = 2 jBL (�y/�0 = j) while
even peaks with n = 2m are maximal for By = (2 j + 1)BL

(�y/�0 = j + 1/2) [66,67,72]. Adding the tunnel quasipar-
ticle current, jn = σEz, we obtain the total current in the
reduced form

j

jJ
= νσ ω̃ + δ j

jJ
. (101)

This equation together with Eq. (99) determines the current-
voltage characteristic in the reduced form in the second order
with respect to the Josephson current. The shape of the
current-voltage characteristic mostly depends on the relation
between the Josephson plasma frequency ωp, the location of
the first Fiske resonance ω1 = πcs1/L, and the two typical
spin-wave frequencies ω0 and

√
μx0ω0. As the resistive state

is stable until the Josephson frequency exceeds the plasma
frequency ωp, Eq. (83), spin waves can be excited only if ωp is
at least smaller than

√
μx0ω0. The clearest spin-wave features

can be observed if ωp � ω0. In addition, the behavior is also
very sensitive to the junction size L. For junctions narrower
than the typical size Lc = cs1π/(

√
μx0ω0), the whole spin-

wave region ω0 < ω <
√

μx0ω0 is located below the Fiske

FIG. 9. Representative current-voltage characteristics for junc-
tions with different lateral sizes L. The horizontal-axis scale Ep

is the electric field at which the Josephson frequency equals ωp,
Ep = �0ωp/(2πct). For comparison, the dashed lines show the
current-voltage characteristics without dynamic magnetic response
using static parameters cso and λJ . They display a usual sequence of
the Fiske resonances. The inset in the bottom plot zooms into the
spin-wave feature.

resonances allowing for its clear resolution. For wider junc-
tions the behavior is more complicated, because in this case
the Fiske resonances are located both above and below the
spin-wave region and some of them may fall inside this region.
A very special situation is realized for the particular junction
size Lres, at which the the first Fiske resonance is very close to
ω0. To estimate this junction size, we substitute the maximum
value of Re(ηω ) ∼ √

λ/ζ0(μx0 − 1)1/4 to Eq. (98) at n = 1
yielding

Lres = πλJ
ωp

ω0

√
t + λ1 + √

μx0λ2

t + λ1 + (μx0 − 1)1/4λ
3/2
2 /

√
ζ0

. (102)

For this size, at the Josephson frequency slightly below ω0 the
excited cavity mode generates the strongest spin wave inside
the magnetic superconductor.

Figure 9 shows the representative current-voltage charac-
teristics computed for the parameters ωp = ω0, νσ = 0.05,
three different sizes, L/λJ = 1, 2, and 3, and the magnetic
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FIG. 10. The magnetic field evolution of the current-voltage
characteristics for junction with the parameters shown in the plot.
The spin-wave feature is located in the region 1 � Ez/Ep � 1.7. As
the Fiske resonances, it is strongly modulated by the magnetic field.

field By = BL. For reference, we also show by the dashed lines
the current-voltage characteristics computed without dynamic
magnetic response using static junction parameters. Note that
(i) only the ascending left-side parts of the peaks are usually
observed experimentally and (ii) the used linear approxima-
tion breaks in the middle of resonances meaning that the
approximation overestimates the peak heights. We can see
that there are substantial qualitative differences between the
three shown cases. The junction size for the smallest junction
is smaller than Lc and therefore the spin-wave region is well
below the Fiske resonances. The spin-wave feature has the
same asymmetric shape as the surface resistivity in Fig. 6.
It has a sharp peak when the Josephson frequency matches
ω0 followed by an extended tail up to frequency

√
μx0ω0; see

the inset in the bottom plot. The junction size 2λJ (middle
plot) is very close to the resonance value Lres, Eq. (102),
meaning that the spin-wave resonance at ω = ω0 coincides
with the first Fiske resonance leading to the very strong peak.
A very peculiar feature of this case is that, due to strongly
nonmonotonic behavior of Re(ηω ) near the frequency ω0, the
condition for the first resonance in Eq. (98) is satisfied at two
frequencies, slightly below ω0 and slightly above

√
μx0ω0.

Correspondingly, two strong peaks are realized at both fre-
quencies. The largest size 3λJ exceeds both Lc and Lres (top
plot). The first Fiske resonance in this case is located below ω0

and is slightly separated from the peak marking the onset of
the spin-wave region. Correspondingly, the spin-wave region
is located in between the first and second Fiske resonances.
We also observe larger amplitude of the spin-wave feature in
the region ω > ω0. The reason is that the condition for the
first resonance in Eq. (98) is also formally satisfied in the
range ω0 < ω <

√
μx0ω0 where the absolute value of Im(ηω )

is large marking very strong spin-wave damping of the reso-
nance. As the resonance takes place in the overdamped region,
it is seen as a shallow maximum.

The amplitudes of the Fiske resonances have oscillating
dependence on the magnetic field [66,67,72]. Figure 10 shows
the magnetic field evolution of the current-voltage charac-
teristics for the junction with L = 2λJ . We see the familiar

modulation of the resonances with magnetic field but with
specific features. We see that the first two peaks have a similar
dependence on the magnetic field, since they both represent
the first Fiske resonance, while the third peak representing the
second Fiske resonance is shifted by half a period. Note that
the maximums of the first two peaks at B = BL and maximum
of the third peak at B = 2BL are out of this general trend
because they correspond to Eck resonance, ω = csikB.

We demonstrated that the AC Josephson effect in a tun-
neling contact between conventional and helical-magnetic
superconductor can be utilized for the excitation of spin
waves. Such excitation is most efficient when the Josephson
frequency is in the range between the two typical spin-wave
frequencies ω0 and

√
μx0ω0. In this range the current-voltage

characteristic has a distinct feature similar to one in the fre-
quency dependence of the surface resistance. In addition, the
spin-wave feature may strongly perturb the shape of Fiske
resonances and the power of the excited spin wave may be
enhanced when the Fiske resonance falls into the spin-wave
region.

IX. SUMMARY AND DISCUSSION

In summary, in this paper we consider spin waves and
related observable effects in superconductors with helical
magnetic order. Most computed specific results correspond
to the structure realized in the iron pnictide RbEuFe4As4, in
which the moments rotate 90◦ from layer to layer, Fig. 1.
The key feature of such materials is that the mode coupled
with uniform field corresponds to the maximum frequency
of the spin-wave spectrum with respect to the c-axis wave
vector. The frequency of this mode is strongly enlarged by the
long-range electromagnetic interactions between the oscillat-
ing magnetic moments and this enlargement rapidly vanishes
when the c-axis wave-vector mismatch exceeds the inverse
London penetration depth; see Fig. 2. For the parameters of
RbEuFe4As4, we estimate the bare uniform-mode frequency
f0 as ∼11 GHz and the renormalized one as ∼19 GHz, mean-
ing that these frequencies are located within a convenient
microwave range. We evaluate the frequency dependence of
the surface resistance and find that it has a very distinct
asymmetric spin-wave feature spreading between the bare and
renormalized frequencies; see Fig. 6.

We also investigate excitation of spin waves with the
AC Josephson effect in a tunneling contact between helical-
magnetic and conventional superconductors. For the most
efficient excitation of spin waves, the Josephson plasma
frequency has to be smaller than the bare uniform-mode fre-
quency ω0. In addition, the features in the current-voltage
characteristics are very sensitive to the junction size due
to the interplay between the spin-wave excitation and Fiske
resonances. The simplest behavior is realized in small-size
junctions, when the renormalized frequency

√
μx0ω0 is below

the lowest Fiske resonance. In this case, the whole spin-
wave region is separated from the Fiske resonances and has
a strongly asymmetric shape resembling the feature in the
surface resistivity; see the inset in Fig. 9 (bottom). In larger
junctions, the Fiske resonances may fall inside the spin-wave
region leading to more complicated behavior; see Fig. 9 (top
and middle). The strongest excitation of the spin wave can be
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achieved in the situation when the Fiske resonance frequency
is slightly below ω0 corresponding to the junction size in
Eq. (102). As the Fiske resonances, the shape and amplitude
of the spin-wave feature are modulated by magnetic field; see
Fig. 10. We conclude that the AC Josephson effect provides a
unique way to excite and manipulate spin waves in magnetic
superconductors.
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existence of superconductivity and magnetism theoretical
predictions and experimental results, Adv. Phys. 34, 175
(1985).
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