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Yb delafossites: Unique exchange frustration of 4 f spin-1
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While the Heisenberg model for magnetic Mott insulators on planar lattice structures is comparatively well
understood in the case of transition metal ions, the intrinsic spin-orbit entanglement of 4f magnetic ions on
such lattices shows fascinating new physics largely due to corresponding strong anisotropies both in their
single-ion and their exchange properties. We show here that the Yb delafossites, containing perfect magnetic
Yb3+ triangular lattice planes with pseudospin s = 1

2 at low temperatures, are an ideal platform to study these
phenomena. Competing frustrated interactions may lead to an absence of magnetic order associated to a gapless
spin liquid ground state with a huge linear specific heat exceeding that of many heavy fermions, whereas the
application of a magnetic field induces anisotropic magnetic order with successive transitions into different
long-range ordered structures. In this comparative study, we discuss our experimental findings in terms of a
unified crystal-field and exchange model. We combine electron paramagnetic resonance (EPR) experiments and
results from neutron scattering with measurements of the magnetic susceptibility, isothermal magnetization up to
full polarization, and specific heat to determine the relevant model parameters. The impact of the crystal field is
discussed as well as the symmetry-compatible form of the exchange tensor, and we give explicit expressions for
the anisotropic g factor, the temperature dependence of the susceptibility, the exchange-narrowed EPR linewidth,
and the saturation field.

DOI: 10.1103/PhysRevB.103.214445

I. INTRODUCTION

We would like to discuss our findings and review further
available results about an interesting class of compounds—
Ytterbium Yb3+ delafossites. The delafossites in general
emerged from the end of the 19th century onward [1]; the
name is structurally motivated and as such has little rela-
tionship to the properties of the individual compounds falling
into this class—there are insulators, metals, superconductors,
semimetals, quasi-two-dimensional highly conductive mate-
rials, magnetic materials, and more. For a large variety of
ground states, one may think it is highly probable that we can
find representatives in the delafossite class of minerals.

The delafossites form as A1+R3+X 2−
2 , where A is an alka-

line metal (Li, Na, K, Rb, Cs) or a monovalent transition metal
ion (Pd, Pt or Cu, Ag), R is a trivalent transition metal or rare
earth ion which might be magnetic (like Ti, V, Cr, Fe, Ce, or
Yb) or nonmagnetic (Al, Ga, In, Tl, or Co, Rh), and X stands
for a chalcogen which is either oxygen, sulfur, or selenium.
Most of the compounds form in the rhombohedral α-NaFeO2

delafossite structure [2,3] with space group R3̄m.
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Until now, studies on 4f delafossites have been very rare.
The reason is that the 4f ions are relatively large and are
difficult to incorporate into oxygen-based delafossite struc-
tures which are widely investigated. For delafossites with
sulfur or selenium, however, this is quite possible due to the
larger size of voids formed by the chalcogen and even the
growth of sizable single crystals is possible [4]. An essential
characteristic of the delafossite structure is the presence of
triangular planes composed of edge-sharing RX6 octahedra.
In this respect, they can serve as model systems for quantum
magnetism in a perfect planar triangular lattice. Due to the
ideal triangular structure, geometric frustration counteracts or
even suppresses magnetic order at low temperatures, even-
tually supporting spin-liquid behavior. Alternatively, at zero
temperature, a magnetic order, the so-called 120-degree order,
is also predicted [5–8].

Among the magnetic trivalent transition metal ions, only
Ti3+ has an effective spin s = 1

2 doublet ground state. Un-
fortunately, it turns out that compounds based on Ti such as
NaTiO2 show structural instabilities which result in phase
transitions and symmetry reductions introducing additional
complexity in the interpretation of the results obtained [9–11].
Here the importance of the 4f ions comes into play: Among
them, the Kramers ions with an odd number of electrons or
holes in the 4f shelllike Ce3+ or Yb3+ have a pronounced
doublet ground state due to a low-symmetry crystal electric
field (CEF) and can be described with a pseudospin s = 1

2 .
In this respect, we underscore that Yb delafossites are ideal
model systems for the study of spin- 1

2 triangular lattices. Our
research of the available literature returned 14 Yb delafossite
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TABLE I. Yb delafossites. Lengths of the long (λ) and short (σ ) edges of the triangles forming the distorted YbCh6 octahedra for some
MYbCh2 compounds with M being a metal and Ch being a chalcogenide. Next column: Tilting angle α = cos−1(λ/(

√
3σ )) of the octahedral

rectangles with respect to the triangular plane. Last column: Those compounds marked with an asterisk have no magnetic long-range order
down to the respective lowest investigation temperature. For all others, this has not (yet) been investigated. Last row: Undistorted octahedron.

Compound λ/Å σ/Å α Reference Space group Remark

LiYbS2 3.80800 3.24599 47.35◦ [12,13] R3̄m *
NaYbO2 3.3510 2.87472 47.70◦ [14,15] R3̄m *
NaYbS2 3.90400 3.40822 48.60◦ [12,16] R3̄m *
NaYbSe2 4.05680 3.92235 53.33◦ [17,18] R3̄m *
KYbO2 3.40010 3.01711 49.41◦ [19] R3̄m *
KYbS2 3.96800 3.62569 50.81◦ [12,20] R3̄m *
KYbSe2 4.11100 5.06809 62.07◦ [17] R3̄m
RbYbO2 3.41000 3.16297 51.51◦ [21] R3̄m
RbYbS2 3.99100 3.71481 51.66◦ [22] R3̄m
CsYbS2 4.02200 3.70764 51.22◦ [23] R3̄m
CsYbSe2 4.15390 3.88335 51.86◦ [24,25] P63/mmc *
TlYbS2 3.93500 3.62771 51.23◦ [26] R3̄m *

3.9454 3.726 52.31◦ [27] P63/mmc *
AgYbO2 3.44040 2.99493 48.45◦ [28,29] R3̄m *, linear Ag coordination
CuYbSe2 4.01670 3.93641 53.91◦ [30] P3̄m1 tetrahedral Cu coordination
undistorted 1 1 54.74◦ (cubic)

systems, see Table I. We expect that the number of compounds
will increase over time due to the huge interest among the
quantum magnetism community. Starting from NaYbS2, we
have established the series of NaYbCh2 delafossites as poten-
tial quantum spin liquids and will discuss these systems in
particular for a comparative analysis, since we consider them
to be prototypical [15,18,31].

The most remarkable property of these materials is the ab-
sence of magnetic order down to lowest reached temperatures
T = 50 mK, suggesting that we might have an experimen-
tal realization of the theoretically predicted spin-liquid-type
ground state [32,33]. Another striking feature is that upon
the application of a magnetic field, the nonmagnetic ground
state transforms into a long-range ordered antiferromagnetic
state. Therefore, with the Yb delafossites we are dealing with
systems in the vicinity of magnetic order which might be
tagged as critical spin liquids. This is the crucial difference to
the known putative spin liquid candidates like the triangular
lattice organic salts, the kagome-type herbertsmithite or the
recently discovered hyperkagome iridates which are all far
away from magnetic order [34–36].

In the following sections, we will try to reconcile our the-
oretical considerations based on a crystal-field plus nearest-
neighbor exchange model with the experimental results.
In summary, the Yb delafossite compounds are interest-
ing unique systems with an ideal triangular lattice structure
which, together with the strong spin-orbit coupling, leads to
unusually large spin and exchange anisotropies. In detail, the
triangular crystal field splits the spin-orbit entangled Yb3+

states into a series of Kramers doublets, the lowest of which,
in turn, results in a complex correlated ground state with a
pseudospin s = 1

2 . As a consequence, the magnetic exchange
between the Yb3+ ions mediated via the orbitals of the sur-
rounding p states of the chalcogen ions also becomes complex
and bond dependent, similar to the iridate compounds with
honeycomb structure.

II. ONE YTTERBIUM ION

A. Crystallography

Table I summarizes the known Yb delafossites. Character-
istic for the crystal structure of these is a layered composition
of sheets of tilted YbCh6 octahedra alternating with filler
planes comprised of alkaline/transition/boron group metal
ions. Figure 1 illustrates the crystal structure of NaYbS2 as

FIG. 1. Illustration of the crystal structure of NaYbS2. The blue
polygons represent the distorted YbS6 octahedra with Yb3+ in the
center of their basal planes, the yellow polygons the distorted NaS6

octahedra with the Na+ ions. The S2− ions are printed in yellow.
(a) Side view perpendicular to the c direction of the unit cell (thin
black lines) containing three layers of YbS2 planes. (b) View from
top parallel to the c direction onto the middle layer. The light blue
triangles perpendicular to c are equilateral (edge length λ) and form
triangular lattice planes.
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FIG. 2. Schematic energy levels of the Yb3+ ion (not true to
scale). From left to right: Free ion, with spin-orbit coupling, in a
cubic crystal field, in a trigonal crystal field. The thicknesses of the
horizontal lines are proportional to the degeneracies of the respective
energy levels, see text.

an example. The sulfur octahedra (blue) are tilted such that
the Yb3+ ions inside form perfect triangular lattice planes
perpendicular to the crystallographic c direction. Ideally, an
octahedron has four equivalent threefold axes perpendicular
to the eight pairwise parallel equilateral triangles forming the
surface of it. However, the octahedra of all Yb delafossite
compounds are distorted in the same manner: one threefold
axis is shortened such that each former octahedron is com-
prised of two large parallel equilateral triangles with edge
length λ and six small isosceles triangles with two edges of
length σ and one edge of length λ. The large triangles are
those oriented perpendicular to the c direction, forming a per-
fect triangular lattice. For an ideal octahedron, we would have
σ = λ, the tilting angle of the octahedral axis with respect
to the triangular plane would be α = cos−1(1/

√
3) ≈ 54.74◦.

In contrast, all delafossites have σ �= λ, the tilting angle of
the octahedral axis then is given by α = cos−1(λ/(

√
3σ )), see

Table I for numbers.
The delafossite structure can have two polytypes according

to the orientation of the planar layer stacking. The space group
of the rhombohedral 3R-type delafossites is R3̄m whereas the
hexagonal 2H types have a space group of P63/mmc. The
difference between the two polymorphs is the stacking of the
planar layers in the c direction. Most of the Yb delafossites

belong to the R3̄m space group (Table I). Assigning typical
oxidation states, we have Yb3+ ions with one hole in the 4f
shell and A+ filler ions. The latter mostly are alkaline metals,
only one Yb delafossite exists with a metal from the boron
group (Tl) and two Yb delafossites have transition metal filler
sheets from the copper group (Ag and Cu).

B. Yb3+ in a trigonal crystal field

Figure 2 schematically shows the energy levels of a single
Yb3+ ion. The 14 4 f 13 states of Yb3+ with � = 3, s = 1

2 are
split by the spin-orbit coupling into a j = � + s octet and a
j = � − s sextet. In a perfect octahedral (cubic) environment
with ideal tilting angle α, the j = 7/2 states are further split
into two doublets �6 and �7 and a �8 quartet, the j = 5/2
states into a �7 doublet and a �8 quartet. Distorting the
octahedron along one of its trigonal axes lowers the CEF
environment to trigonal, and the local site symmetry of the
Yb3+ ions is C3v with the threefold axis parallel to the c direc-
tion. This transforms the formerly cubic states like �6 → �T

6 ,
�7 → �T

6 , and �8 → �T
4 + �T

5 + �T
6 . We note that although

the two representations �T
4 and �T

5 are one-dimensional,
due to Kramer’s theorem they are complex conjugates and
correspond to the same energy. Apart from a constant, the
Hamiltonian for a single Yb3+ ion at an arbitrary lattice site i
is then given by

HCEF(i) = B0
2O0

2(Ji ) + B0
4O0

4(Ji ) + B3
4O3

4(Ji )

+ B0
6O0

6(Ji ) + B3
6O3

6(Ji ) + B6
6O6

6(Ji ), (1)

where Bm
n are crystal-field parameters and Om

n (J) are Stevens
operators, being polynomials of the components of the
total-momentum operator [37,38]. They are reproduced in
Appendix A.

To gain insight into the structure of the wave functions and
energy levels, let’s for a moment assume the Yb3+ ion resides
in an ideal octahedron. The local symmetry of the Yb3+ ion
then is cubic with Oh symmetry and additional relationships
between the Bm

n crystal-field parameters apply. Choosing the
trigonal axis introduced above as the quantization axis of the
hypothetic ideal delafossite, Eq. (1) reduces to [37,38]

H(cubic,3)
CEF = B(3)

4

(
O0

4 − 20
√

2O3
4

)
+ B(3)

6

(
O0

6 + 35
√

2

4
O3

6 + 77

8
O6

6

)
. (2)

An explicit expression for the matrix of this Hamiltonian for
j = 7/2 in the | j, m〉 basis is given in Appendix B.

Only two independent crystal-field parameters remain. The
corresponding wave functions of H(cubic,3)

CEF which are grouped
in Kramers pairs consisting of time-reversed states are given
by

�6 : ∓1

3

√
35

6

∣∣∣∣72 ,±5

2

〉
− 1

3

√
7

3

∣∣∣∣72 ,∓1

2

〉
± 1

3

√
5

6

∣∣∣∣72 ,∓7

2

〉
, 〈�6|Jz|�6〉 = diag

(
±7

6

)
,

�7 : ∓1

3

√
7

2

∣∣∣∣72 ,±7

2

〉
+

√
5

3

∣∣∣∣72 ,±1

2

〉
± 1

3
√

2

∣∣∣∣72 ,∓5

2

〉
, 〈�7|Jz|�7〉 = diag

(
±3

2

)
,
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�8 :

⎧⎪⎪⎨
⎪⎪⎩

1

3

√
14

3

∣∣∣∣72 ,±7

2

〉
± 1

3

√
5

3

∣∣∣∣72 ,±1

2

〉
+ 2

3

√
2

3

∣∣∣∣72 ,∓5

2

〉
∣∣∣∣72 ,±3

2

〉 , 〈�8|Jz|�8〉 = diag

(
±7

6
,±3

2

)
. (3)

They are independent of the crystal-field parameters and de-
termined by symmetry only. The notation diag(A) means that
the matrix representation 〈�α|Jz|�α〉 of the Jz operator has
eigenvalues A with wave functions as noted.

C. Ground state of the Yb3+ ion

Lowering the local symmetry of the crystal field from
cubic to trigonal by compressing the threefold axis parallel
to the c direction splits the �8 quartet obtained so far into two
Kramers doublets and all six crystal field parameters in Eq. (1)
become independent. Also, the CEF wave functions for the
four doublets now depend on the crystal-field potential, see
Appendix B for a j = 7/2 matrix representation of the corre-
sponding Hamiltonian. This Hamiltonian couples only | j, m〉
states with �m = ±3, such that three of the four resulting
Kramers doublets may be written as [39,40]

|ψ+〉 = −αeiφα

∣∣∣∣72 ,
7

2

〉
+ β

∣∣∣∣72 ,
1

2

〉
+ γ e−iφγ

∣∣∣∣72 ,−5

2

〉
,

|ψ−〉 = αe−iφα

∣∣∣∣72 ,−7

2

〉
+ β

∣∣∣∣72 ,−1

2

〉
− γ eiφγ

∣∣∣∣72 ,
5

2

〉
, (4)

where α, β, and γ are real with α2 + β2 + γ 2 = 1. We note
that time reversal T doesn’t change the sign of | 7

2 ,− 1
2 〉 =

T | 7
2 , 1

2 〉. This is a general feature of the time-reversal operator,
giving T | j,± 1

2 〉 = (−) j±1/2| j,∓ 1
2 〉 with T 2 = −1 for half-

integer total momentum j.
The fourth doublet is the pure state | 7

2 ,± 3
2 〉, adiabatically

(as function of the trigonal distortion) connected to the pure
state in the �8 quartet.

One doublet defined in Eqs. (4) will be the ground state. In
principle, | 7

2 ,± 3
2 〉 could be the ground-state doublet as well.

However, we will see at the end of this section why in our case
it is not. With the help of Appendix A, the matrix elements
of the total momentum operator J within the ground-state
doublet can be read off:

〈ψ±|Jz|ψ±〉 = ±1

2
(7α2 + β2 − 5γ 2),

〈ψ−|Jx|ψ+〉 =
√

7αγ ei(φα−φγ ) + 2β2 = 〈ψ+|Jx|ψ−〉∗,
〈ψ−|Jy|ψ+〉 = i

(√
7αγ ei(φα−φγ ) + 2β2

)
= 〈ψ+|Jy|ψ−〉∗.

All other matrix elements vanish. The total momentum op-
erator J transforms like J = −T JT −1 under time reversal T .
With T = UK , U = exp(iπJy) in our (standard) representa-
tion and K the complex conjugation, this requires the matrix
elements of Jz and Jx to be real, those of Jy to be purely
imaginary, which is equivalent to φα = φγ + 2πn, n ∈ Z.
This indeed allows us to introduce a pseudospin S for the

ground-state doublet by mapping

g jJz → g‖Sz,

g jJx → g⊥Sx,

g jJy → g⊥Sy,

g‖ = g j (7α2 + β2 − 5γ 2),

g⊥ = g j (2
√

7αγ + 4β2),

g j = 1 + j( j + 1) + s(s + 1) − �(� + 1)

2 j( j + 1)

= 8

7
≈ 1.14 (Landé factor).

The Zeeman splitting for a single Yb3+ ion at site i is then
obtained from the Hamiltonian

HZeeman(i) = −μ0g jμB

∑
α

Jα
i Hα

→ −μ0μB
[
g‖Sz

i Hz + g⊥
(
Sx

i Hx + Sy
i Hy
)]

, (5)

where μ0 is the magnetic permeability constant and μB the
Bohr magneton.

The above equations give an argument why the pure state
| 7

2 ,± 3
2 〉 cannot be the ground state here: We would have trans-

verse matrix elements 〈 7
2 ,± 3

2 |Jx,y| 7
2 ,∓ 3

2 〉 = 0, i.e., g⊥ ≡ 0,
and no coupling to a magnetic field applied perpendicular to
the threefold axis enforced by trigonal symmetry alone. As
we will see, this is in contradiction to experiment. To the best
of our knowledge, no Yb compound is known to have the
| 7

2 ,± 3
2 〉 doublet as ground state.

D. Electron paramagnetic resonance

We have done thorough electron paramagnetic reso-
nance studies on all three NaYbCh2 delafossites [15,16,18].
Table II contains our experimental findings on the g fac-
tors. A common remarkable feature is the strong anisotropy
between in-plane and out-of-plane gyromagnetism. This is
shown exemplarily for NaYbS2 in Fig. 3. In a certain temper-
ature range, the resonance intensity IEPR is antiproportional
to the temperature [29]. Regarding IEPR as a measure for
the resonant susceptibility χR, we can correspondingly as-
sign characteristic temperatures �‖,⊥, see Table II. We note
that these temperatures are not necessarily identical with
the Curie-Weiss temperatures obtained from susceptibility
measurements (see below). Toward high temperatures, the
temperature dependence of the resonance linewidth �B(T )
can be understood with a spin-lattice relaxation through the
modulation of the ligand field by the lattice vibrations. The
basic mechanism behind this relaxation is the spin-orbit cou-
pling which makes the electron spins feel the ligand field
modulation [41, p. 60 ff]. For the temperature dependence
of this relaxation, various processes are involved among
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TABLE II. Characteristic values for the NaYbCh2 delafossites, determined by different experimental methods discussed in the text. For
NaYbO2, only results on powder samples are available, which are reproduced in the respective ‖ row of each quantity. An asterisk in one of
the Ref. columns denotes this publication.

Observable quantity NaYbO2 Ref. NaYbS2 Ref. NaYbSe2 Ref. remarks

EPR |g‖| 1.75(3) [15] 0.57(3) [16] 1.01(1) [29] T=20 K
|g⊥| 3.28(8) 3.19(5) 3.13(4)
�‖ −9 K −15.2 K −14.3 K
�⊥ −14.8 K −14.0 K

�E12 27 meV 17 meV 14 meV
INS �E12 34.8 meV [43] 12 meV [31] 15.8 meV [44] T=5 K

�E13 58.5 meV 23 meV 24.3 meV
�E14 83.1 meV 39 meV 30.5 meV

χ (T ) �‖ −6 K [15] −1.8 K * −3.5 K [18]
�⊥ −11.2 K −7 K
μ‖ 2.6 μB 1.2 μB 1.1 μB

μ⊥ 2.87 μB 2.43 μB

�̂‖,⊥ −100 K * −66 K * −66 K *
μeff 4.6 μB 4.6 μB 4.6 μB

M(H ) μ0H ‖
sat 12 T [15] – 25 T [18] T = 470 mK

μ0H⊥
sat 14.7 T [45] 12 T

M‖
sat 1.36 μB/Yb3+ 0.3 μB/Yb3+ [31] 0.49 μB/Yb3+

M⊥
sat 1.6 μB/Yb3+ [45] 1.5 μB/Yb3+
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FIG. 3. EPR spectra (upper frames) and anisotropy of the EPR g
factor (lower frame) of single crystalline NaYbS2 at T = 19 K and
the microwave field bmw⊥c axis (ν = 9.4 GHz). The spectra taken at
external fields B⊥c axis and B‖c axis were fitted by a Lorentzian
lineshape (dashed lines). The anisotropy of the EPR g factor can

be described by g(�) =
√

g2
‖ cos2 � + g2

⊥ sin2 � with g⊥ = 3.19(5)

and g‖ = 0.57(3). The sample was rotated around an axis lying in
the basal plane parallel to bmw.

which an exponential temperature dependence identifies a
two-phonon process [42]. In this so-called Orbach process,
the thermal equilibrium of the Zeeman split ground doublet
is achieved by a phonon absorption exciting the spin system
to an upper state at energy �E and then a phonon emis-
sion back to the ground state, the absorption and emission
energies differing by the Zeeman energy. This process is de-
termined by the number of phonons at energy �E and yields
for �E � kBT an approximate temperature dependence ∝
exp(−�E/kBT ). Identifying �E with the energy �E12 of the
first excited crystal-field split state of the Yb3+ ion the data
analysis of �B(T ) gives a rough estimate (within ±2.5 meV)
of �E12, values of which are also shown in Table II.

E. Inelastic neutron scattering

Table II contains results on inelastic neutron scattering
as well. For NaYbO2 and NaYbSe2, three clear maxima in
energy scans at temperature T = 5 K have been observed
[43,44], associated with the energy differences �E1 j between
the ground state |ψ±

1 〉 and the excited states |ψ±
j 〉, j = 2, 3, 4.

Values are quoted in the table. We investigated the excited
CEF doublets of NaYbS2 in a time-of-flight neutron scat-
tering experiment [31], see Fig. 4 for a summary of the
results. At T = 5 K, we have found only two clear maxima in
the energy-dependent scattering intensity, pointing to excited
doublets located 23 meV and 39 meV above the ground state.
A third maximum is missing. However, at higher temperatures
T � 50 K, additional intensity appears at about 11 meV and
27 meV in the energy scan. If we attribute these features to
excitations from the thermally populated first excited doublet
to the two higher doublets already observed at low tempera-
tures, we can assume the first excited doublet to be located
at an excitation energy of �E12 ≈ 12 meV above the ground
state.
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FIG. 4. (a) Excitation spectrum of a NaYbS2 powder sample
measured at T = 5 K with an incident neutron energy Ei = 50 meV.
(b) The spectrum integrated over a momentum transfer range of
2 . . . 4 Å−1 at different temperatures. Dashed line: fit of the 5 K data.
Figure taken from Ref. [31].

Two qualitative observations can be made here: The higher
the g factor anisotropy, (i) the lower the CEF excitation en-
ergies, and (ii) the smaller the transition matrix element from
the ground state to the first excited doublet is.

As we will see later from analyses of susceptibility data,
the typical exchange energy scale of the NaYbCh2 delafos-
sites is of the order of a few Kelvin. With the CEF excitations
being two orders of magnitude higher, this qualifies the pseu-
dospin description of the ground-state doublet introduced in
the prior section also for the minimum exchange model dis-
cussed in the following.

III. MANY YTTERBIUM IONS

A. High-temperature magnetic susceptibility

The dimensionless uniform magnetic susceptibility χ (T )
of a crystal with volume V is given by the change of the
magnetization M with the magnetic field B = μ0H with com-
ponents

χα = μ0
∂Mα

∂Bα

= μ0

V

∂μ̄α

∂Bα

= −μ0

V

∂2F

∂B2
α

, α =‖,⊥, (6)

where μ̄α = −∂F/∂Bα is the total magnetic moment in spatial
direction α either parallel or perpendicular to the c axis and
F = (1/β ) logZ the canonical free energy, 1/β = kBT the
inverse temperature and kB the Boltzmann constant. For the
molar susceptibility, Eq. (6) has to be multiplied by NL/(ν/V )
where NL is Avogadro’s number and ν/V the volume density
of Yb3+ ions.

We link the free energy in the usual way with statistical me-
chanics through the partition function Z = exp(−βH) where

H =
ν∑

i=1

[HCEF(i) + HZeeman(i) + Hexc(i)], (7)

with HCEF given by Eq. (1), HZeeman given by Eq. (5), and the
exchange Hamiltonian for an arbitrary but fixed site i,

Hexc(i) = 1

2

∑
〈i j〉

∑
αβ

Jα
i Ĵ

αβ
i j Jβ

j , (8)

where the sum is taken over the z = 6 bonds connecting sites
j and site i with an exchange tensor Ĵ having the respective

FIG. 5. Temperature dependence of the magnetic susceptibility
of NaYbSe2 obtained in a field of 1 T for χ⊥(T ) and of 3 T for χ‖(T ).

components Ĵ αβ
i j [46]. (See below in Sec. III B for more de-

tails on the symmetry-allowed form of the exchange.) A factor
( 1

2 ) is included to compensate for double counting the bonds
when executing the sum over the lattice sites in Eq. (7). In the
high-temperature limit β → 0, we can expand χα [Eq. (6)] in
powers of β. We obtain a Curie-Weiss law

χα = ν

V
μ0g2

jμ
2
B

j( j + 1)

3
β(1 + βkB�̂α ) + O(β3), (9)

with j = 7/2 and the Curie-Weiss temperatures given by

kB�̂‖ = −4

5

(
j − 1

2

)(
j + 3

2

)
B0

2 − j( j + 1)

3
zĴ‖,

kB�̂⊥ = +2

5

(
j − 1

2

)(
j + 3

2

)
B0

2 − j( j + 1)

3
zĴ⊥. (10)

Here zĴ‖ and zĴ⊥ are the contributions of the exchange
tensor parallel and perpendicular to the c direction. Other
components of the exchange tensor do not appear in χα up
to order β2. This result coincides with Ref. [47], where a
four-parameter crystal field Hamiltonian has been treated.
Remarkably, due to the orthogonality and tracelessness of
the Stevens operators, only the B0

2 CEF parameter enters
the Curie-Weiss temperatures, independent of the form and
symmetry of the crystal field otherwise as long as it con-
tains a more-than-twofold symmetry axis. Figure 5 shows
the temperature dependence of the susceptibilities χ‖,⊥(T )
for NaYbSe2 in the full temperature range T = 0.5 . . . 400 K
accessible to us where we have applied the magnetic field in
directions parallel to the c axis (label H ‖ c) and perpendicular
to it. At temperatures T � 120 K, the inverse χ−1

‖,⊥(T ) (not
shown) shows a linear temperature dependence. The solid line
in the left plot of Fig. 5 denotes a corresponding Curie-Weiss
fit to χ⊥(T ) according to Eq. (9) for T � 150 K. From this fit,
we obtain μeff ≈ 4.6 μB, reflecting the full effective moment
μeff = g jμB

√
j( j + 1) ≈ 4.54 μB. We also obtain a Curie-

Weiss temperature �̂⊥ ≈ −66 K. In the temperature range
where the Curie-Weiss law is a good approximation, χα (T )
is essentially isotropic with �̂‖ ≈ �̂⊥, independent of the di-
rection of H. The same fits for NaYbO2 (powder) and NaYbS2

yield the full moment and isotropic Curie-Weiss temperatures
as well. Results are noted in Table II.

Below T = 80 K, the s = 1
2 pseudospin state emerges.

After subtracting a temperature-independent Van-Vleck
contribution (obtained from high field magnetization
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FIG. 6. Temperature dependence of the magnetic specific heat of
the NaYbCh2 delafossites [15,18,31].

measurements) the susceptibility χ (T ) for 10 K � T � 40 K
can be fitted with a Curie-Weiss law (right-hand plot of
Fig. 5) which yields a Curie-Weiss temperature �⊥ = −7 K,
and an effective moment μ⊥ = 2.43μB and a Curie-Weiss
temperature �‖ = −3.5 K and a moment of μ‖ = 1.1μB for
fields in the ab plane and in the c direction, respectively.
These low-temperature effective moments are consistent with
the measured g values from EPR within the s = 1

2 pseudospin
model. The pronounced maximum in the susceptibility
(Fig. 5) corresponds to the maximum found in the temperature
dependence of the magnetic specific heat cm(T ) (Fig. 6). Such
a maximum is expected in the isotropic triangular lattice [48].
At the maximum, the thermal energy roughly corresponds
to the exchange coupling energy of the spin system. In
the susceptibility, it is clearly visible that for fields in c
direction the maximum is at lower temperatures. This is to
be expected since the magnetic coupling is smaller in this
direction. Figure 6 shows the magnetic specific heat for all
three NaYbCh2 compounds. In contrast to the susceptibility,
the maximum is broadened here. At temperatures right
below the maximum, this specific heat decreases with T 2 as

expected for two-dimensional magnonlike states, and then a
linear dependence cm(T ) = γ T down to the lowest accessible
temperatures with a large residual value γ ≈ 1 J/molK2 is
found. This linear temperature dependence is well known
for heavy-fermion systems, for example, YbRh2Si2 [49] or
Yb4As3 [50,51], yet typical for a gapless spin liquid with
fermionic excitations [36].

B. Pseudospin exchange model

We restrict ourselves now to the CEF ground-state dou-
blet of each Yb3+ ion and use the pseudospin description
introduced above. The simplest model Hamiltonian includes
nearest-neighbor exchange on the triangular lattice (six neigh-
bors) only. Inspecting one Yb–Yb bond, we see that it contains
a twofold rotation axis, a mirror plane in the middle of the
bond, and a center of inversion in the middle of the bond.
(For an ideal delafossite with undistorted octahedra, we have
an additional mirror plane containing the basal plane of an
octahedron and a further mirror plane perpendicular to it.)
According to Moriya’s rules [52], antisymmetric exchange
must vanish due to the presence of the inversion center. This
leaves us with four independent components of the exchange
matrix (three for the ideal case) on any bond 〈i j〉. We choose
our coordinate system such that one bond is parallel to the
x direction and the z axis is perpendicular to the triangular-
lattice planes. For this bond, we can write

Ji j =
⎛
⎝J⊥ 0 0

0 J⊥ 0
0 0 J‖

⎞
⎠+

⎛
⎝J� 0 0

0 −J� Jyz

0 Jyz 0

⎞
⎠, (11)

whereby we split the exchange matrix into a rotationally
invariant part (rotations around the z axis) plus a traceless
directional-dependent part. We note that for finite Jyz the
Cartesian coordinate axes y and z are not the main axes of
the exchange tensor, rather all three main axis components
are different for J̃i j = U −1Ji jU , U unitary, J̃i j diagonal.
This is a direct consequence of the trigonal distortion (tilting
angle α �= cos−1(1/

√
3) defined in Sec. II A) of the YbCh6

octahedra.
The full pseudospin Hamiltonian with this parametrization,

expressed with ladder operators instead of Cartesian spin op-
erators then reads

H =
∑
〈i j〉

{
1

2
J⊥(S+

i S−
j + S−

i S+
j ) + J‖Sz

i Sz
j + 1

2
J�

(
eiφi j S−

i S−
j + e−iφi j S+

i S+
j

)

+ 1

2i
Jyz
[
eiφi j
(
Sz

i S+
j + S+

i Sz
j

)− e−iφi j
(
Sz

i S−
j + S−

i Sz
j

)]}+ HZeeman, (12)

with HZeeman given by Eqs. (5) and the direction-dependent
phases are

φi j =

⎧⎪⎪⎨
⎪⎪⎩

0, Ri − R j = (±1, 0, 0)

2π
3 , Ri − R j = ±(− 1

2 ,
√

3
2

)
− 2π

3 , Ri − R j = ±(− 1
2 ,−

√
3

2

)
.

(13)

We note that the direction-dependent terms in Eq. (12) in
contrast to the rotationally invariant terms contain at least one
spin flip coupling states with �sz = 1 or �sz = 2.

The three-dimensional ground-state phase diagram of this
Hamiltonian has been addressed by several authors [32,33,53–
57] using slightly differing parametrizations (see Appendix C
for examples). Zhu et al. [33] have shown that, indeed, spin-
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liquid-type regions in the ground-state phase diagram of the
model Eq. (12) without magnetic order may exist. However,
these nonmagnetic regions are comparatively small and re-
quire a special choice of the exchange constants. Much more
common are magnetically ordered states like stripe phases and
the 120-degree pattern known for the isotropic case. Nonethe-
less, of the 14 compounds listed in Table I at least nine do
not show any signature of long-range magnetic order down to
the lowest measurement temperature, typically either 0.4 K or
2 K. Given the narrowness of the nonmagnetic regions of the
model Eq. (12), it would be surprising if all compounds can be
described with exchange parameters leading to ground states
in those regions.

We are faced with a number of possible issues: First, crys-
tallographic peculiarities. A symmetry-allowed buckling of
the YbCh6 octahedral planes possibly introduces additional
exchange frustration not contained in the model above. An-
other problem is the stacking fault: One unit cell contains
three crystallographically equivalent Yb3+ ions, each being
member of a different YbCh6 distorted-octahedra plane. Ad-
jacent planes are stacked in an A–B–C like fashion where
the projections along the c direction of the positions of the
Yb3+ ions of the next layer fall in the middle points of the
triangular lattice formed by the current layer. This stacking
might be distorted. Compatible with these two effects is a
sample dependence of the EPR data for NaYbS2 we have
observed: The measurements were made for single crystals
from two different batches [16]. While the resonance field is
essentially identical in both measurements, a pronounced dif-
ference has been observed in the width of the EPR resonance.
For the smaller crystal, a description of the latter using two
Lorentzian lines has been necessary, indicating that roughly
half of all spin probes has a larger linewidth than the other
half. However, further investigations have to be undertaken to
clarify this.

Second, a trivial reason for no magnetic order would
be a frustration-induced extremely low ordering temperature
TN. According to Ref. [58], frustration ratios f = |�CW|/TN

[59,60] of the order of 10 can be achieved already for an
isotropic Heisenberg exchange model on the triangular lat-
tice with J⊥ = J‖ and J� = Jyz = 0 and a small interplane
exchange coupling Jinter. With typical Curie-Weiss tempera-
tures of a few Kelvin, it might be that TN falls into the few
100 mK range, however this requires extremely small Jinter =
O(10−4J‖,⊥).

Third, we cannot exclude off-stoichiometric Yb3+ ions,
and also Na vacancies might be present. Both effects introduce
an unknown amount of disorder in the exchange constants,
suppressing the magnetic order [61].

Fourth, the perfect threefold symmetry of the magnetic
sublattice, including the inversion center in the middle of
an Yb–Yb bond, might be distorted, introducing changes in
bond angles and additional nonzero elements in the exchange
matrix. Synchrotron data taken at low temperatures would
clarify that.

Fifth, related to the comparatively large local moment of
the Yb3+ ions in the ab plane (see Table II), the impact of the
long-ranged dipole-dipole interaction might be a further rea-
son for a suppression of TN below our accessible temperature
range [62].

Finally, it might well be that a pure nearest-neighbor
exchange model is not sufficient. Additional competing ex-
change between further neighbors might as well lead to a
suppression of a magnetically ordered ground state [63,64].
Nevertheless, we continue using this model for reasons which
will become clear later.

C. Electron paramagnetic resonance

The exchange-narrowed linewidth of the EPR resonance in
general is given by

μ0�H (θ ) = const

μBg(θ )
M2

√
M2

M4
, (14)

where const = π/
√

3 for a cutoff Lorentzian line shape and
const = √

2π for a Lorentzian × Gaussian line shape [65].
θ is the angle of the applied field H relative to a given
crystallographic direction, for example the c axis. M2 and M4

denote the second and fourth moments of the EPR line-shape
function, respectively, given by [66]

M2 = 〈[H, S+
total][S

−
total,H]〉

〈S+
totalS

−
total〉

, (15)

M4 = 〈[H, [H, S+
total]][[S

−
total,H],H]〉

〈S+
totalS

−
total〉

, (16)

S±
total =

∑
i

S±
i . (17)

Here the z axis not necessarily corresponds to the crystallo-
graphic threefold c axis but rather is defined by the direction
of the applied field. Appendix D contains more details on the
calculation of M2,4.

For a Gaussian line shape, all odd moments vanish, the
higher even moments all factorize into powers of the second
moment, and we have

MGauss
4 = 3

(
MGauss

2

)2
, (18)

μ0�HGauss(θ ) = const

μBg(θ )

√
MGauss

2

3
. (19)

Using the Hamiltonian Eq. (12), we obtain

lim
T →∞

M‖
2 = 3

4

[
2(J‖ − J⊥)2 + 2J2

� + 5J2
yz

]
, (20)

lim
T →∞

M⊥
2 = 3

8

[
2(J‖ − J⊥)2 + 10J2

� + 7J2
yz

]
, (21)

where the symbols ‖, ⊥ denote the direction of the applied
magnetic field μ0H relative to the crystallographic c direction.
We note that for a fully isotropic exchange Hamiltonian, the
expressions above vanish identically. In this case, a finite
linewidth is due to dipole-dipole interaction which by its very
nature is anisotropic.

Furthermore, we read off M‖
2 = 2M⊥

2 for a rotationally
invariant exchange (J� = Jxy = 0) which can be understood
in the following way: Thermal spin fluctuations are energet-
ically favorable perpendicular to the field μ0H , maximizing
the energy gain due to the Zeeman energy by leaving the
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component of the total moment (anti)aligned to the field un-
changed. Thermal fluctuations out of the crystallographic ab
plane are suppressed because they would break the threefold
rotational symmetry around the c axis. For a field parallel to
c, we therefore have two possible fluctuation directions, for a
field in the ab plane only one fluctuation direction remains.

More algebra has to be done to calculate the fourth mo-
ment. We eventually obtain

lim
T →∞

M‖
4 = 3(J⊥ − J‖)2

(
7J2

‖ − 6J‖J⊥ + 11J2
⊥
)

+ 3

2

[
22J4

� + 71J2
�J2

yz + 76J4
yz

+ J2
�

(
44J2

⊥ − 56J⊥J‖ + 24J2
‖
)

+ J2
yz

(
71J2

⊥ − 104J⊥J‖ + 63J2
‖
)]

, (22)

lim
T →∞

M⊥
4 = 3

2
(J⊥ − J‖)2(7J2

‖ − 6J‖J⊥ + 11J2
⊥
)

+ 3

4

[
182J4

� + 193J2
�J2

yz + 92J4
yz

+ J2
�

(
60J2

⊥ − 56J⊥J‖ + 56J2
‖
)

+ J2
yz

(
81J2

⊥ − 104J⊥J‖ + 65J2
‖
)]

. (23)

Similar to M2, M4 also vanishes for a fully isotropic exchange
Hamiltonian, and M‖

4 = 2M⊥
4 for a rotationally invariant ex-

change.
We assume J�, Jyz � J⊥, J‖. Taking into account only

finite exchange constants J⊥ and J‖, we get for the high-
temperature EPR linewidth, Eq. (14),

lim
T →∞

μ0�H‖ = const

μBg‖

3

2
√

2

(J⊥ − J‖)2√
7J2

‖ − 6J‖J⊥ + 11J2
⊥

, (24)

lim
T →∞

μ0�H⊥ = const

μBg⊥

3

4
√

2

(J⊥ − J‖)2√
7J2

‖ − 6J‖J⊥ + 11J2
⊥

, (25)

for field parallel and perpendicular to the c axis. An esti-
mate of limT →∞ �H‖,⊥ from our linewidth data is difficult
to obtain because, in this limit, phonon-dominated relax-
ation mechanisms like the Orbach process discussed above
might dominate. In particular, we have limT →∞ �H‖/�H⊥ =
2g⊥/g‖. This relation is roughly consistent with the experi-
mental EPR data. Estimating limT →∞ �H with the smallest
value the linewidth reaches in its temperature dependence, we
obtain for NaYbCh2, Ch = O, S, Se: limT →∞ �H‖/�H⊥ =
1.7/10/4.6. From the EPR data in Table II, we obtain
2g⊥/g‖ = 3.7/11.1/6.2.

D. Magnetization and susceptibility

To learn more about the size of the exchange constants, we
have measured the temperature-dependent uniform magnetic
susceptibility χ (T ) of the pseudospins at sufficiently low tem-
peratures T < 30 K and the magnetization M(H ) in applied
magnetic fields B = μ0H up to B = 30 T. The dimensionless
magnetic susceptibility is given by Eq. (6). Here we expand
the thermal traces for the pseudospin Hamiltonian Eq. (12) in

the low-temperature limit β → 0 and obtain

χα = ν

V
μ0g2

αμ2
B

s(s + 1)

3
β(1 + βkB�α ) + O(β3), (26)

where the Curie-Weiss temperatures �‖,⊥ are given by

kB�α = − s(s + 1)

3

6∑
n=1

J α
i,i+n,

kB�‖ = −3

2
J‖, kB�⊥ = −3

2
J⊥, (27)

with s = 1
2 for a field applied parallel and perpendicular to the

crystallographic c direction. Here J α
i,i+n denotes the compo-

nent of the exchange energy between site i and its nth neighbor
along the field direction α. We note that �‖,⊥ do not depend on
the direction-dependent terms in the Hamiltonian Eq. (12)—
the exchange constants J� and Jyz only appear in higher orders
of the expansion (compare also Ref. [53]). Table II holds our
findings from susceptibility measurements [15,18]. It contains
the measured Curie-Weiss temperatures �‖,⊥ and the effective
moments μ‖,⊥ obtained from a Curie-Weiss fit to χ (T ) at
T < 30 K. For NaYbO2, only powder samples were available,
the corresponding averaged values are listed in the respective
x‖ rows. We can calculate the exchange constants for the
parameters of the pseudospin Hamiltonian in Eq. (12) from
the Curie-Weiss temperatures given by Eqs. (27), and with the
effective moments given by μ‖,⊥ = g‖,⊥

√
s(s + 1), we can

determine the effective g factors. Results are listed in Table III.
Table II also holds the values for the effective moment μeff

and the Curie-Weiss temperatures �̂‖,⊥ for T > 150 K; in the
high-temperature limit, the latter are given by Eqs. (10). From
the derivation of the ground state pseudospin in Sec. II C we
have a relationship

Jα =
(

gα

g j

)2

Ĵα, α =‖,⊥ (28)

with the exchange constants introduced in Eq. (8) for the full
angular momentum. Together with the EPR g factors given in
Table II, this allows us to roughly estimate the B0

2 CEF param-
eter of NaYbS2 and NaYbSe2 to B0

2 ≈ −1 . . . −0.5 meV.

E. Saturation field

Table II also contains the values for the saturation fields
H‖,⊥

sat where the field-dependent magnetization M(H ) per
Yb3+ ion reaches its saturation values Msat. For NaYbO2 again
only powder samples were available. The saturation field H‖

sat
of NaYbS2 parallel to the c axis was too high to be reached in
our experiments.

Hsat is defined as an instability of the fully polarized
state toward �ms = 1 spin flips (magnons). It can be calcu-
lated within a classical approximation which is described in
Appendix E. We parametrize the spins as moment vectors on
three interpenetrating sublattices where, on each sublattice,
the moments are aligned pairwise parallel, and the classical
energy density e = E/(νs) is a function of three pairs of polar
and azimuthal angles of the sublattice moments.
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TABLE III. Characteristic Hamiltonian parameters for the NaYbCh2 delafossites, calculated from the experimental values in Table II as
discussed in the text.

Observable Parameter NaYbO2 NaYbS2 NaYbSe2

χ (T ) g‖ 3.0 1.4 1.3
g⊥ 3.3 2.8
J‖ 0.34 meV 0.10 meV 0.20 meV

J‖/kB 4 K 1.2 K 2.3 K
J⊥ 0.64 meV 0.40 meV

J⊥/kB 7.5 K 4.7 K
M(H ) g‖ 2.7 0.6 1.0

g⊥ 3.2 3.0
J‖ 0.42 meV – 0.25 meV

J‖/kB 4.9 K – 2.9 K
J⊥ 0.61 meV 0.46 meV

J⊥/kB 7.0 K 5.4 K

1. Field parallel to the c direction

A magnetic field applied parallel to the crystallographic c
direction preserves the rotational symmetry of the Hamilto-
nian Eq. (12). For s = 1

2 , three possible configurations of the
sublattice moments near saturation have been found [67–69],
called 0-coplanar (0 < J⊥/J‖ � 3/2), π -coplanar (3/2 �
J⊥/J‖ � 2.2), and umbrella phase (J⊥/J‖ � 2.2) which we
assume here. The left sketch in Fig. 7 illustrates this particular
configuration. At any finite field value, the sublattice moments
arrange on a cone such that the projections onto the ab plane
form a 120-degree structure. Polar angles are all equal, θi = ξ .
Near saturation with ξ � 1, the classical ground-state energy
density is given by

e‖ ≈ 3sJ‖ − h‖ − ξ 2

(
3

2
sJ⊥ + 3sJ‖ − 1

2
h‖

)
, (29)

h‖ = g‖μBμ0H.

This demonstrates the competition between the best possible
antiferromagnetic alignment of the spins with respect to each
other and the alignment parallel to the field direction. The
first two terms yield the ground-state energy per spin for the
fully polarized state: We gain energy h‖, but there is an energy
loss 3sJ‖ because of the perfect misalignment (i.e., ferromag-

netic alignment) of the moments on all three sublattices. The
term ∝ ξ 2 shows what happens when the umbrella opens a
bit: We gain energy (3/2)sJ⊥ξ 2 from the (small) 120-degree
projections of the spins onto the ab plane perpendicular to the
field. This energy gain is half of what we would obtain if it
were possible to align the projections in a Néel-like manner,
impossible on a triangular lattice. We also gain energy 3sJ‖ξ 2

due to the (small) reduction of the pairwise ferromagnetic spin
alignment in the direction parallel to the field on the three sub-
lattices. For the same reason, we lose energy (1/2)h‖ξ 2. With
the saturation magnetization M‖,⊥

sat = sg‖,⊥μB/Yb3+ (see
Table II for the experimental values), we obtain

μ0H‖
sat = 3s2(2J‖ + J⊥)

M‖
sat

. (30)

2. Field in the ab plane

For J‖ �= J⊥, the magnetic phase diagram has three inter-
mediate phases between H = 0 and saturation [70–72]. Like
in the case H ‖ c, we assume an umbrella-shaped spin struc-
ture right below the saturation field, however, the umbrella
has no rotational symmetry around the axis set by the direc-
tion of the magnetic field and might degenerate to a planar

FIG. 7. Illustration of the spin configuration near saturation. Solid arrows represent the sublattice moments, the thick arrows the respective
magnetic field. Left: Field applied parallel to the c direction. The sublattice moments form a cone around the field direction. Middle: Field
applied perpendicular to the c direction. For J‖ < J⊥, the sublattice moments lie in the ab plane indicated by the gray rectangle. Right: Field
applied perpendicular to the c direction, and J‖ > J⊥. The sublattice moments lie in a plane containing the c axis and the field axis, indicated
by the gray rectangle.

214445-10



Yb DELAFOSSITES: UNIQUE EXCHANGE FRUSTRATION … PHYSICAL REVIEW B 103, 214445 (2021)

configuration [73–78]. In Appendix E, we parametrize a spin
on sublattice i with its polar and azimuthal angles θi and φi.
Near saturation, θi → π/2, φi → α where α is the angle of
the applied field relative to the a axis, and we obtain

μ0H⊥
sat = 9s2J⊥

M⊥
sat

(31)

for the saturation field in the ab plane. This is the case for
J‖ < J⊥. The independence of H⊥

sat from J‖ suggests that a
planar spin configuration with all spins in the ab plane is
energetically favorable at and at least infinitesimally below
Hsat. At finite H < Hsat, a distorted cone might form. Writing
δi = π/2 − θi, εi = α − φi, the six angles are a solution to
Eq. (E2) with δi, εi �= 0.

A geometric interpretation can be obtained by looking at
two possible planar configurations near Hsat, sketched in the
middle and right illustrations of Fig. 7: The sublattice mo-
ments form a fan either in the ab plane setting δi = 0 or in
a plane perpendicular to it containing the c and the field axis
with εi = 0. For the former, the gradient near Hsat is given by

(
∂e⊥
∂εi

)
δi=0

≈
(

h⊥
3

− 2sJ⊥

)⎛⎝ε1 − u(ε2 + ε3)
ε2 − u(ε3 + ε1)
ε3 − u(ε1 + ε2)

⎞
⎠ (32)

with u = sJ⊥/[2sJ⊥ − (1/3)h⊥]. Minimizing this gives

ε1 = ε2 = u

1 − u
ε3, u = −1 or

1

2
. (33)

From u = −1, we obtain h⊥ = 9sJ⊥ [first factor in Eq. (E8)],
for u = 1/2 we obtain the unphysical solution h⊥ = 0. The
ground-state energy density is e⊥ = 3sJ⊥ − h⊥. Similar to the
case H ‖ c, we lose energy 3sJ⊥ due to the ferromagnetic
alignment of all spins, and we gain energy h⊥. Deviating
slightly from full polarization, but still with all sublattice
moments in the ab plane, we gain energy �e⊥ ∝ 3sJ⊥|εi| due
to both the small antiferromagnetic component in the spin
alignment and the reduction of the moment parallel to the
magnetic field.

The gradient near Hsat for a spin configuration in the plane
containing the c axis and the field (εi = 0) is given by

(
∂e⊥
∂δi

)
εi=0

≈
(

h⊥
3

− 2sJ⊥

)⎛⎝δ1 − u(δ2 + δ3)
δ2 − u(δ3 + δ1)
δ3 − u(δ1 + δ2)

⎞
⎠, (34)

with u = sJ‖/[2sJ⊥ − (1/3)h⊥]. Minimizing this gives

δ1 = δ2 = u

1 − u
δ3, u = −1 or

1

2
. (35)

From u = −1, we obtain h⊥ = 3s(J‖ + 2J⊥) [second fac-
tor in Eq. (E8)]. This is the case for J‖ > J⊥. Deviating
from full polarization now results in an energy gain �e⊥ ∝
s(J‖ + 2J⊥)|δi|, which is, for J‖ < J⊥, smaller than the energy
gain when opening in the ab plane. For u = 1/2, we obtain
h⊥ = 6s(J⊥ − J‖). This solution is unphysical because this
would include an energy loss ∝ 2sJ‖ when deviating from full
polarization.

In the last six rows of Table III, we note the values ob-
tained from the equations above. For NaYbS2, J‖ cannot be
determined because of the missing value for H‖

sat. If we take

the exchange constants derived from IEPR(T ) and χ (T ), we
can roughly estimate 56 T � μ0H‖

sat � 112 T, which is indeed
a larger range than experimentally accessible for us.

IV. SUMMARY AND CONCLUDING REMARKS

In summary, we have shown that the series of NaYbCh2

compounds contain nearly perfect magnetic Yb3+ triangular
lattice planes. The determination of the crystal-field levels by
neutron scattering has shown that at temperatures T � 100 K,
an application of a pseudospin model is justified. A consistent
treatment in the framework of the anisotropic Heisenberg
triangular lattice model with nearest-neighbor (NN) coupling
of Yb3+ pseudospins of s = 1

2 gives good agreement with
some experimental results. In particular, the estimation of the
main exchange energies (rotationally invariant elements of
the exchange matrix) and the derived saturation fields are in
good agreement. Nevertheless, the question to the origin of
the absence of magnetic order and the emerging spin-liquid
state is not completely answered. In principle, off-diagonal
contributions in the exchange matrix can be responsible for
it. However, it is not possible to estimate these off-diagonal
contributions on the basis of the available data. This is not un-
usual and is also true for the other prominent Yb3+ triangular
lattice system YbGaMgO4 [53,79].

Furthermore, the next-nearest-neighbor (NNN) exchange
may also play a role. It is already known from the Heisenberg
lattice without spin-orbit coupling that the additional frustra-
tion introduced with an antiferromagnetic coupling can lead
to a quantum spin-liquid phase where in most cases already
a NNN coupling, which is one order of magnitude smaller
than the nearest-neighbor coupling is sufficient [64]. However,
we cannot exclude that the dipolar interaction between the
Yb3+ ions also plays a role like, for example, in the YbAlO3

quantum magnet [53]. This long-ranged interaction as an addi-
tional competing effect could be another reason for the strong
frustration and the suppression of the order.

It must also be noted that the effective exchange con-
stants J‖ and J⊥ in the NaYbCh2 materials are compara-
tively large for an Yb3+ triangular lattice. In YbMgGaO4,
NaBaYb(BO3)2, and Rb3Yb(PO4)2, the low-temperature
Curie-Weiss temperatures and thus the exchange constants
are more than one order of magnitude smaller compared to
the NaYbCh2 system [53,79–81]. In this sense, these other
systems with small exchange couplings can be regarded as
nearly single-ion systems (without significant exchange cou-
pling between the ions). This is most evident in the magnetic
part of the specific heat cm(T ). Here a Schottky peak develops
in an applied magnetic field due to the Zeeman splitting of
the Yb3+ CEF ground-state doublet. This peak shifts with the
field to higher temperatures. Also, the saturation field in the
magnetization M(H ) is in the range of a few Tesla, while in
the NaYbCh2 systems the saturation fields exceed 10 T.

Furthermore, we have found a pronounced and large lin-
ear temperature dependence of the magnetic specific heat
cm(T ) = γ T with a residual value γ ≈ 1 J/molK2 for the
NaYbCh2 systems. This is a crucial feature of the (gapless)
quantum spin-liquid ground state and is consistent with the
residual fluctuations detected by muon spin relaxation (μSR),
nuclear magnetic resonance, and, finally, inelastic neutron
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scattering. For the other Yb3+ triangular lattice materials
mentioned above, such residual contributions are absent or
negligibly small. The presence of the large γ term is a clear
evidence for a gapless spin-liquid ground state. In analogy to
correlated 4f heavy fermion systems with enhanced renormal-
ized electronic density of states at the Fermi level, we have
an enhanced (renormalized) density of magnetic fermionlike
states due to fluctuations associated with the generic spin
liquid ground state.

Another difference to other Yb3+ triangular lattices is the
occurrence of field-induced order. This shows that compet-
ing interactions are responsible for the spin-liquid state and
place the systems in the vicinity of a critical point. As al-
ready mentioned, this might originate from small but finite
symmetry-compatible off-diagonal components in the Yb–Yb
exchange matrix and/or a possible NNN interaction.

Taken together, we have successfully shown that the
NaYbCh2 delafossites have their own fascinating physics
which differs significantly from the previously known planar
Yb3+ triangular lattices. There is both exchange anisotropy
and spin anisotropy in the systems, which is an an essential
ingredient and enhancement for frustration and absence of

magnetic order. The anisotropy is particularly pronounced in
NaYbS2 with a ratio of the coupling coefficients of J⊥/J‖ =
6.25 and a ratio of the EPR g factors of g⊥/g‖ = 5.6. We are
waiting to see further intriguing developments in the field of
the 4f delafossites. For example, the series could be extended
to include compounds with the chalcogen Te. These com-
pounds might exhibit a smaller band gap or even be metallic
due to extended Te 5p orbitals. This would establish a bridge
between the quantum spin liquid in the Mott insulator and a
Fermi liquid in a correlated (semi)metal.
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APPENDIX A: STEVENS OPERATORS

The Stevens operators in Eq. (1) have the explicit form [82]

O0
2 = 3J2

z − j( j + 1),

O0
4 = 35J4

z − 30 j( j + 1)J2
z + 25J2

z − 6 j( j + 1) + 3[ j( j + 1)]2,

O3
4 = 1

4
[Jz(J3

+ + J3
−) + (J3

+ + J3
−)Jz],

O0
6 = 231J6

z − 315 j( j + 1)J4
z + 735J4

z + 105[ j( j + 1)]2J2
z − 525 j( j + 1)J2

z + 294J2
z

− 5[ j( j + 1)]3 + 40[ j( j + 1)]2 − 60 j( j + 1),

O3
6 = 1

4

{[
11J3

z − 3 j( j + 1)Jz − 59Jz
]
(J3

+ + J3
−) + (J3

+ + J3
−)
[
11J3

z − 3 j( j + 1)Jz − 59Jz
]}

,

O6
6 = 1

2
(J6

+ + J6
−),

and we use the standard definitions

J2| j, m〉 = j( j + 1)| j, m〉,
Jz| j, m〉 = m| j, m〉,

J+| j, m〉 =
√

j( j + 1) − m(m + 1)| j, m + 1〉,

J−| j, m〉 =
√

j( j + 1) − m(m − 1)| j, m − 1〉,

Jx = 1

2
(J+ + J−),

Jy = 1

2i
(J+ − J−).

APPENDIX B: CRYSTAL-FIELD HAMILTONIAN
MATRICES

In a cubic environment with a threefold quantization axis,
the Hamiltonian matrix derived from Eq. (2) for j = 7/2 is
given by

H (3)
CEF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

420
(
B(3)

4 + 3B(3)
6

)
0 0 30

√
70
(
21B(3)

6 − 4B(3)
4

)
0 −60

(
13B(3)

4 + 105B(3)
6

)
0 0

0 0 −180
(
B(3)

4 − 63B(3)
6

)
0

30
√

70
(
21B(3)

6 − 4B(3)
4

)
0 0 180

(
3B(3)

4 − 35B(3)
6

)
0 −15

√
10
(
16B(3)

4 + 147B(3)
6

)
0 0

0 0 0 0
3465

√
7B(3)

6 0 0 15
√

10
(
16B(3)

4 + 147B(3)
6

)
0 3465

√
7B(3)

6 0 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

0 0 3465
√

7B(3)
6 0

−15
√

10
(
16B(3)

4 + 147B(3)
6

)
0 0 3465

√
7B(3)

6
0 0 0 0
0 0 15

√
10
(
16B(3)

4 + 147B(3)
6

)
0

180
(
3B(3)

4 − 35B(3)
6

)
0 0 30

√
70
(
4B(3)

4 − 21B(3)
6

)
0 −180

(
B(3)

4 − 63B(3)
6

)
0 0

0 0 −60
(
13B(3)

4 + 105B(3)
6

)
0

30
√

70
(
4B(3)

4 − 21B(3)
6

)
0 0 420

(
B(3)

4 + 3B(3)
6

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Its eigenvalues are

E�6 = −315
(
4B(3)

4 + 45B(3)
6

)
,

E�7 = 405
(
4B(3)

4 − 21B(3)
6

)
,

E�8 = −180
(
B(3)

4 − 63B(3)
6

)
,

and the corresponding wave functions are given by Eqs. (3).
In a trigonal CEF, all six crystal-field parameters introduced in Eq. (1) are independent, and we obtain for the j = 7/2 matrix

representation of the Hamiltonian

HCEF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

21
(
B0

2 + 20B0
4 + 60B0

6

)
0 0

√
35
(
B3

4 + 12B3
6

)
0 3

(
B0

2 − 260B0
4 − 2100B0

6

)
0 0

0 0 −9
(
B0

2 − 30B0
4 + 1260B0

6

)
0

6
√

35
(
B3

4 + 12B3
6

)
0 0 −15

(
B0

2 + 36B0
4 − 420B0

6

)
0 12

√
5
(
B3

4 − 21B3
6

)
0 0

0 0 0 0
360

√
7B6

6 0 0 12
√

5
(
21

√
5B3

6 − B3
4

)
0 360

√
7B6

6 0 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

0 0 360
√

7B6
6 0

12
√

5
(
B3

4 − 21B3
6

)
0 0 360

√
7B6

6
0 0 0 0
0 0 12

√
5
(
21

√
5B3

6 − B3
4

)
0

−15
(
B0

2 + 36B0
4 − 420B0

6

)
0 0 −6

√
35
(
B3

4 + 12B3
6

)
0 −9

(
B0

2 − 30B0
4 + 1260B0

6

)
0 0

0 0 3
(
B0

2 − 260B0
4 − 2100B0

6

)
0

−6
√

35
(
B3

4 + 12B3
6

)
0 0 21

(
B0

2 + 20B0
4 + 60B0

6

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Needless to say that closed-form expressions for the eigenvalues, apart from the pure |7/2,±3/2〉 doublet, are lengthy and not
very insightful.

If we regard the trigonal distortion of the ideal octahedron as small, we obtain corrections to the cubic eigenvalues to first
order in the CEF parameters δBm

n like

E�6 → E�6 − 70

3
δ
[
14B0

4 −
√

2B3
4 + 10

(
24B0

6 +
√

2B3
6 + 2B6

6

)]
,

E�7 → E�7 + 10δ
[
42B0

4 − 3
√

2B3
4 − 14

(
24B0

6 +
√

2B3
6 + 2B6

6

)]
,

E�8 → E�8

{−9δ
[
B0

2 + 20
(
B0

4 − 63B0
6

)]
+9δB0

2 + 20
3 δ
(
13B0

4 + √
2B3

4 − 357B0
6 + 56

√
2B3

6 + 112B6
6

) ,

in particular, splitting the �8 quartet into two Kramers
doublets.

APPENDIX C: HAMILTONIAN PARAMETRIZATION

Our definition of the exchange constants occurring in the
Hamiltonian Eq. (12) is made such that it reduces to the
standard XXZ model for J� = 0 and Jyz = 0, which in turn
reduces to the standard isotropic Heisenberg model for J⊥ =

Jz. Different authors use slightly different parametrizations,
shown in Table IV for easy comparison with literature.

APPENDIX D: MOMENT CALCULATION

In the limit T → ∞, the correlation functions between
spins on different sites factorize; only on-site spin-flip cor-
relations retain a finite value. The denominators of Eqs. (15)
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TABLE IV. Common exchange parametrizations for the
triangular-lattice Hamiltonian.

Authors J⊥ Jz J� Jxy

Li et al. [53] 2J± Jzz 2J±± Jz±
Rau and Gingras [32] −2J± Jzz 2J±± 2Jz±
Zhu et al. [33] J �J 4J±± 2Jz±

and (16) therefore are given by

〈S+
totalS

−
total〉 =∑i j

〈
S+

i S−
j

〉 T →∞−−−→∑
i 〈S+

i S−
i 〉

= ν〈S+
1 S−

1 〉 = ν
(

1
2 + 〈Sz

i

〉)→ ν
2 .

With a general short-range exchange Hamiltonian, we have to
evaluate an expression like

〈[H, S+
total][S

−
total,H]〉 =

〈(∑
〈i j〉

∑
αβ

Jαβ

〈i j〉
∑

k

[
Sα

i Sβ
j , S+

k

])

·
(∑

〈i j〉

∑
αβ

Jαβ

〈i j〉
∑

k

[
S−

k , Sα
i Sβ

j

])〉
,

(D1)

where Jαβ

〈i j〉 is the exchange matrix along (not necessarily
nearest-neighbor) bond 〈i j〉 with spin indices αβ. The inner
sum over sites k can be removed applying Jacobi’s identity,[

Sα
i Sβ

j , S+
k

] = [Sα
i ,
[
Sβ

j , S+
k

]]− [Sβ
j ,
[
Sα

i , S+
k

]]
,

and the standard spin commutation relations. Together with
translational invariance for a Bravais lattice with ν sites and z
neighbors, the first term in Eq. (D1) simplifies to

[H, S+
total] = ν

2

z+1∑
n=2

∑
αβ

Jαβ
n

(
Sα

1

[
Sβ

n , S+
n

]+ [Sα
1 , S+

1

]
Sβ

n

)
,

accordingly for its complex conjugate. The generalization to
non-Bravais lattices, not needed in the present context, should
be obvious. For the R3̄m triangular-lattice exchange Hamil-
tonian with z = 6 nearest neighbors given by Eq. (12), we
eventually obtain for M2 Eq. (15) in the high-temperature limit
the expressions Eqs. (20) and (21).

Evaluating the commutators in

[H, [H, S+
total]] =

∑
〈mn〉

∑
γ δ

Jγ δ

〈mn〉
∑
〈i j〉

∑
αβ

Jαβ

〈i j〉

× (Sγ
m

[
Sδ

n, Sα
i

[
Sβ

j , S+
j

]]
+ [Sγ

m, Sα
i

[
Sβ

j , S+
j

]]
Sδ

n

+ Sγ
m

[
Sδ

n,
[
Sα

i , S+
i

]
Sβ

j

]
+ [Sγ

m,
[
Sα

i , S+
i

]
Sβ

j

]
Sδ

n

)
and its complex conjugate, we also use Jacobi’s identity, the
spin commutation relations, and translational invariance. With

T1 =
∑
〈mn〉

∑
γ δ

Jγ δ

〈mn〉
∑
〈i j〉

∑
αβ

Jαβ

〈i j〉S
γ
mδni

[
Sδ

i , Sα
i

][
Sβ

j , S+
j

]

= ν

4

z+1∑
δm=2

∑
γ δ

Jγ δ

δm

z+1∑
δ j=2

∑
αβ

Jαβ

δ j Sγ

δm

[
Sδ

1, Sα
1

][
Sβ

δ j, S+
δ j

]
,

T2 =
∑
〈mn〉

∑
γ δ

Jγ δ

〈mn〉
∑
〈i j〉

∑
αβ

Jαβ

〈i j〉S
γ
mδn jS

α
i

[
Sδ

j ,
[
Sβ

j , S+
j

]]

= ν

4

z+1∑
δm=2

∑
γ δ

Jγ δ

δm

z+1∑
δi=2

∑
αβ

Jαβ

δi Sγ

δmSα
δi

[
Sδ

1,
[
Sβ

1 , S+
1

]]
,

T3 =
∑
〈mn〉

∑
γ δ

Jγ δ

〈mn〉
∑
〈i j〉

∑
αβ

Jαβ

〈i j〉δmi
[
Sγ

i , Sα
i

][
Sβ

j , S+
j

]
Sδ

n

= ν

4

z+1∑
δn=2

∑
γ δ

Jγ δ

δn

z+1∑
δ j=2

∑
αβ

Jαβ

δ j

[
Sγ

1 , Sα
1

][
Sβ

δ j, S+
δ j

]
Sδ

δn,

T4 =
∑
〈mn〉

∑
γ δ

Jγ δ

〈mn〉
∑
〈i j〉

∑
αβ

Jαβ

〈i j〉δm jS
α
i

[
Sγ

j ,
[
Sβ

j , S+
j

]]
Sδ

n

= ν

4

z+1∑
δn=2

∑
γ δ

Jγ δ

δn

z+1∑
δi=2

∑
αβ

Jαβ

δi Sα
δi

[
Sγ

1 ,
[
Sβ

1 , S+
1

]]
Sδ

δn,

T5 =
∑
〈mn〉

∑
γ δ

Jγ δ

〈mn〉
∑
〈i j〉

∑
αβ

Jαβ

〈i j〉S
γ
mδni

[
Sδ

i , [Sα
i , S+

i ]
]
Sβ

j

= (T2)α↔β
i↔ j ,

T6 =
∑
〈mn〉

∑
γ δ

Jγ δ

〈mn〉
∑
〈i j〉

∑
αβ

Jαβ

〈i j〉S
γ
mδn j

[
Sα

i , S+
i

][
Sδ

j , Sβ
j

]

= (T1)α↔β
i↔ j ,

T7 =
∑
〈mn〉

∑
γ δ

Jγ δ

〈mn〉
∑
〈i j〉

∑
αβ

Jαβ

〈i j〉δmi
[
Sγ

i ,
[
Sα

i , S+
i

]]
Sβ

j Sδ
n

= (T4)α↔β
i↔ j ,

T8 =
∑
〈mn〉

∑
γ δ

Jγ δ

〈mn〉
∑
〈i j〉

∑
αβ

Jαβ

〈i j〉δm j
[
Sα

i , S+
i

][
Sγ

j , Sβ
j

]
Sδ

n

= (T3)α↔β
i↔ j ,

the commutator may be written as

[H, [H, S+
total]] =

8∑
�=1

T� = 2
4∑

�=1

T�,

where the last equality holds for inversion-symmetric ex-
change only (which is the case here). Then

〈[H, [H, S+
total]][[S

−
total,H],H]〉 = 4

4∑
�=1

4∑
�′=1

〈
T�T †

�′
〉

has to be evaluated. The final results for the expectation value
for M4 in the limit T → ∞ are reproduced in Eqs. (22) and
(23).

APPENDIX E: SATURATION FIELD

To calculate the saturation field of the magnetization, we
regard the pseudospins of the triangular lattice as classical
vectors living on a three-sublattice structure. On each sublat-
tice i, any two spins are aligned parallel relative to each other.
The direction of each spin defines the z′ axis of a local coordi-
nate system, characterized by polar and azimuthal angels �i
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and φi. The full Hamiltonian with this parametrization⎛
⎝Sx

i

Sy
i

Sz
i

⎞
⎠ =

⎛
⎝cos φi − sin φi 0

sin φi cos φi 0
0 0 1

⎞
⎠

×
⎛
⎝ cos θi 0 sin θi

0 1 0
− sin θi 0 cos θi

⎞
⎠
⎛
⎝Sx′

i

Sy′
i

Sz′
i

⎞
⎠

and S′ = (0, 0, s)T is given below.

1. Field parallel to the crystallographic c axis

With a magnetic field in z direction, the classical energy
density per spin is

e‖ = Ez

νs
= sJ⊥[sin θ1 sin θ2 cos (φ1 − φ2)

+ sin θ2 sin θ3 cos (φ2 − φ3)

+ + sin θ3 sin θ1 cos (φ3 − φ1)]

+ sJ‖[cos θ1 cos θ2 + cos θ2 cos θ3 + cos θ3 cos θ1]

− 1

3
h‖[cos θ1 + cos θ2 + cos θ3],

h‖ = g‖μBμ0H, (E1)

independent of J� and Jyz: We assume a three-sublattice struc-
ture and positive gyromagnetic ratios, the direction-dependent
terms ∝ J�, Jyz cancel exactly upon summation over the three
sublattice pairs (1,2), (2,3), and (3,1). According to Eq. (12),

J� and Jyz give the energy gain when coupling states differing
by �Sz = 1 or �Sz = 2. For the classical model, the total
spin Stot

z =∑ν
i=1 Sz

i is conserved, therefore J� and Jyz cannot
contribute to the ground-state energy. The energy is symmetric
with respect to the exchange of any two sublattice labels
i = 1, 2, 3, so the saturation field (as any other ground-state
property) cannot depend on it.

The saturation field is given by a singularity of the Hessian
matrix

mH(e) = ∂2e

∂{δi, φi}∂{δ j, φ j} ,

det mH(e) = 0. (E2)

By symmetry, for the classical ground state of Eq. (E1), polar
angles are all θi = x, azimuthal angles are α and α ± 2π/3
such that |φi − φ j | = 2π/3. The nonzero block of the Hes-
sian matrix mH reduces to a scalar, mH(e‖) = ∂2e‖/∂x2, and
Eq. (E2) reduces to (3/2)sJ⊥ + 3sJ‖ − (1/2)h‖ = 0, which
gives

μ0H‖
sat = 3s

g‖μB
(J⊥ + 2J‖). (E3)

2. Field in the ab plane

Assume the magnetic field H lies in the ab plane at an angle
α relative to the x direction. The classical energy density per
spin then has the form

E⊥
νs

= sJ⊥[sin θ1 sin θ2 cos (φ1 − φ2) + sin θ2 sin θ3 cos (φ2 − φ3) + sin θ3 sin θ1 cos (φ3 − φ1)]

+ sJ‖[cos θ1 cos θ2 + cos θ2 cos θ3 + cos θ3 cos θ1]

− 1

3
h⊥[sin θ1 cos (α − φ1) + sin θ2 cos (α − φ2) + sin θ3 cos (α − φ3)], (E4)

h⊥ = g⊥μBμ0H, (E5)

independent of J� and Jyz as well. We may assume an umbrella-shaped spin structure right below the saturation field, however, for
J‖ �= J⊥ the umbrella cannot have rotational symmetry around the axis set by the direction of the magnetic field, and according
to work done in the context of (Cs,Rb)CuCl3 on similar Heisenberg models, energetically favorable spin configurations at
high fields are planar [73–78]. Therefore, we don’t make assumptions about relations between the six angles {θi, φi}. With
δi = π/2 − θi, εi = α − φi, we write

e⊥ = E⊥
νS

= e12 + e23 + e31, (E6)

ei j = sJ⊥ cos δi cos δ j cos (εi − ε j ) + sJ‖ sin δi sin δ j − 1

6
h⊥(cos δi cos εi + cos δ j cos ε j ) = e ji. (E7)

In the limit δi, εi → 0 (full polarization), Eq. (E2) for mH(e⊥) reads

(h⊥ − 9sJ⊥)2[h⊥ − 3s(J‖ + 2J⊥)]2[h⊥ − 6s(J⊥ − J‖)]h⊥ = 0. (E8)

In our case, we have J⊥ > J‖ > 0, and the first factor determines the saturation field when lowering the field from values above
saturation. We obtain

μ0H⊥
sat = 9sJ⊥

μBg⊥
. (E9)
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