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Unconventional anomalous Hall effect from magnetization parallel to the electric field
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In the anomalous Hall effect (AHE), the magnetization, electric field, and Hall current are presumed to be
mutually vertical to each other. In this paper, we propose an unconventional AHE where the magnetization,
electric field, and Hall current stay inside the same plane. Such an AHE is odd under time reversal and exists
even when the magnetization is parallel to the electric field or Hall current, different from the planar Hall effect
which is even under time reversal. Here, we term it parallel anomalous Hall effect (PAHE). We reveal that the
PAHE exists when all the point group rotational and reflection symmetries are broken where the Berry curvature
field is not necessarily parallel to the magnetization axis. We further demonstrate the PAHE in a ferrimagnetic
Weyl semimetal FeCr2Te4.
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I. INTRODUCTION

The intrinsic anomalous Hall effect (AHE) [1] is estab-
lished on the Berry phase theory [2] and provides a powerful
probe on the time-reversal breaking and the band topology.
In general, it is presumed that three vectors—magnetization,
electric field, and the Hall current—are mutually perpendicu-
lar to each other, which is like the conventional Hall effect in
an external magnetic field. However, the recent discovery of
giant AHE in noncollinear antiferromagnets [3–6] questioned
this assumption, in which the net magnetization vanishes.
Furthermore, the quantized AHE was theoretically proposed
to exist with these three vectors being coplanar in some two-
dimensional (2D) films that break all reflection symmetries
[7–10]. It is elusive how this in-plane AHE is generalized to
three-dimensional (3D) materials and what symmetry condi-
tion is required.

Here, we express the anomalous Hall current as JAHE =
e2

h̄ � × E, where � is the total Berry curvature of the band

structure, E the applied electric field, and e2

h̄ the conduc-
tance quantum. If any rotational or reflection symmetry exists,
both � and the magnetization m must lie parallel to the
rotational axis or the reflection plane normal, because � is
a pseudospin-type vector. Therefore, JAHE, E, and m are
mutually orthogonal in this case. However, if all rotational
and reflection symmetries are broken, � unnecessarily aligns
along m. Then the orthogonal relation may get violated. Three
vectors, JAHE, E, and m can be coplanar and m may even
be parallel to JAHE or E, as schematically shown in Fig. 1.
We note this unconventional AHE as parallel anomalous Hall
effect (PAHE). Like the conventional AHE, PAHE changes
signs as reversing the m direction. It is distinct from the
planar Hall effect [11–14], which remains the same when
flipping the magnetic field and originates in the anisotropic
magnetoresistance.
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In this paper, we investigate the PAHE in general 3D
materials. We demonstrate the misalignment between magne-
tization and Berry curvature if anisotropic spin-orbit coupling
(SOC) exits. Unlike the 2D case, we need to break all rota-
tional and reflection symmetries except the spatial inversion
to generate PAHE in 3D. We analyze all 32 point groups
(PGs) and identify the allowed PAHE. Further, we propose the
experimental available magnetic Weyl semimetal FeCr2Te4 as
a candidate to realize PAHE.

II. A TOY MODEL

We first illustrate the PAHE by a simple two-band toy
model in this section. The two-band anisotropic model
Hamiltonian can be written as

H = H0 + HZ + HSO,

H0 = h̄k2

2m∗ , HZ = gm · σ,

HSO = λxkxσx + λykyσy + λzkzσz, (1)

where HSO and HZ are SOC and Zeeman-like terms, re-
spectively. λ = (λx, λy, λz ) refers to the SOC strength. σ =
(σx, σy, σz ) is the spin Pauli matrix and m = (mx, my, mz ) is
the magnetization. If λx = λy = λz = λ, HSO is reduced to the
ordinary isotropic form λk · σ. The Hamiltonian in Eq. (1) can
be rewritten into a compact form H = d0σ0 + d · σ (σ0 is a
2 × 2 identity matrix) whose energy band dispersion is given
by εsk = d0 + s

√
d · d (s = ±1) with d0 = h̄2k2/(2m∗) and

dα = λαkα + gmα (α = x, y, z). The total Berry curvature �

can be calculated as

�sk = s
λxλyλz

2|d|3 (k + gmλ)

� =
∑
s=±

∫
dk

(2π )3
�sk fsk

=
(

−
∑
s=±

∫
ε�μ

dk
(2π )3

s
gλxλyλz

2|d|3
)

mλ, (2)
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FIG. 1. Schematics of the anomalous Hall effect. (a) The standard Hall bar where the magnetization m (or magnetic field H) is along z,
electric field E is along x, and the Hall voltage Vy is measured along y. The general electric resistance can be obtained by measuring along x.
(b) The m (or H) is along y. (c) The E and m are in the same direction x. The anomalous Hall effect along y (Vy) in (b) and (c) are PAHE, which
vanishes in the conventional Hall effect and the planar Hall effect. We have to emphasize that the realization of (b) and (c) in real experiments
can be achieved by preparing a new sample with the magnetization lying in the sample plane and applying E parallel to or along with m,
instead of rotating m from (a) directly.

where mλ = ( mx
λx

,
my

λy
,

mz

λz
). μ is the chemical potential.

Equation (2) indicates that the direction of Berry curvature
� is parallel to the magnetization m only in the isotropic case
(mλ = m/λ). For generic low-symmetry anisotropic SOC, mλ

or � is not necessarily collinear with m. We have to empha-
size that, while the simple Weyl Hamiltonian is used here to
establish intuition on PAHE, the PAHE does not necessarily
require the existence of Weyl points (WPs), as seen from the
symmetry analyses below.

A similar conclusion also applies to the conventional Hall
effect. Based on the Boltzmann transport theory, the con-
ventional Hall current (JHE) due to Lorentz force can be
derived as

JHE = −e3τ 2
∫

dk
(2π )3

vv ·
[

B ×
(

1

m∗

)
E

]
∂ f0

∂ε
, (3)

where ( 1
m∗ )αβ = 1

h̄2
∂2εk

∂kα∂kβ
is the inverse effective mass matrix

and v = 1
h̄∇kεk is the group velocity. f0 is the equilib-

rium Fermi distribution function. In the case of an isotropic
parabolic band with a constant effective mass, i.e., εk = h̄2k2

2m∗ ,

the JHE can be calculated as JHE = σH B × E with σH = e3τ 2nF
m∗2

(nF is the carrier density at Fermi level). However, in the

case of an anisotropic effective mass model, i.e., εk = h̄2k2
x

2m∗
x

+
h̄2k2

y

2m∗
y

+ h̄2k2
z

2m∗
z

, the Hall current becomes JHE = e3τ 2nF
m∗

x m∗
y m∗

z
Bm∗ × E

with Bm∗ = (m∗
x Bx, m∗

y By, m∗
z Bz ), so JHE is not necessarily

perpendicular to B.

III. SYMMETRY RESTRICTIONS ON ANOMALOUS
HALL EFFECT

Our above discussions indicate that symmetry is a decisive
factor for the appearance of PAHE. Let’s now consider from a
generic aspect how the symmetry restricts the AHE. In the ex-
periment, the AHE is generally measured with magnetization
m or magnetic field H along the high-symmetry directions.
For this reason, and also for the sake of simplicity, we start
from the 32 PGs and apply the magnetization m along the
three orthogonal axes of the Cartesian coordinate systems
conventionally used for all crystal systems [15], as summa-
rized in the Supplemental Material (SM) [16]. Note that for
the trigonal crystal system, we employ the hexagonal lattice
settings. The elements of the anomalous Hall conductivity

(AHC) tensor σ that allow PAHE are summarized in Table I
after considering the symmetry broken by m (more details can
be found in the SM [16]). The PAHE is not allowed for (i) the
five cubic PGs, (ii) the dihedral PGs except for D3 and D3d ,
and (iii) the Cnv PGs except for C3v . One common feature
of these PGs is that each of the three Cartesian axes shows
at least one of the n-fold rotational (n � 2) and reflection
symmetries upon applying the m. For example, for C4v , the
reflection Mx (reflection plane yz) and My (reflection plane
xz) are maintained, respectively, with m along x (i.e., [100]

TABLE I. Anomalous Hall conductivity tensor components of
three-dimensional point groups that allow PAHE. The tensor is de-
fined as Ji = σi jE j where Ji and E j are the ith and jth components of
Hall current J and electric field E, respectively. The Cartesian axes
x, y, and z for each crystal system follow the convention used in
Ref. [15] and summarized in the SM [16]. The PAHE components
of the D3, C3v , and D3d PGs depend on the relative positions of
the symmetry operations (rotational axis and reflection plane) and
Cartesian axes. However, the symmetry restrictions on the tensor
are the same. Thus we employ such coordinate sets that one of the
in-plane twofold rotational axes is along x for D3 and D3d , and one of
the reflection planes is parallel to xz plane for C3v . More information
can be found in Ref. [16].

Crystal Point
Direction of m

system group x y z

Hexagonal C6h σzx σyz

C3h σzx σyz

C6 σzx σyz

Trigonal D3d σxy

C3v σxy

D3 σxy

C3i σxy, σzx σxy, σyz

C3 σxy, σzx σxy, σyz

Tetragonal C4h σzx σyz

S4 σzx σyz

C4 σzx σyz

Monoclinic C2h σxy σyz

Cs σxy σyz

C2 σxy σyz

Triclinic Ci σxy, σzx σxy, σyz σyz, σzx

C1 σxy, σzx σxy, σyz σyz, σzx
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direction) and y (i.e., [010] direction). For D3h, the twofold
rotational symmetry along the in-plane lattice vector a (i.e.,
x) is preserved with m along x and the reflection symmetry
My (reflection plane xz) is preserved with m along y. The
synergy of these remaining rotational/reflection symmetries
prohibits the PAHE in the PGs mentioned above. However,
if there is at least one axis that shows no rotational and
reflection symmetry upon applying m, the PAHE is allowed,
which comprise Table I. Let’s take D3 as an example. We take
one of the twofold rotational axes along the x direction (i.e.,
along in-plane lattice vector a [16]). No rotational symmetry
is maintained when m is along y but the twofold rotational
symmetry along x is maintained when m is along x. As a
result, PAHE is allowed with m along y in D3.

The above discussions establish for PAHE the precondi-
tions of breaking both rotational and reflection symmetries.
But it is still not clear about the plane in which the PAHE
appears. By analyzing the symmetries upon applying m, we
find that, while the reflection (rotational) symmetry is broken
when m is in the reflection plane (the plane perpendicular to
the rotational axis), the combination of reflection M (twofold
rotation C2) and time-reversal symmetry T , i.e., MT (C2T ),
is maintained. Such combinations of MT and C2T import
additional restrictions for the AHE. Let’s consider the most
interesting in-plane component σxy (similar discussion below
can be applied to the other components). For example, for C3h

PG as shown in Table I, the PAHE is only allowed when m
lies in the xy plane. However, due to the maintained MT (M
here is the reflection σh along z axis), the AHE in the xy plane
(σxy) is forbidden. For Cn PG (n is even), now the C2T plays
the role of MT in C3h. Similar discussions can be performed
for other PGs. In short, the in-plane AHE is not allowed in the
PGs with either even-fold rotational symmetry (the rotational
axis is along z direction) or σh reflection when m lies in
the xy plane.

Now we discuss the 2D case. Previous works [7–10] re-
vealed the possibility to realize in-plane quantized AHE effect
with in-plane magnetization on the precondition of breaking
all the reflection symmetries. However, rotational symmetry
has not been well considered before. This may be because
the materials or models considered therein have no twofold
rotational and reflection symmetries along the out-of-plane
direction and thus do not suffer from C2T or MT with in-
plane magnetization. Here we emphasize the role played by
C2T and MT and conclude that the PAHE can never happen
in pure 2D cases with in-plane magnetization (regardless of
the stability of such a magnetization). But the PAHE can
happen with in-plane magnetization in the 2D PGs of C1/C3

and D1/D3 with the prerequisite of breaking σh reflection, e.g.,
by a slight buckling of the plane.

While the above discussions for the 2D case with in-
plane magnetization are robust, we have to emphasize the
arguments for 3D PGs are based on the assumption that the
magnetization m is along the specified high-symmetry di-
rections. If m is misaligned to the high-symmetry direction
that destroys all the rotational and reflection symmetries as
well as the combinations MT and C2T , then PAHE can
show up in any crystal class. Such a symmetry-breaking
process can be realized by either an external magnetic field
H along a general direction or a particular type of intrinsic

a (x)

b (y)
c (z)

(b)(a)

(c)

WPs

Cr
Te

Fe

WP

FIG. 2. Crystal and band structures of FeCr2Te4. (a) Crystal and
magnetic structure of FeCr2Te4 with the red vectors on Cr and Fe
atoms showing the experimentally confirmed ferrimagnetic configu-
ration, where the local moments are aligned ferromagnetically along
the c axis in each sublattice but antiferromagnetically aligned be-
tween the two sublattices. (b) The first Brillouin zone of the primitive
cell together with the high-symmetry points used in (c) are shown.
The blue dots represent a pair of Weyl points near the Fermi level.
(c) The band structure under the experimental ferrimagnetic config-
uration including SOC (the energy is referenced to the Fermi level).
The band crossing on 
F1 at the energy of −44 meV forms a type-I
Weyl point (WP) and the inset shows the dispersion relation near the
WP on the kx-ky plane. Yellow (blue) color stands for higher (lower)
band weight of Fe.

magnetization. In addition, though based on the magnetization
from the ferromagnetic configuration, our symmetry consid-
erations are also applicable to other magnetic configurations
such as antiferromagnetic configuration and noncollinear
magnetic configuration.

IV. MATERIAL PREDICTION

We now demonstrate by first-principles calculation the
PAHE in the ferrimagnetic Weyl semimetal FeCr2Te4, which
has been reported recently about the ferrimagnetism and gen-
eral AHE from experiment [17,18]. The crystal structure of
FeCr2Te4, as shown in Fig. 2(a), can be regarded as the
Fe-intercalated AA-stacking of the 1T phase of a transition-
metal dichalcogenide (CrTe2) with distortions. It has a
monoclinic structure with a space group of I2/m (C2h), and
the angle between the lattice vectors a and c is 90.01◦ (the
small deviation from 90◦ will be ignored below). The twofold
rotational symmetry C2 is along lattice vector b and reflection
M is with respect to the ac plane. The experimentally con-
firmed ferrimagnetic configuration with the easy axis along c
is shown in Fig. 2(a). Within such a magnetic configuration,
both the C2 and M are broken but the combined C2T and MT
symmetries are maintained.

The Perdew-Burke-Ernzerhof [19] level band structure, as
calculated by the density functional theory as implemented in
VIENNA AB INITIO SIMULATION PACKAGE [20,21], is shown in
Fig. 2(c) where SOC is included. FeCr2Te4 is metallic, which
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FIG. 3. Anomalous Hall conductivity (AHC) of FeCr2Te4 under
the experimental ferrimagnetic configuration. The energy is relative
to the Fermi energy.

is different from its isostructural FeCr2Se4, who is an antifer-
romagnetic insulator [22,23]. There are many band-crossing
points in the band structure, some of which are potential WPs.
For example, by employing WANNIERTOOLS software [24],
we identify that the band crossing point on 
F1 at −44 meV
is a type-I WP as shown in Fig. 2(c). Due to the maintained
inversion symmetry, there is another WP corresponding to the
one on 
F1. The positions of this pair of WPs in the Brillouin
zone are shown in Fig. 2(b) by blue dots. Such WPs (and other
band crossing points) generally contribute much to the Berry
curvature and thus to the intrinsic AHC who is the integral
of Berry curvature over all the occupied bands. But be aware
that the WP is not a prerequisite of AHE according to the
symmetry analyses above.

Based on a tight-binding Hamiltonian as obtained with the
maximally localized Wannier functions [25], we calculate the
intrinsic AHC by using the Kubo formula approach. Figure 3
shows the calculated AHC under the experimental ferrimag-
netic configuration. The component σxy (magnetization along
z), which represents the general AHE, shows a value of about
130 (� × cm)−1 at the Fermi energy. This intrinsic AHC is
larger than the experimental value where the extrinsic con-
tribution dominates the AHE of FeCr2Te4 as discussed in
literature [18]. Here we focus on the intrinsic part. While
the experiment had reported the σxy, the PAHE has not been
reported. According to our calculation, the most intriguing
component σyz, where the electric field or the Hall current
is in the same direction of the intrinsic magnetization (i.e.,
z direction), is nonzero, which confirms our above proposal of
the PAHE as depicted in Figs. 1(b) and 1(c). The WP shown in

Fig. 2(c) is accidental and not a prerequisite for PAHE (σyz).
The value of σyz at the Fermi energy is ∼50 (� × cm)−1, in
the same order of σxy. If the system is slightly doped by a hole,
σyz can even reach a value of as large as 500 (� × cm)−1. The
σzx is always zero because of the maintained C2T and MT
symmetries.

V. EXPERIMENTAL SIGNATURE

Very recently, the in-plane AHE was reported in the po-
tential Dirac or Weyl semimetal material ZrTe5 [26] when
the in-plane magnetic field H is parallel and perpendicular to
the electric field E. ZrTe5 has a PG of D2h. According to the
symmetry analyses above, this PG does not show PAHE when
the H is along any of the three crystallographic directions
since there are always a reflection symmetry and a twofold
rotational symmetry left. However, in experiments, the elec-
trodes are misaligned with the in-plane lattice vectors a as
manifested in the literature. This misalignment leads to the
misalignment between H and the in-plane a or c axes when
H is parallel or perpendicular to E, and thus breaks all the
symmetry restrictions for PAHE we proposed above. Thus, we
think the antisymmetric part of the measured unconventional
AHE is a signal of PAHE. This actually goes to the pro-
posal above where H is applied along a general direction for
realizing PAHE.

VI. CONCLUSION

We have explored the possibility of realizing an unconven-
tional AHE—PAHE—where the magnetization (or magnetic
moment) is coplanar with the electric field and the Hall
current. By symmetry analyses, we reveal that breaking the
rotational and reflection symmetries is critical for realizing
PAHE in 3D. For 2D cases, in addition to the above pre-
requisites, breaking the additional combinations of twofold
rotational symmetry C2, reflection symmetry M (both along
out-of-plane direction), and time-reversal symmetry T (i.e.,
C2T and MT ) is also essential. By first-principles calcula-
tion, we demonstrate this unconventional AHE in a realistic
ferrimagnetic Weyl semimetal. Our symmetry discussions
also apply to the conventional Hall effect.
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