Influence of domain wall anisotropy on the current-induced hysteresis loop shift for quantification of the Dzyaloshinskii-Moriya interaction

Takaaki Dohi,1,2 Shunsuke Fukami,1,3,4,5,6,* and Hideo Ohno1,3,4,5,6

1Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980–8577, Japan
2Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany
3Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980–8577, Japan
4Center for Spintronics Research Network, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980–8577, Japan
5Center for Innovative Integrated Electronic Systems, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980–0845, Japan
6WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980–8577, Japan

(Received 9 April 2021; revised 5 June 2021; accepted 16 June 2021; published 29 June 2021)

Using several material systems with various magnitudes of the interfacial Dzyaloshinskii-Moriya interaction (DMI), we elucidate a critical influence of domain wall (DW) anisotropy on the current-induced hysteresis loop shift scheme widely employed to determine the magnitude of the Dzyaloshinskii-Moriya effective field (H_{DMI}). Taking into account the DW anisotropy in the analysis of the hysteresis loop shift, which has not been included in the original model [Phys. Rev. B 93, 144409 (2016)], we show that it provides quantitative agreement of H_{DMI} with that determined from an asymmetric bubble expansion technique for small DMI material systems. For large DMI systems, the DW anisotropy gives rise to nonlinearity in the response of spin-orbit torque efficiency to the in-plane magnetic field, from which H_{DMI} can be determined. The consequence of the directions of DW motion in the Hall device on the current-induced shift of the hysteresis loop is also discussed. The present findings deliver important insights for reliable evaluation of DMI, which are of significance in spintronics with chiral objects.

DOI: 10.1103/PhysRevB.103.214450

I. INTRODUCTION

The Dzyaloshinskii-Moriya interaction (DMI) [1,2] is known to stabilize various chiral spin textures such as Néel domain wall (DW) [3–6] and magnetic skyrmion [7–10]. These chiral objects are expected to act as a key ingredient in various emerging spintronic technologies, e.g., DW devices [11–13], neuromorphic computing [14,15], and so on [16–19], leading to creation of a new paradigm of spintronics [20–22]. Furthermore, unconventional bulklike DMI [23] and interlayer DMI [24,25] have been recently found, which are expected to invigorate the field with the capability to realize topological spin textures not only in one (1D) or two-dimensional (2D) but also in three-dimensional (3D) spaces [26]. In these regards, easily accessible yet reliable evaluation of DMI is in great demand.

Methods to quantify the DMI developed so far roughly fall into two categories; one utilizes DW [27–33] and the other relies on spin-wave propagation [34–36]. The former is further classified into two subcategories based on the focused phenomenon. The first one has been known as the asymmetric magnetic bubble expansion scheme, where one observes magnetic bubble expansion under in-plane magnetic field (H_{ex}), typically using magneto-optical Kerr effect (MOKE) microscopes and captures the modification of the DW velocity (v_{DW}) [27,28,30]. DMI inherently acts as an effective field, so-called DMI effective field (H_{DMI}), for the DWs, and applying H_{ex} lifts the degeneracy between the up-to-down (↑↓) and down-to-up (↓↑) DW energies. Consequently, the bubble shows an asymmetric expansion under H_{ex}, from which sign and magnitude of DMI can be determined. The second subcategory makes use of the modification of current-induced spin-orbit torque (SOT) efficiency (χ_{SOT}) acting on DWs that changes with the degree of chirality of the DWs [3,37,39]. Nonequilibrium spins accumulated via spin-orbit interaction-related phenomena in systems with broken space inversion symmetry [40–42] generates SOT which serves as an effective magnetic field (H_{eff}) driving DWs. Since χ_{SOT} depends on H_{DMI} and H_{ex} via the degree of chirality, H_{ex} dependence of χ_{SOT} allows one to quantify H_{DMI}. In practice, magneto-optical or electrical means have been employed to measure the modification of χ_{SOT} under H_{ex}. The former mainly utilizes MOKE microscope and observes v_{DW} [29,38] or depinning field shift [3,37,39]. Recent studies confirmed an agreement of the obtained H_{DMI} with that determined from the asymmetric bubble expansion or spin-wave schemes [43,44].

On the other hand, for the electrical means, the main focus of this work, originally proposed by Pai et al. [32], one measures a current-induced shift of hysteresis loop through the anomalous Hall effect (known as the current-induced hysteresis loop shift scheme). Although this technique is the most widely utilized [45–51] mainly because it does not require any nanofabrication processes and specific apparatus (e.g., MOKE microscope and laser systems with a well-defined wave vector), there remain some open questions. For instance,
The effect of DW anisotropy.

The hysteresis loop shift can be explained by considering the model for the analysis assumes one direction along the wire and the consequence of 2D DW motion has been unclear. Moreover, while the DW could in reality move in 2D space, this behavior was not described in the original model.

II. SAMPLE STRUCTURE AND MEASUREMENT SETUP

In this study, we investigate four kinds of stack structures, stack 1, stack 2, series 1, and series 2, shown in Fig. 1(a), which were used in our previous works. Stack structures of each system are as follows: sub./ W(4)/ CoFeB (tCoFeB)/ MgO(1.6)/ Ta(2) [stack 1], sub./ Ta(1)/ Pt(4)/ Co(1.125)/ Ru(5) [stack 2], sub./ Ta(1)/ Pt(4)/ Ir(1.3)/ CoFeB (tCoFeB)/ CoO/ FeB (0.56)/ MgO(1.6)/ W(4)/ Ru(2) [series 1], sub./ Ta(1)/ Pt(4)/ Ir(1.3)/ CoFeB (tCoFeB)/ CoO/ FeB (0.56)/ MgO(1.6)/ W(4)/ Ru(2) [series 2], where the numbers in parentheses denote nominal thickness in nm. According to our previous studies, the stack 1 and series 1 represent a small-DMI and intermediate-DMI systems, respectively, whereas the stack 2 and series 2 fall into large-DMI systems. All the stacks are deposited by dc and rf magnetron sputtering on thermally oxidized Si substrates. After the deposition, only the stack 1 is annealed at 300 °C for 1 h to induce interfacial perpendicular magnetic anisotropy. Figures 1(b) and 1(c) show the experimental setup for asymmetric bubble expansion and current-induced hysteresis loop shift measurements, respectively.

III. RESULTS

A. Asymmetric magnetic bubble expansion

We first show the results of asymmetric magnetic bubble expansion in stack 1 studied in Ref. [52]. After that, we observe a bubble expansion under μ0Hx = ±48 mT, where ⊙ and ◦ denote up and down magnetic domains, respectively. Asymmetry is clearly observed, indicating a presence of DMI with a right-handed/clockwise chirality, consistent with previous works [55,56]. Figure 2(b) shows Hc dependence of vDW, which hinders precise evaluation of DMI [38,43,57], is not seen, indicating that the applied

FIG. 2. Asymmetric magnetic bubble expansion in stack 1 studied in Ref. [52]. (a) MOKE images for asymmetric bubble expansion under μ0Hx = ±48 mT, where ⊙ and ◦ denote up and down magnetic domains, respectively. (b) Hc dependence of vDW, where black and red plots denote the result for ⊙ and ◦ DWs, respectively.
field, $\mu_0H_s = 6.5 \text{ mT}$ (μ_0 is permeability in free space), is large enough that DW moves in depinning or flow regimes and H_{DMI} can be determined from this result. The dependence shows clear symmetric behavior with minimum φ_{DW} at finite H_s, where DW is expected to form Bloch-type configuration due to the cancelation of H_{DMI} by H_s. Consequently, H_{DMI} is determined from the minima as $\mu_0H_{\text{DMI}} = 13 \pm 5 \text{ mT}$.

B. Current-induced hysteresis loop shift for small DMI system

We next perform the current-induced hysteresis loop shift measurement for stack 1. As mentioned earlier, current injected into heterostructures with sizable spin-orbit coupling generates H_{eff} acting on DWs whose magnitude and direction vary with the direction of the magnetic moment inside DW. In the case of current flowing in the x direction as shown in Fig. 1(c), H_{eff} along the z direction is given by

$$
\mu_0H_{\text{eff}} = x_{\text{SOT}}J,
$$

where J denotes current density, x_{SOT} corresponds to a DW-profile-dependent efficiency of Slonczewski-like SOT [37, 54, 59], $\varphi_{\uparrow\downarrow}$ represents an angle of magnetic moment in the $\uparrow\downarrow \uparrow\downarrow$ DW measured from the normal direction to the DW plane as depicted in Fig. 3(a). x'_{SOT} denotes the efficiency of Slonczewski-like SOT, referred to as the effective spin Hall angle for systems where the spin Hall effect is dominant. As can be understood from Eq. (1), $H_{\text{eff}} = 0$ at zero H_s, because $\varphi_{\uparrow\downarrow} = \varphi_{\uparrow\downarrow} + \pi$, where \uparrow and \downarrow DWs concurrently move in the same direction [4, 5]. Upon increasing H_s that breaks the chiral Néel wall configuration, H_{eff} becomes finite, leading to the shift of hysteresis loop, and the shift linearly increases with the applied dc current I through the increase in SOT.

Figure 3(b) shows a typical example of the hysteresis loop shift; anomalous Hall resistance R_{AHE} vs H_s at $\mu_0H_s = 50 \text{ mT}$ and $I = \pm 15 \text{ mA}$. The magnitude of the shift (H_{eff}) can be determined from the peak of the derivative. Figure 3(c) shows H_{eff} as a function of I. A linear relation in accordance with Eq. (1) is confirmed, indicating that H_{eff} arises from SOT and x_{SOT} is obtained from the slope. Figure 3(d) shows H_{eff} as a function of H_s, φ_{SOT}. $|x_{\text{SOT}}|$ increases with H_s whereas it remains around zero for all the measured H_s, also consistent with Eq. (1). According to the original model [32], H_{DMI} can be approximated by the in-plane field along the longitudinal direction H_s^{max} at which all the DW moments align in the x direction and x_{SOT} is maximized [rightmost cartoon in Fig. 3(a)]. However, $\mu_0H_s^{\text{max}} (=\mu_0H_{\text{DMI}})$ is about 35 mT, which is about twice as large as that determined from the asymmetric magnetic bubble expansion scheme mentioned earlier (13 $\pm 5 \text{ mT}$).

It is expected that the large H_{DMI} obtained in the current-induced hysteresis loop shift scheme stems from the contribution of DW anisotropy, which is naturally included in the analysis of bubble expansion but is not in the hysteresis loop shift scheme. As depicted in Fig. 3(a), DWs change their configuration between Néel and Bloch types under H_s. Considering the contribution of DW anisotropy that inherently favors the Bloch-type configuration in thin films with a perpendicular easy axis, for systems with finite

FIG. 3. Current-induced hysteresis loop shift measurement in stack 1 studied in Ref. [52]. (a) Schematics of modification of clockwise (CW)/ right-handed (R) and counterclockwise (CCW)/ left-handed (L) DW configurations under H_s. Arrows denote DW moments, φ the relative angle of DW moment from DW plane, and H_{DMI} the H_s to saturate x_{SOT}. (b) Current-induced hysteresis loop shift under $\mu_0H_s = 50 \text{ mT}$, where red and blue symbols correspond to results at $I = -15$ and 15 mA, respectively. (c) H_{eff} as a function of I, where red and blue symbols represent the results at $\mu_0H_s = -50$ and 50 mA; (d) In-plane field dependence of x_{SOT} where plots in black and orange denote the results under H_s and H_s. DMI, DWs should form chiral Néel-type configuration at $H_s = 0$. Bloch-type configuration at $H_s = H_{\text{DMI}}$, and nonchiral Néel-type configuration at $H_s = H_{\text{DMI}}^{\text{max}} = H_{\text{DMI}} + H_s$, as depicted in the left, center, and right cartoons in Fig. 3(a), respectively. Here, H_s denotes DW anisotropy field given as $H_s = 4K_{\text{eff}}/\pi M_s$ [27, 38, 54, 59], where K_{eff} approximated by $\ln(2)M_s^2/(2\pi \mu_0 \delta)$ [60] indicates the DW anisotropy energy density (t and δ are ferromagnetic layer thickness and DW width, respectively). Therefore, by considering the effect of DW anisotropy, H_{DMI} should be given by $H_{\text{DMI}} = H_{\text{max}}^{\text{DMI}} - H_s (\neq H_{\text{max}})$. We calculate μ_0H_s to be $25 \pm 5 \text{ mT}$ using $M_s = 1.75 \text{ T}$, $K_{\text{eff}} = 0.23 \text{ mJ/m}^2$, $t = 0.56 \text{ nm}$, and $A_s = 8 - 20 \text{ pJ/m}$, leading to $\mu_0H_{\text{DMI}} = 10 \pm 5 \text{ mT}$ (M_s and K_{eff} are determined from a magnetization-curve measurement [52] and the range of exchange stiffness constant A_s is determined on the basis of previous observations [61–66] considering its dependence on thickness [61], annealing temperature [62],...
composition of ferromagnet [63], etc.). The obtained H_{DMI} agrees well with that determined from the asymmetric bubble expansion scheme. We note that the correction of H_S is especially important for small DMI systems because, in that case, $\varphi_{1/1}$ is not necessarily 0 or π at $H_k = 0$.

C. Intermediate and large DMI material systems

Next, we investigate the series 1, 2, and stack 2, which have intermediate to large H_{DMI} compared with the DW anisotropy field [10]. Figure 4(a) shows the H_k dependence of X_{SOT} in series 1 that represent the intermediate DMI system. Intriguingly, nonlinearity appears with the change in the thickness of Co and CoFeB layers. Such nonlinear behavior disables the determination of H_{DMI} based on the original model [32] as well as the modified model described above but has been actually observed in several previous works although it has not been pointed out [45,51]. The observed nonlinearity is expected to relate to the magnitude of DMI because it becomes apparent with increase/decrease in the Co/CoFeB thickness which is known to be accompanied by the increase in the magnitude of interfacial DMI according to previous studies [10,56]. Figures 4(b) and 4(c) show R_{MHE}-H_k loops at $\mu_0H_k = 150$ and 350 mT for stack 2 representing a large DMI system; minuscule (significant) shift is observed at $\mu_0H_k = 150$ mT (350 mT), unlike stack 1 with small DMI. Figure 4(d) summarizes X_{SOT} vs H_k for stack 2 and series 2, where the nonlinearity is more evident than the series 1.

This anomaly can be also explained by considering the contribution of DW anisotropy as follows. For large DMI systems, as depicted in Fig. 4(e), one can expect that DWs maintain the chiral Néel-type configuration until a certain $H_k (=H_{DMI}^{min})$, above which they gradually transform to the Bloch-type configuration until $H_k = H_{DMI}^{max} = H_{DMI} + H_S$, where H_S overcomes H_S and H_{DMI}. In other words, $\varphi_{1/1}$ changes only in the field range from $H_{DMI}^{min} = H_{DMI} - H_S$ to $H_{DMI}^{max} = H_{DMI} + H_S$. Accordingly, H_S and H_{DMI} can be obtained by $H_S = (H_{DMI}^{max} - H_{DMI}^{min})/2$ and $H_{DMI} = (H_{DMI}^{max} + H_{DMI}^{min})/2$, respectively. Following these relations, we determine μ_0H_{DMI} to be 85–100 mT for both stack 2 and series 2, and μ_0H_{DMI} to be 200 mT (series 2) and 300 mT (stack 2). These values agree well with that determined from an analysis of coercivity under out-of-plane and in-plane fields based on the droplet model [33,53] (Appendix) and previous MOKE-based measurements [28,38,67], indicating the validity of the modified model.

IV. EFFECT OF DIMENSIONALITY

As described above, we find that inclusion of DW anisotropy is crucial to quantify the DMI irrespective of its magnitude. In particular, for large DMI systems, DW anisotropy gives rise to an anomalously nonlinear variation of the SOT efficiency with the in-plane field. Here, one question arises, that is, why the nonlinear behavior was not observed in the original work although the studied stacks (Pt/Co/MgO or Ta) are expected to fall into the large DMI family [32]. In the following, we describe that the dimensionality of the DW motion in the studied device is a clue to solve this question, and

FIG. 4. Current-induced hysteresis loop shift measurement in series 1, 2 and stack 2. (a) H_k dependence of X_{SOT} for series 1 where black, red, green, and blue symbol denote for $(I_{Co}, I_{CoFeB}) = (0.375, 0.60), (0.425, 0.55), (0.475, 0.50)$, and $(0.525, 0.45)$ m, respectively. Current-induced hysteresis loop shift under (b) $\mu_0H_k = 150$ mT and (c) 350 mT, where blue and red symbols correspond to $I = 15$ and -15 mA, respectively. (d) H_k dependence of X_{SOT} in stack 2 and series 2, where green, black, and sky-blue symbols correspond to stack 2, $(I_{Co}, I_{CoFeB}) = (0.30, 0.825), (0.20, 0.925)$ nm of series 2, respectively. (e) Schematics of modification of counterclockwise (CCW)/left-handed (L) DW configuration under H_k for large DMI material system.

1D motion of DW along the current direction is a prerequisite to apply the analysis scheme for the hysteresis loop shift.

According to a previously conducted MOKE observation of magnetization reversal process under SOT and H_k, where a virtually linear dependence of X_{SOT} was reported [32,46,49], domain is initially nucleated near the wire edge due to the
A magnetization reversal process brought about by sweeping \(H \) in the influence of DW motion in the wire is effectively limited to the main is nucleated in the large reservoir [Fig. 1(c)] and the original study [32] and allows us to determine the direction of DW motion in the wire is effectively limited to the main is nucleated in the large reservoir [80]. We finally note that even without a large reservoir, the corrected analysis for our devices probably due to a restoring force due to the interplay of DW propagation was reported to take place mainly in the 1D model as described in Sec. III C. In other words, if one observes linear behavior of \(\chi_{\text{SOT}} \) and \(H_\text{DMI} \) in the original work with a large DMI systems [32]. We also note that, even in considering the tilting of DW plane for the case of 1D motion along the \(x \) direction, it cannot account for the observed linearity, indicating that DW motion in the \(y \) direction is only the viable explanation. It is notable that, according to Fig. 5(c), the behavior strongly depends on the effective magnetic anisotropy field \(H_\text{eff}^\text{DMI} \), indicating that magnitude of DMI cannot be determined in a straightforward way, unlike the case of 1D motion along the \(x \) direction. We also note that this calculation is consistent with the previously observed \(H_\text{eff}^\text{DMI} \) dependence of \(H_\text{DMI} \) [32,47].

In our experiments shown in Sec. III C, the reversed domain is nucleated in the large reservoir [Fig. 1(c)] and the direction of DW motion in the wire is effectively limited to the \(x \) direction. This fact leads to the nonlinear behavior unlike the original study [32] and allows us to determine \(H_\text{DMI} \) following the 1D model as described in Sec. III C. In other words, if one observes linear behavior of \(\chi_{\text{SOT}} \) and obtains \(|H_\text{DMI}| > H_\Sigma \), it suggests a DW motion in the \(y \) direction and determined \(H_\text{DMI} \) does not reflect the correct value. It is noteworthy that all the determined \(H_\text{DMI} \) and \(H_\Sigma \) well agree with MOKE-based measurements [28,38,67], implying that the tilting of DW plane during the motion in the \(x \) direction [37] is insignificant for our devices probably due to a restoring force due to the DW tension relating to the edge condition [70]. We finally note that even without a large reservoir, the corrected analysis described above can be used as long as the DW motion is effectively constrained in the \(x \) direction. For example, in the case of a chirality-induced asymmetric magnetic nucleation, DW propagation was reported to take place mainly in the

Oersted field [68] and/or the SOTs [46]. Subsequently, DW displaces not only in the \(x \) but also in the \(y \) directions owing to a large-sized device with a low aspect ratio [32,46]. To examine the influence of DW motion in the \(y \) direction, we consider a magnetization reversal process brought about by sweeping \(H \) under static \(H_\Sigma \) and \(I \) in a relatively wide wire with a large DMI. As illustrated in Fig. 5(a), magnetic domains are nucleated at the wire edge under \(H_\Sigma \), where nucleation starts from both edges (either of edges) if SOT (Oersted field) is dominant [46]. Then, \(H_\Sigma \) forces the magnetization inside the DW to point to the \(x \) direction, eventually causing a tilting of DW plane with an angle \(\theta \) due to the DMI [69]. At this stage, unlike the case for DWs moving in the \(x \) direction, \(\uparrow \downarrow \) and \(\downarrow \uparrow \) DWs moving in the \(y \) direction feel \(H_\text{eff}^\text{DMI} \) with the same sign, as depicted in Fig. 5(b). Also, the sign of \(H_\text{eff}^\text{DMI} \) is the same between up to down and down to up reversal processes, leading to a shift of hysteresis loop. Note that this scenario holds true regardless of the initial nucleation site depicted in Fig. 5(a) as well as the number of nucleated domains.

A notable point here is that \(H \) dependence of \(\chi_{\text{SOT}} \) can be represented by \(H \) dependence of \(\theta \) because \(\chi_{\text{SOT}} \) is proportional to \(\sin \theta \), where \(\theta \) is determined by the energy equilibrium in the quasiequilibrium process. For simplicity, we assume that the Néel-type DW configuration, i.e., \(\varphi = 0 \), is maintained due to a large DMI, and tilting of DW plane is much more dominant than the modification of the internal DW configuration [37,69]. The tilting angle \(\theta \) of the DW plane at equilibrium is approximated by [69]

\[
\sin \theta \approx \frac{\gamma_z}{\gamma_{\text{DW}}}.
\]

\[
\gamma_z = -\pi M_S H_\delta / \mu_0,
\]

\[
\gamma_{\text{DW}} = 4\sqrt{A_5 K_{\text{eff}}} + 2 \delta K_D - \pi M_S H_\text{DMI} \delta / \mu_0,
\]

where \(\gamma_z \) represents the Zeeman energy contribution to internal DW energy \(\gamma_{\text{DW}} \). Figure 5(c) shows the \(H \) dependence of \(\theta \) calculated for \(\mu_0 H_\text{DMI} = 200 \text{ mT} \). A linear dependence is seen except for large \(H \) regime where Eq. (2) is not applicable [69], accounting for the observed linearity between \(\chi_{\text{SOT}} \) and \(H_\Sigma \) in the original work with a large DMI systems [32].

FIG. 5. (a) Schematics of domain nucleation and asymmetric expansion with current injection under \(H_\Sigma \) for Oersted-field dominant (left) and SOT dominant (right) cases [46]. (b) Schematic illustration of the impact of DW motion in the \(y \) direction on hysteresis loop shift. \(H_\text{eff}^\text{DMI} \) and \(\theta \) denote current-induced effective field acting on DW and tilting angle of DW plane, respectively. (c) Calculated \(H \) dependence of \(\theta \) by Eq. (2), where black, red, and green symbols denote the calculation results for the effective anisotropy field of \(\mu_0 H_\text{eff}^\text{DMI} = 500, 600, \) and 700 mT, respectively. The following magnetic parameters are used for calculation; \(M_S = 1.7 \text{ T}, t = 1.125 \text{ nm}, A_5 = 10 \text{ pJ/m}. \)
V. CONCLUSION

We study the effect of DW anisotropy on the current-induced hysteresis loop shift scheme, which is widely used for determining the magnitude of DMI, utilizing several material systems with various magnitudes of DMI. We find that incorporation of DW anisotropy into the model for the analysis is necessary to quantify the DMI effective field \(H_{DMI} \), although \(H_{DMI} \) cannot be accurately determined for such a case. Therefore, the prescription for \(H_{DMI} \) determination with the current-induced hysteresis loop shift can be summarized as follows. First, one measures \(x_{SOT} \) vs \(H_x \). If the obtained dependence shows nonlinearity, one should use the large-DMI correction described in Sec. III C. If nonlinearity is not observed, one should tentatively use the small DMI correction described in Sec. III B and quantify \(H_S \) and \(H_{DMI} \). If \(|H_{DMI}| < H_S \) is satisfied, the obtained \(H_{DMI} \) should be reliable; otherwise, one needs to redesign the device or consider employing different methods because the DW motion in the \(y \) direction is likely to take place as described in Sec. IV. The present findings unravel the puzzling issues of the current-induced hysteresis loop shift scheme and offer an important insight for reliable quantification of DMI which is crucial for spintronics with chiral objects.

ACKNOWLEDGMENTS

We thank S. DuttaGupta, B. Jinmai, T. Hirata, H. Iwanuma, K. Goto, and C. Igarashi for their technical support and fruitful discussion. A portion of this work was supported by the IMPACT Program of CSTI, JSPS Kakenhi No. 19H05622, and RIEC Cooperative Research Projects.

APPENDIX: CHARACTERIZATION BY REFERENCE METHOD FOR LARGE DMI SYSTEM

Here, we examine the validity of the correction for large DMI systems described in Sec. III C, by measuring the coercivity under in-plane and out-of-plane fields and analyzing with the droplet model [23,33,53,71]. This method focuses on nucleation of magnetic domains rather than DW motion at zero current and considers the modification of DW energy with in-plane magnetic fields. The nucleation field \(H_n \) of a magnetic cylindrical droplet (bubble) is expressed as [53,72]

\[
H_n = \frac{\pi \gamma_{DW}^2}{2M_S k_B T},
\]

where \(\gamma_{DW} \), \(p \), \(k_B \), and \(T \) are the in-plane magnetic field dependent total DW energy density of the \(\uparrow \downarrow \) and \(\downarrow \uparrow \) DWs [33,53], the thermal stability factor described in the Néel-Arrhenius law, the Boltzmann constant, and the temperature. The key feature of the expected in-plane field dependence of \(H_n \) is that \(H_n \) shows plateau as long as \(|H_x| \ll |H_{DMI}| \) due to a constant \(\gamma_{DW}^2 \) since the \(\uparrow \downarrow \uparrow \downarrow \) DW energies are compensated by each other, whereas \(H_n \) decreases above the threshold (\(|H_x| = |H_{DMI}| \)). Figure 6 shows a comparison of \(\mu_0 H_{DMI} \) determined by the two methods. As can be seen in the bottom panel (droplet model), \(H_c \) dependence of coercive field \(H_C \) is well fitted by Eq. (A1). The grey and navy-blue-colored areas represent \(\mu_0 H_{DMI} \) with uncertain range determined by the two methods. As can be seen in the bottom panel (droplet model), the current-induced hysteresis loop shift scheme with large DMI correction, respectively. The results from the two methods agree well within the uncertain range, indicating the validity of the correction, whereas \(\mu_0 H_{DMI}^{max} \) denoted by the red line, which corresponds to \(\mu_0 H_{DMI} \) in the original model, leads to an overestimation.

