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Single-ion anisotropy is necessary and appropriate to study the magnetic behavior of Tb3+

moments with Jeff = 1
2 on the honeycomb lattice in Tb2Ir3Ga9
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Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, 37831 Tennessee, USA
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By developing models of increasing complexity, we show that a model without single-ion anisotropy (SIA)
cannot explain the magnetic properties of Jeff = 1/2 Tb3+ moments in the orthorhombically distorted, hon-
eycomb material Tb2Ir3Ga9. In four different models for the magnetization of a single honeycomb layer, the
only sources of anisotropy are symmetric exchange interactions Jnαβ = Jnβα along three different bonds n, an
anisotropic g tensor, and a Dzyalloshinskii-Moriya interaction (asymmetric exchange) that produces the observed
canted moment along b. With 21 parameters, the best such model yields χ2 = 0.065, which is substantially
smaller than χ 2 = 0.112 obtained using a Heisenberg model containing six parameters including easy-axis
anisotropy. However, models without SIA fail to reproduce the linear dependence of the magnetization with
a field perpendicular to the Ising axis while predicting a saturation magnetization that is far too low. Due to the
complex crystal-field environments, we argue that SIA is necessary to study low-symmetry, three-dimensional
Jeff = 1/2 materials containing Tb3+ ions.

DOI: 10.1103/PhysRevB.103.214440

I. INTRODUCTION

Driven by the search for spin liquids (SLs) and exotic
quasiparticles like Majorana fermions, materials with effec-
tive spins of 1/2 have become a central focus in the study
of quantum materials. For Jeff = 1/2, 4d and 5d honeycomb
materials like α-RuCl3 [1–3] and A2IrO3 (A = Li, Na) [4–6],
the Kitaev model [7–9] predicts that the different exchange
couplings along the three nearest-neighbor bonds frustrate
long-range magnetic order down to T = 0. As alternatives to
4d and 5d materials, rare-earth compounds like YbMgGaO4,
YbCl3, and TbInO3 have also been recently proposed as SL
candidates [10–14]. One of the most popular building blocks
for spin-ice and SLs is Tb3+, which has quantum numbers
L = S = 3 and J = 6, and a nominal g factor of 1.5. The
13 states in the J = 6 multiplet are split by crystal fields to
yield a low-lying doublet with Jeff = 1/2 and 11 higher levels.
This ion forms the basis for several materials that do not
magnetically order, such as the the SL candidate TbInO3 [13],
the quantum spin ice Tb2Ti2O7 [15–17], and the spin glass
Y1−xTbxNi2Ge2 [18]. It also lays the foundation for many ma-
terials that do magnetically order, including three members of
the RT2X2 (R = rare earth, T = transition metal, X = Si or Ge)
family of intermetallic compounds: TbNi2Ge2 [19], TbNi2Si2
[20,21], and TbCo2Si2 [22–24]. Recently, Tb2Ir3Ga9 (TIG)
[25] joined this group of magnetically ordered materials.

Generally, crystal fields split the f -orbital J multiplet into a
series of singlets, doublets, and triplets. If a low-lying doublet
|�±〉 is sufficiently separated from higher-energy levels, then
magnetic properties can be mapped onto an effective spin-
1/2 model. For a Kramer’s doublet with an odd number of
f electrons, the off-diagonal matrix elements (with z taken
along the Ising axis) 〈�±|Jiz|�∓〉 vanish and the off-diagonal
matrix elements 〈�+|Ji+|�−〉 and 〈�−|Ji−|�+〉 are nonzero.
For a non-Kramer’s doublet [17,26] with an even number of f

electrons such as in the 4 f 8 shell of Tb3+, 〈�+|Ji+|�−〉 and
〈�−|Ji−|�+〉 both vanish. Nevertheless, hybridization [26]
with a nearby doublet |�m〉 due to spin interactions can gener-
ate nonzero off-diagonal matrix elements of Ji± = Jix ± iJiy.
In either case, the spin-1/2 algebra is recovered by suitably
rescaling the Ji operators and the exchange couplings. The
angular momentum Ji can then be replaced by the S = 1/2
pseudospin operator Si. Ising-like behavior is produced when
the g tensor has small components perpendicular to the Ising
axis.

To describe Jeff = 1/2 materials, models [10,11,27–29]
for triangular and honeycomb lattices may contain diagonal
terms −JααSiαS jα coupling the same spin components and
off-diagonal terms −Jα �=β (SiαS jβ + SiβS jα ) coupling differ-
ent spin components on sites i and j. In addition to an
anisotropic g tensor with different diagonal components gαα

in a suitable local reference frame, some models also include
asymmetric exchange or Dzyalloshinskii-Moriya (DM) terms
like D(SixS jy − SiyS jx ). Noticeably absent from this list of
possible interactions and anisotropies are terms that involve
single-ion anisotropy (SIA). Since 〈�±|S2

iα|�±〉 is the same
for each state in the low-lying doublet of Jeff = 1/2 systems,
SIA interaction terms like −KS2

iα simply contribute a constant
to the energy. Although it can be difficult to explain the prop-
erties of three-dimensional, magnetically ordered materials
without invoking SIA associated with an easy axis or an easy
plane, most model Hamiltonians used to describe Jeff = 1/2
materials restrict consideration to the anisotropic exchange
and g-tensor terms described above.

II. TIG

Like many other Tb-based compounds, TIG contains Jeff =
1/2 moments. This is unequivocally demonstrated by the λ
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FIG. 1. Predictions (red curves) of four models compared with magnetization data (squares) for TIG. Below the graphs are the fitting
parameters for each model. The symmetric exchange couplings Jnαβ and DM interaction D are in meV with S = 6. N is the number of fitting
parameters for each model. *For model 1, χ 2 only includes fits for field along a.

anomaly in its specific heat [25], which exhibits an R ln2
entropy characteristic of Jeff = 1/2 moments. Also, like many
other materials containing Tb3+ ions, TIG can be roughly
described as Ising-like. At zero field, the four-sublattice spin
configuration of each honeycomb layer is shown in the inset

to Fig. 1. In a magnetic field along a, TIG exhibits two magne-
tization jumps seen in Fig. 1(a). These jumps are produced by
the rotation of one spin in the ground state from −a to +a at
Hc1 = 2.45 T and of the other at Hc2 = 6.45 T. Above 6.45 T,
the magnetization approaches a fully saturated value close to
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the free-ion value of 2μBgS = 18 μB with g = 3/2 and S = 6
(all magnetization values are given per formula unit).

For angles η below about π/3, both Hc1 cos η and Hc2 cos η

are roughly independent of η as the field H is rotated an angle
η away from the a axis in the ab plane [25]. Hence, as befits
an Ising-like material, the magnetic properties of TIG are
predominantly determined by the component Hx = H cos η of
the magnetic field along the a axis.

As shown in Fig. 1, the Tb3+ spins cant towards b in
zero field. The zero-field canted moment of M0 = 1.22 μB

obtained from magnetization measurements [25] can be ex-
plained by a DM interaction produced by the alternating
positions of the Ir atoms around each hexagon. A somewhat
larger canted moment of 2.06 μB was obtained using elas-
tic neutron scattering [30]. Since models without SIA have
difficulty reproducing this canted moment and the overall en-
hanced magnetization along b, we are providing the best-case
scenario for those models by assuming the smaller value of
1.22 μB.

In earlier work, Ye et al. [30] described both the mag-
netization and the inelastic neutron scattering spectra using
a model Hamiltonian that contained two SIA terms: one to
keep the spins in the ab plane and another to confine the spins
to the a axis. This paper answers the obvious question: Can
TIG be described by a model without SIA terms but rather
with anisotropic exchange interactions and g tensor that are
permitted for spin 1/2? To estimate the number N of param-
eters required to explain the magnetic behavior for a single
honeycomb layer of TIG, we will build models of increasing
complexity with N increasing from 4 to 21. Aside from model
1 (valid in one dimension only), all other models produce the
same canted ground state.

III. TWO-DIMENSIONAL MODELS

A two-dimensional Kitaev-Heisenberg Hamiltonian for a
single honeycomb layer is

H = −
∑

n,i j

{JnxxSixS jx + JnyySiyS jy + JnzzSizS jz

+ Jnxy(SixS jy + SiyS jx ) + Jnzx (SizS jx + SixS jz )

+ Jnzy(SizS jy + SiyS jz )} − K
∑

i

S2
ix

+
∑

〈i j〉
Dni j · (Si × S j ) − μB

∑

i,α

gααHαSiα, (1)

which includes all symmetric exchange interactions Jnαβ =
Jnβα for each bond n with all spin and exchange indices in
the laboratory reference frame of the crystal. Due to the small
orthorhombic distortion of the lattice, bond 1 along the bottom
and top of each hexagon parallel to a is treated differently
from bond 2 along the sides of each hexagon. Bond 3 couples
next-nearest neighbors on the diagonals of the hexagon.

While the SIA term −KS2
iz on each site generates an easy

axis along a, the DM interactions Dni j = ±Dnz on bonds 1
and 2 couple all nearest neighbors {1, 2}, {2, 4}, {2, 3}, {3, 1},
and {3, 4} with alternating signs around each hexagon in
Fig. 1. Because the fits described below did not improve with
D1 �= D2, we take D1 = D2 = D. The final term in Eq. (1)

couples the spins Si to a magnetic field H through the diagonal
g-tensor components gαα , again in the laboratory reference
frame.

The energy E = 〈H〉 is evaluated by taking each clas-
sical spin Si to have a magnitude of S = 6. If the spins
were instead defined to have a magnitude of S = 1/2, then
the exchange and DM interactions would be multiplied by
62/(1/2)2 = 144 and the g-tensor components would be mul-
tiplied by 6/(1/2) = 12. Due to the substantial interactions
between honeycomb layers in TIG, quantum fluctuations are
not expected to be significant and certainly cannot fix the
deficiencies of models without SIA discussed below.

For simplicity, we confine consideration to a single hon-
eycomb layer with fields along a and b. Due to the strong
easy-plane anisotropy, the magnetization with field along c
rises linearly [25] to about 1 μB at 7 T. As we shall see,
the major shortcoming of models without SIA is that the
g-tensor components gyy and gzz perpendicular to the Ising
axis a must play two distinct roles: to provide an easy axis
or easy plane (gyy � 1 and gzz � 1) and to determine the
saturation magnetizations (2gyyμBS and 2gzzμBS) with fields
along b and c. This will be amptly demonstrated by discussing
the magnetization with the field along b. We only consider
single honeycomb layers to avoid the unneccesary complexity
of including additional exchange interactions between neigh-
boring honeycomb layers, which are inequivalent [25] due to
an offset along b.

With the field along a, χ2 is evaluated using an experi-
mental error of ±6% times the magnetization for fields above
Hc1. Because the experimental results below Hc1 are prone to
uncertainties of unknown origin (such as crystal alignment,
disorder, etc.), a constant magnetization error of 0.48 μB was
used below Hc1. With the field along b, χ2 uses an error of
±6% for all fields.

As verified by neutron scattering [30], the zero-
field ground state in Fig. 1 is given by S1 = S4 =
S(cos ψ, sin ψ, 0) and S2 = S3 = S(− cos ψ, sin ψ, 0),
where ψ = sin−1(M0/2μBgyyS) is the canting angle of
the spins with M0 = 1.22 μB. For field along b, the
magnetization rises linearly up to at least 7 T with
M(μB) ≈ 1.202 + 0.882 H (T), as seen in Figs. 1 and 2.

To provide a baseline, we fit the magnetization data using a
simple model that contains only three xy Heisenberg interac-
tions Jn ≡ Jnxx = Jnyy, two g-tensor components gxx and gyy,
and the SIA term K . Since the DM interaction is given by

D = 1
3 {J1 + 2J2 − K} tan(2ψ ), (2)

model H contains N = 6 parameters. As indicated above, ψ is
the observed canting angle of the spins toward the b direction.
With χ2 = 0.112, the predicted magnetizations together with
the fitting parameters are given in Fig. 2. All Heisenberg in-
teractions Jn < 0 are antiferromagnetic. For the field along b,
model H predicts that M(μB) ≈ 1.284 + 0.855 H (T) between
0 and 7 T with a saturation magnetization of 2μBgyyS =
14.46 μB.

We now compare the results of model H with the results of
models without SIA, starting with a pure Ising model: gyy = 0
and the only nonzero exchange interactions Jnxx act along the
a axis. Since the spins are confined to the a axis, this model
cannot explain the magnetization measurements along b. To
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FIG. 2. Experimental data (squares) and predictions (red curves)
of model H with N = 6 parameters, including easy-axis anisotropy
K = 0.0221 meV. Other parameters are J1 = −0.0316 meV, J2 =
−0.0185 meV, J3 = −0.0080 meV, gxx = 1.458, and gyy = 1.205
with χ 2 = 0.112. For comparison, the results of model 4 are plotted
in the purple curve in (b).

obtain the observed ground state (S1 = S4 = −S2 = −S3 =
Sa without canting) and the measured critical fields Hc1 =
2.45 T and Hc2 = 6.45 T for the jumps in the magnetization,
we require

gxxμB(Hc1 + Hc2) = −2S(J1xx + 2J2xx ), (3)

gxxμB(Hc2 − Hc1) = −8SJ3xx, (4)

along with the two inequalities J1xx < 4J3xx < 0 and J2xx <

2J3xx < 0.
Taking gxx = 1.382, the saturation magnetization for field

along a is 2μBgxxS = 16.58 μB. While J3xx = −0.0067 meV
is fixed by the second equality above, the exchange
interactions J1xx and J2xx lie within the ranges −0.0327 <

J1xx(meV) < −0.0267 and −0.0164 < J2xx(meV) <

−0.0133, subject to J1xx + 2J2xx = −0.0594 meV. Values
in the middle of these ranges are given in column 1 of Fig. 1,
with J2xx ≈ J1xx/2. Corresponding to spins along ±a, each
predicted magnetization plateau is completely flat. Containing
only N = 4 parameters, model 1 yields χ2 = 0.755 for the
magnetization along a. Not surprisingly, the Jnxx interactions
are fairly close to the Heisenberg interactions of model H.

Note that all three bonds in Fig. 1 are required to predict the
two observed jumps in the magnetization and that each bond
has a unique value of Jnxx. Additional unique bonds would
be required to describe TbNi2Ge2 [19] and TbNi2Si2 [20,21],
which exhibit more than two magnetization jumps.

Model 2 builds on model 1 in two ways. First, we now
include the DM interaction D, which is given in terms of the
other fitting parameters Jnxx and Jnyy by

D = 1
6 {3J1xx + 6J2xx − 4J3xx + 2J1yy + 4J2yy} tan(2ψ ). (5)

With three exchange interactions Jnyy as well as gyy, model
2 contains N = 8 parameters. Whereas the exchange inter-
actions Jnxx in column 2 of Fig. 1 are quite similar to those
obtained from model 1, the Jnyy parameters are an order of
magnitude smaller. Although gxx = 1.426 is also comparable
to the result of model 1, gyy = 0.648 is considerably smaller
than gxx. As seen in the second column of Fig. 1, the predicted
magnetization with field along a exhibits a kink near Hc1 and

a small jump at Hc2. Because the spins are canted by the DM
interaction at zero field, they can adjust to the presence of a
field along a and the magnetization plateaus are no longer flat.

Since D = −0.0024 meV is given by Eq. (5), the predicted
magnetization along b agrees with the measured value of
1.22 μB at zero field. Unlike the measured magnetization,
however, the predicted magnetization grows linearly with field
along b only up to about 4 T. This discrepancy proves to
be the greatest shortcoming of models without SIA, which
require that gyy assumes two distinct roles. For the field along
b, the largest observed magnetization at a field of 7 T is about
7 μB, much lower than the value of 16.3 μB with a 7 T field
applied along a. A small value of gyy � gxx is then required to
constrain the predicted magnetization along b. But this small
gyy also predicts a low saturation magnetization of 2μBgyyS =
7.78 μB, which is clearly inconsistent with the measurements.
For model 2, the total χ2 for the magnetizations along a and
b is 1.494.

Model 3 adds the off-diagonal, symmetric exchange terms
Jnxy. Because Jnxy produces different canting angles for spins
1 and 4 compared to spins 2 and 3, D becomes an additional
fitting parameter so that N = 12. A major improvement in the
fit to the magnetization along a can be seen in Fig. 1(d). While
the predicted jump in the magnetization at Hc2 is larger than
for model 2, model 3 also predicts a distinct jump at Hc1.
Notice that results for the directional exchange parameters
Jnxx and Jnyy are quite similar to the results for models 1 and
2. With the addition of Jnxy, model 3 gives χ2 = 0.533.

Even with up to 12 parameters, these three models give
substantially larger values of χ2 than model H with only six
parameters. Therefore, we now consider a final model without
SIA that contains all symmetric exchange interactions Jnαβ =
Jnβα for each bond. In addition to the parameters of model
3, model 4 includes the nine exchange couplings Jnzx, Jnzy,
and Jnzz.

These new exchange interactions cause the spins to buckle
out of the ab plane. Although no such buckling has been
detected experimentally [25,30], the predicted buckling an-
gle of τb = 0.053π for the spins is rather small and the
buckling angle gzzτb/gxx for the magnetization will be even
smaller. For the field along a, the azimuthal spin angles
are θ1 = θ4 = π/2 − τb and θ2 = θ3 = π/2 + τb for H < Hc1

and H > Hc3. For Hc1 < H < Hc2, θ1 = θ3 = π/2 − τb and
θ2 = θ4 = π/2 + τb. Notice that the predicted buckling of
spin pairs {1, 2} and {3, 4} is antiferromagnetic. The zero-
field buckling pattern does not change when a field is applied
along b.

With D taken as one of N = 21 fitting parameters, model 4
gives χ2 = 0.065, which is about 42% lower than χ2 = 0.112
for model H. Results of model 4 for the magnetizations and
fitting parameters are shown in column 4 of Fig. 1. While the
fit to the data along b is still not satisfactory, model 4 does
an excellent job at describing the data with the field along
a. Surprisingly, J1zz = 0.094 meV, J2zz = 0.051 meV, and
J3zz = 0.010 meV are quite large and ferromagnetic. While
J1zx = 0.024 meV, J1zy = 0.048 meV, J2zx = 0.014 meV, and
J3zx = 0.024 meV are also large and ferromagnetic, the other
off-diagonal components are rather modest. In model 4, the
ferromagnetic parameters Jnzα involving the z component of
the spin constrains the antiferromagnetic buckling of the spins
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out of the plane. A model intermediate between models 3 and
4 (call it model 3.5) with no off-diagonal symmetric exchange
on bond 3 gave a higher χ2 of 0.287. So the new interactions
on bond 3 are responsible for the additional improvements in
model 4.

For the field along b, model 4 predicts that M(μB) ≈
1.288 + 0.854 H (T) with a saturation magnetization of
10.51 μB. As shown in Fig. 2(b), the results of models 4 and
H for the magnetization along b deviate above about 6 T.

IV. LIMITATIONS OF KITAEV MODEL

Despite the low χ2 of model 4 and the rise of gyy from
models 2 through model 4, the predicted saturation magne-
tization of 2μBgyyS = 10.51 μB based on Kitaev physics is
still far too low. When gyy is no longer required to produce
an easy axis, the saturation magnetization predicted by mod-
els with SIA [25,30] is consistently above 14 μB. The very
large, ferromagnetic value of the exchanges Jnzα in model 4
is another signal that the absence of easy-plane anisotropy
produces nonphysical results.

It is conceivable that a more complete model without SIA
could improve upon model 4. Because it contains only one
DM constant, model 4 does not include all three antisym-
metric exchange interactions Jnαβ = −Jnβα on each bond n.
Since there are a total of 3 × 3 = 9 exchange interactions
on each bond, a complete model for a single honeycomb
layer would contain N = 9 × 3 (bonds) + 2 (gαα ) = 29 pa-
rameters, eight more than model 4. But it is doubtful that
even such a complete model will significantly increase the
saturation magnetization with the field along b. Admittedly,
it is also possible that we have not allowed sufficient time for
the 21 parameters of model 4 to completely converge.

Thus far, we have only considered a single honeycomb
layer. Modeling the stacked honeycomb layers of TIG in an
ABAB pattern requires at least two more bonds between lay-
ers. So a full-fledged model of three-dimensional TIG without
SIA would require N = 9 × 5 (bonds) + 3 (gαα ) = 48 param-
eters (34 if only symmetric exchange plus the DM interaction
were included). Constructing such a model begs the question:
At what point does a model contain so many parameters that it
becomes effectively useless? While many of these parameters
can likely be set to zero without increasing χ2, it is necessary
to start with the full gamut of parameters before they can
be pared down. Recent work [30] used easy-plane and easy-
axis anisotropies, five planar exchange couplings Jnxx = Jnyy,
three exchange couplings Jnzz, and three g-tensor components
(N = 13 parameters over five bonds [31]) to describe both
the magnetization and inelastic spectra of TIG. It is hard to
imagine a useful model that contains many more parameters.

Till now, Kitaev-Heisenberg models have been used to
study materials with high symmetry, usually with only
nearest-neighbor bonds. Since each of the three bonds on the
triangular or honeycomb lattices are then related by sym-
metry, the total number of parameters is relatively small:
up to seven parameters [10,28,32,33] for the rare-earth
triangular-lattice YbMgGaO4; up to six parameters includ-
ing third-neighbor exchange [27,34] for the honeycombs
Na2IrO3 and α−Li2IrO3; up to five parameters [3,35] for the
honeycomb α−RuCl3; and up to six parameters [17,26] for

the spin-ice pyrochlore Tb2Ti2O7. As far as we know, no
model without SIA has been successfully applied to a material
of such low symmetry as TIG.

Moreover, the role of spin-orbit coupling in TIG may not
be completely addressed by the crystal-field splitting of the
low-energy doublet. Recall that the non-Kramers Tb3+ dou-
blet acquires nonzero off-diagonal matrix elements 〈�±|Jiy ±
iJiz|�∓〉 when it hybridizes with a second doublet |�m〉 (m =
1, 2) lying 
 higher in energy. With a magnetic field along b,
the zero-field doublet |�±〉 further changes to

|�′
±〉 = |�±〉 −

∑

m=1,2

|�m〉μBgyyHy



〈�m|Jiy|�±〉. (6)

Using the value 
 = 1.7 meV found for Tb2Ti2O7 [17] and
gyy = 0.84, a 7 T field with μBgyyHy

√
S//
 ≈ 0.6 would

significantly alter the hybridization between the two doublets
and, consequently, the structure of the Jeff = 1/2 doublet
|�′

±〉. A magnetic field along the Ising axis a does not sig-
nificantly change the structure of the doublet |�′±〉 because
the ground-state doublet starts out with a diagonal matrix
element for Jix even before it hybridizes with |�m〉. So the
easiest way to address the transitions between the two dou-
blets due to a magnetic field along b may be through easy-axis
anisotropy, which allows gyy to produce the correct saturation
magnetization.

Indeed, the symmetry of TIG may be so low that it does not
even support a single low-lying doublet. As speculated in Ref.
[25], the observed R ln2 entropy at the magnetic transition
may be produced by two singlets that are close in energy, i.e., a
pseudo doublet. Hence, applying the spin-1/2 algebra to TIG
may be an oversimplification even in zero field. In addition,
TIG does not meet the requirements [4] for edge-sharing
octahedra that generate the off-diagonal exchange couplings
in a Jeff = 1/2 Kitaev model for oxides.

To add additional complexity, the stochiometry of TIG
requires [36] that the Ir ions have a charge of −5 if the Ga ions
have a charge of +1. This suggests that 5d electrons from Ir
can hop onto the Tb sites to momentarily create 5d 4 f 8 Tb2+
ions, which have recently been studied in several molecule-
based magnets [37–39]. The precise coupling mechanism ( j- j
or LS coupling) between the 5d electron and the 4 f 8 complex
is the subject of some debate. It is possible that the transient
formation of Tb2+ can produce a Jeff = 3/2 state that is hos-
pitable to SIA.

V. IS SIA MERELY NECESSARY OR ALSO APPROPRIATE?

After considering models of increasing complexity, we
conclude that a model without SIA fails to predict the linear
magnetization perpendicular to the Ising axis below 7 T for
a single honeycomb layer of a Jeff = 1/2 material. While
it is remotely possible that a more complex model with all
possible interactions can achieve this goal, it is highly un-
likely that a tractable model without SIA can fully describe
the three-dimensional properties of TIG. Since other magnet-
ically ordered materials [19–21] containing Tb3+ ions exhibit
even more complex behavior than TIG, SIA is necessary to
study orthorhombically distorted Jeff = 1/2 honeycomb sys-
tems when a field is applied perpendicular to the Ising axis.
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Nevertheless, model 4 without SIA had no difficulty de-
scribing the magnetization measurements of TIG when a field
was applied parallel to the Ising axis. Restricted to a field
applied along the Ising axis or to zero field, a model without
SIA may then be appropriate to study the properties of a
distorted, three-dimensional compound containing Tb3+ ions.
Because such a model would require more than 34 parameters,
however, it would not be realistic.

This discussion implies that a model containing SIA is
necessary to study three-dimensional, Jeff = 1/2 materials of
low symmetry. But it does not answer the deeper question
whether such a model is also appropriate. For the reasons
given above, a Jeff = 1/2 model oversimplifies the complex
physics of low-symmetry materials like TIG. To describe
these materials, a Jeff = 1/2 model without SIA has no better
justification than a J = L + S > 1/2 model with SIA. Both
types of models oversimplify the splitting of a J multiplet
in a very low-symmetry environment. With a magnetic field
applied perpendicular to the Ising axis, treating an orbitally
coupled multiplet as (2J + 1)-degenerate is just as erroneous
as treating it as twofold degenerate.

From a phenomenological point of view, the advantage
of taking the spin S to be greater than 1/2 is that it can
then be treated as another fitting parameter. To evaluate the
magnetization and critical fields, the scaled exchange J̃i j =
S2Ji j , the SIA K̃ = S2K , the DM interaction D̃ = S2D, and
the g-tensor g̃αβ = Sgαβ enter the classical energy Ẽ = S2E
on equal levels. While the magnetization Mx is proportional
to g̃xxμB

2Hx/J̃xx, the critical fields Hc1 and Hc2 in Eqs. (3)

and (4) are proportional to J̃xx/μBg̃xx, all independent of S. To
leading order in 1/S, the Néel temperature is also independent
of S and proportional to (z/3)|J̃i j |, where z is the number of
nearest neighbors. In a spin-wave expansion about the classi-
cal limit, the spin-wave frequencies h̄ωsw are proportional to
J̃i j/S with an overall energy scale set by 1/S (the next-order
corrections are of order J̃i j/S2). Hence, the effective value
for the spin S can be determined by simultaneously fitting
the magnetization and spin-wave data. We shall employ this
technique in future work.

While the relative justifications of models with and with-
out SIA can be endlessly debated, the utility and simplicity
of models containing SIA cannot be denied. Whereas appli-
cations of Jeff = 1/2 models to systems of low symmetry
provide results that are difficult to interpret physically, models
with SIA provide results that are easy to understand and have
direct physical consequences. We argue that a Heisenberg
model containing SIA with an effective spin greater than 1/2
provides a much easier path to model and understand distorted
honeycomb systems with nominal doublet ground states.
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