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Measuring the dispersion relations of spin wave bands using time-of-flight spectroscopy
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We develop a generic all-inductive procedure to measure the band structure of spin waves in a magnetic thin
stripe. In contrast to existing techniques, our method works even if several spin wave branches coexist in the
investigated frequency interval, provided that the branches possess sufficiently different group velocities. We
first measure the microwave scattering matrix of a network composed of distant antennas inductively coupled
to the spin wave bath of the magnetic film. After a mathematical transformation to the time domain to get
the transmission impulse response, the different spin wave branches are viewed as wave packets that reach
successively the receiving antenna after different travel times. In analogy with time-of-flight spectroscopy, the
wave packets are then separated by time gating. The time-gated responses are used to recalculate the contribution
of each spin wave branch to the frequency domain scattering matrix. The dispersion relation of each branch stems
from the absolute phase of the time-gated transmission parameter. The spin-wave wave vector can be determined
unambiguously if the results for several propagation distances are combined, so as to get the dispersion relations.
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I. INTRODUCTION

The spin waves possess features—frequency tunability,
short wavelengths, strong nonlinearity and nonreciprocity—
that make them intriguing quasiparticles that are uniquely
suited for the implementation of innovative microwave func-
tions. A prerequisite for most applications that rely on spin
waves [1,2] is to know their band structure, i.e., the dispersion
relation of each spin wave branch present at the frequencies
of interest. Many of the past experimental determinations of
the spin wave band structure were based on Brillouin light
scattering (BLS) experiments [3] or their space-resolved vari-
ants [4,5]. More recently, inductive microwave measurements
based on vector network analyzers (VNAs) have become pop-
ular to study spin waves [6]. Coupled with the high sensitivity
of VNAs, the fabrication of nanoantennas allows us to reach
large wave vectors [7,8], thereby providing capabilities that
compare well with BLS systems. The measurement of the full
spin wave band structure using all-electric means is thus now
within reach.

Attempts toward this goal are numerous in the recent
literature [7,9–16]. These experiments are all based on the
measurement of spin wave propagation between antennas.
The frequency dependence of the transmission coefficient can
be analyzed [9–12,15] to provide the spin wave group velocity
∂ω
∂kx

for a set of discrete frequencies ω
2π

. Here kx is the wave
vector along the spin wave propagation direction. Getting the
true dispersion curve ω(kx ) requires us to assume that the spin
wave is not strongly dispersive and then to perform an inte-
gration. The integration constant is a wave vector that has to
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be determined. This difficulty is sometimes circumvented by
postulating that the wave vectors can be exactly deduced from
the antenna geometry and the profile of its rf fields [11–14,16].
This assumption is risky since the antenna radiation pattern
can substantially differ from analytical estimates when per-
meable materials with finite conductivity are present in the
surroundings of the antenna [17]. Equivalently, the frequency
dependence of the transmission parameter is sometimes fitted
directly to the theoretical dispersion curve [11,18] using a
single-mode signal theory [16].

These previous methods suffer from two important limi-
tations. The first one is the inability to directly measure the
dispersion relation, or to deduce it without making uncheck-
able assumptions. The second limitation is that these methods
require that a single spin wave branch contribute to most of
the signal amplitude in the investigated frequency interval:
these methods are bound to fail if the spin wave density
of states comprises several branches with substantial contri-
butions. Our present paper aims at developing an enhanced
method that solves these two issues in order to construct the
spin wave band structure in an indisputable manner. Of course
this can be done—and has been done routinely in the past—by
the BLS community [19]; our present purpose is to study
how to do it in an all-electrical manner so as to benefit from
the very broad frequency coverage of VNAs as well as their
exceptional dynamic ranges that permit fast measurements.
Since our goal is to discuss a novel methodology, we shall
implement it on a model system whose spin wave spectrum is
well known [8,19,20]: a micrometer-sized stripe magnetized
along its width.

The paper is organized as follows. We first describe the
sample design in Sec. II A. The sample is chosen to reveal
both the potential of our technique and its main hurdles. The
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FIG. 1. (a) Sketch of the different families of spin wave branches, their spatial profiles within the conduit width, their effective wave
vectors, and their group velocities for wmag = 4.7 μm at 18 mT. (b) Cross section of the sample, with thicknesses in nm. (c) Far field optical
view of the rf contacts routing the electrical signals toward the antenna. The metallic parts appear in golden color. (d) Sketch of the device and
definitions of its dimensions. (e) Scanning electron micrographs of the central parts of devices with conduit widths wmag = 4.7 μm (left) and
wmag = 0.85 μm (right).

detailed experimental methodology and the results recorded
in frequency domains are reported in Sec. III. Section IV
then describes how to mathematically transform the frequency
domain data into time-domain impulse responses to perform
time-of-flight spin wave spectroscopy. When there are several
spin wave branches, time gating is performed to separate their
contributions to the total density of states. The dispersion
relations are then constructed in Sec. V. As a final check,
these dispersions are compared to expected ones, and are
used to identify the experimental efficiency spectrum of the
antenna.

II. SAMPLE DESIGN FOR TIME-OF-FLIGHT
SPIN WAVE SPECTROSCOPY

A. Objectives and design strategy

Our method will rely on the detailed analysis of the phase
of spin waves after their propagation through a magnetic
medium. Inductive antennas are used as spin wave emitters
and receivers (Fig. 1), in line with what is commonly practiced
for all-electrical spin wave analysis [7,16,18,21–24]. Since
we aim to determine the dispersion relation, we use narrow
antennas to cover an as-large-as-possible interval of wave
vectors [16]. We have implemented our time-of-flight spin
wave spectroscopy method on several types of samples and
of spin waves; for a didactic purpose, we illustrate it here with
samples that best reveal the potential of this technique. This

requires that many families of spin wave modes coexist at the
same frequency and propagate in the same direction.

This condition is conveniently obtained in the Damon-
Eshbach configuration: we harness the so-called magneto-
static surface spin waves (MSSWs) that propagate along the
length x of a narrow magnetic conduit of finite width wmag

and thickness tmag much smaller than wmag, submitted to a
transverse field Hy that saturates the magnetization [Fig. 1(a)].
The lateral confinement within the magnetic waveguide forces
the spin waves [20] to get a standing wave character in the
transverse direction (y) while the longitudinal wave vector
kx remains free to take any value. As shown by Demidov
et al. [19,25], this naturally creates several families of spin
waves with different dispersion relations in the kx (propaga-
tive) direction.

A first family of spin wave branches is the confined version
of the plane waves existing in the extended films. Following
the convention of Ref. [19], we index them as DE1, DE2,
..., where the subscript m = 1, 2, . . . is the number of antin-
odes in the width of the magnetic conduit, which can be
viewed as an effective quantization of the transverse wave
vector at values of ky = mπ

wmag
[see the sketches in Fig. 1(a)].

Among these branches of modes, the ones with odd m are
excitable and detectable by inductive antennas [26], with an
efficiency essentially scaling like 1/m; they will be our pri-
mary Guinea pigs in this paper. A convenient feature of these
confined modes is that as the index m increases, the modes
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progressively loose their MSSW character (i.e., with a large
group velocity at low kx and an effective wave vector �kx + �ky

almost along the equilibrium magnetization) to resemble more
and more the magnetostatic backward volume spin waves
(MSBVSWs) with much smaller group velocities [27] and
effective wave vectors almost perpendicular to the equilibrium
magnetization. In the saturated state, the exchange contribu-
tions can be neglected at small wave vectors such that the spin
wave dispersion relation can be approximated by [19]

ωDEm(kx ) = γ0
√

H1H2, (1)

where the stiffness fields are H1 = H0 + Ms(1 − P) and H2 =
H0 + Ms(P

k2
x

k2 ), with P = 1 + e−ktmag −1
ktmag

, k2 = k2
x + k2

y , and H0

being the internal magnetic field (i.e., including the applied
field as well as the demagnetizing field related to the shape
anisotropy) and Ms the magnetization. (Note that in Ref. [19]
the applied field Hy and the internal field H0 were taken as
equal because the demagnetizing effects were small; this is
not the case here because we use materials with much larger
saturation magnetization.) This expression will be used to
confirm the experimentally determined dispersion relations.

The dispersion relation resembles that of the extended film
only when kxwmag � mπ . At kx = 0, the lateral confinement
distorts the dispersion relation which gets a vanishing group
velocity [Fig. 1(a)]. As a result, the spin wave attenuation
lengths Latt also vanish at kx = 0: these spin waves cannot
reach the receiver antenna. It is important to figure out that
when propagating spin wave spectroscopy is conducted in
narrow conduit, the vicinity of the kx = 0 points of the DEm

branches are intrinsically not measurable.
In addition to this DEm family of spin waves, edge modes

can exist at fields slightly above the one needed to saturate
the magnetization of the stripe along its width [20]. These
modes [Fig. 1(a)] have no analog in the infinite-film limit, and
their frequencies cannot be accounted for analytically. Since
these modes occupy only a small fraction of the stripe volume,
they couple weakly to inductive antennas; besides, their low
group velocities lead to a strong attenuation upon propagation;
we will see that we can anyway still measure their dispersion
relation.

B. Sample geometry and properties of the magnetic material

Let us now describe our samples and define our nota-
tions. We use Ta/CoFeB/Ta films [Fig. 1(a)] of thickness
tmag = 30 nm, magnetization Ms = 1340 kA/m, and Gilbert
damping α ≈ 0.004. They have essentially isotropic proper-
ties. We will typically work with applied fields that lead to
ferromagnetic resonance frequencies ωFMR/2π in the range
of 5 GHz with FMR linewidth � f ≈ 200 MHz. For this FMR
frequency, the group velocities in the unpatterned film at �k ≈
�0 would be [9]: ∂ω

∂kx
= γ 2

0 M2
s tmag/(4ωFMR) = 20.9 km/s in the

magnetostatic surface wave configuration when �k ⊥ �M, and
∂ω
∂ky

= −γ 2
0 HyMstmag/(4ωFMR) = −216 m/s in the backward

volume spin wave configuration when �k ‖ �M.
The CoFeB films are patterned into magnetic conduits of

widths wmag = 4.7 and 0.85 μm and much longer lengths
[Fig. 1(d)]. The length and the width define the (x) and (y)
directions. The conduits are submitted to transverse fields Hy

that exceed the dipolar shape anisotropy fields of μ0Hsat of
the two conduits, respectively 6 mT (wide conduit) and 30 mT
(narrow conduit). The applied fields are thus meant to saturate
the magnetization along the width direction. In order to reach
high wave vectors, we use U-shaped antenna with narrow gaps
of g = 231 nm and arm widths of L = 513 nm. The antenna
are placed above the CoFeB spin wave conduits at antenna
center to antenna center being r1 = 2.3 μm, r2 = 4.6 μm, and
r3 = 6.9 μm [see Fig. 1(d)].

III. FREQUENCY DOMAIN EXPERIMENTS

The spin wave time-of-flight spectroscopy is based on
frequency-resolved spin wave transmission characterizations,
as detailed below.

A. Specific methodology for the acquisition
of the frequency domain data

The devices are characterized by measuring their scatter-
ing matrix S̃i j with i, j ∈ {1, 2} (the tilde recalls that it is
a complex-valued function) with a vector network analyzer
(VNA) and an rf probe station, versus frequency and versus
external applied field. The VNA output power was set to 0
dBm; the results were checked to be independent from the
chosen power when decreasing it from this value. The choice
of the frequency settings (100 MHz to 30 GHz with steps of
10 MHz) will be discussed later. The field is transversal to
the spin wave conduit length [Fig. 1(d)]. Several experimental
precautions are taken.

First, an on-chip full 2-port calibration with a load-match-
reflect standard impedance calibration kit is done to correct
for the imperfections of the VNA, the cable assembly, and the
rf probes. This sets the zero phase (reference) planes at the
device contact pads.

Second, the device contact pads are positioned as close as
possible to the inductive antennas (printed circuitry length
�circuit ≈ 300 μm) so as to limit the phase accumulated by
the voltage waves along this circuitry. To avoid the need of
de-embedding, this accumulated phase should be negligible
compared to the phase that will be accumulated by the spin
waves along their propagation between the antennas. This is
ensured by the condition

r

vsw
g

� �circuit

cem
g

≈ 1.5 ps, (2)

where r ∈ [2.3–6.9 μm] is the propagation distance of the
spin waves, vsw

g ≈ 2–20 km/s their group velocity, and cem
g ≈

2 × 108 m/s the group velocity of the voltage waves in the
rf circuitry at the frequencies of interest. We will see that the
duration r/vsw

g of the travel of the spin waves between the
antennas lies in the ns range, such that de-embedding of the
�circuit-long section is not necessary in our case.

Third, we correct for signals that are not originating from
spin wave signals. In addition to the spin-wave-mediated sig-
nals, the raw scattering matrix comprises a direct antenna
reflection and direct antenna-to-antenna coupling from un-
avoidable inductive and capacitive effects. Several methods
can be used to construct an approximation of the scattering
matrix of this parasitic transmission [7] and subtract it from
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FIG. 2. Backward transmission parameters S̃12 for spin wave conduits of widths of 4.7 μm (left panels) and 0.85 μm (right panels) for
an antenna-to-antenna distance of r3 = 6.9 μm. (a) and (b): Field dependence of the imaginary part. (c) and (d): Selected spectra where the
multimode character is striking to the eye, manifest either as a ripple superimposed on the main envelope signal in (c) or as a kind of two-tone
beating in (d). (e) Example of complex transmission parameter in the single-mode model [Eq. (4)], evaluated with vanishing damping for the
dispersion relation displayed in panel (f). The dispersion relation starts at fk=0 = 4.75 GHz and grows with a constant (hence nondispersive)
group velocity vg = 7 km/s. The envelope (green curve) in (e) is the antenna efficiency function [Eq. (5)].

the data. Here we have used the zero-field S̃i j spectra: at
this field, the magnetization lies along the conduit length,
and in this BVSW configuration the transmission spin wave
signals are vanishingly low [24], due to a very low excitation
efficiency of inductive antennas as well as the very short spin
wave attenuation length due to the very low group velocity.
We thus perform the following correction:

S̃corrected = [S̃(Hy) − S̃(|| �H || = 0)]. (3)

We shall omit the superscript “corrected” in the remainder of
this paper as all data presented from this point onward are sys-
tematically corrected. Other methods of correction could have
been used, for instance by replacing the zero-field spectrum
by another spectrum recorded at very large fields. The detail
of this correction does not alter our forthcoming conclusions.

B. Frequency domain results

The field and frequency dependencies of the transmission
parameters are reported in Fig. 2 for the longest propagation
distance r = 6.9 μm. To discuss these results, it is useful to
recall the transmission parameter [16] expected when it is as-
sumed that (i) there is a single spin wave branch of dispersion
ω(kx ) and (ii) that its attenuation length Latt greatly exceeds
the antenna dimensions L and g for all kx values. In this case,

the signal would be a sinusoid e−ikx |r| damped by the spin wave

attenuation e− |r|
Latt and caped in an envelope h2

x (kx ) that starts
from the bottom of the spin wave band [16]:

S̃single mode
i j (ω) ∝ i e−ikx |r| e− |r|

Latt [hx(kx )]2, (4)

where the antenna efficiency function hx(kx ) is determined by
the antenna geometry and can be semiquantitatively described
by [16]

hx(kx ) ∝ sin

(
kx(g + L)

2

)
sin(kxL/2)

kxL/2
. (5)

An example of the transmission parameter expected in
this single-mode theory [Eq. (4)] is given in Fig. 2(f). This
idealized transmission parameter is calculated in the absence
of loss (i.e., Latt = ∞) for a mode whose dispersion relation
is plotted in Fig. 2(f). This idealized and unphysical model is
displayed for illustration purpose, only to ease the discussion
of the later coming experimental data. It is taken as nondisper-
sive, i.e., with a constant group velocity vg = 7 km/s. In this
model, no spin-wave-related signal is expected at frequencies
below the bottom of the spin wave band; above this threshold,
the phase of the transmission signals should rotate at a pace
given by the dispersion relation. If the antenna is efficient for
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large wave vectors, a second lobe should be observed at larger
frequencies, as shown in the idealized example of Fig. 2(e).

At first glance, our results for the widest spin wave conduit
[Figs. 2(a) and 2(c)] could seem to fall in line with the expec-
tations of the single-mode model, with the second lobe clearly
visible near 20 GHz in the example of Fig. 2(c). However a
closer look evidences differences. In particular, a small ripple
is present at the lowest frequencies. This ripple is present only
at applied fields near the saturation field of the stripe.

The difference between the single-mode expectation
[Fig. 2(e)] and the experimental behavior is much more strik-
ing for the narrow spin wave conduit [Figs. 2(b) and 2(d)],
especially at low fields where the signal gives the impres-
sion of being a two-tone beating. In the single-mode model
the phase rotates monotonically as the frequency increases
[Fig. 2(e)], in contrast with the experimental result [Fig. 2(d)].
Besides, the signal envelope departs substantially from the
expected shape. We will see that this is the result of the
presence of several spin wave branches that contribute with
comparable amplitudes to the total transmitted signal.

Thanks to their different group velocities, the separation of
the different families and branches of modes is conveniently
done in the time domain by time-of-flight spectroscopy. In the
next section, we use the VNA experimental data to compute
how spin-wave wave packets propagate and disperse with time
in our devices.

IV. FREQUENCY-TIME INTERCONVERSION OF
SPIN WAVE SIGNALS

The objective of this section is to calculate the device
impulse response, i.e., the voltage wave form that would be
measured by an oscilloscope at the receiving antenna if a
voltage Dirac impulse was applied at the other antenna at the
time of origin t = 0. The time t is thus the travel time of
the spin wave between the emitting antenna and the receiving
antenna. We use the following writing convention: frequency-
domain (respectively time-domain) quantities are written in
capital (resp. lowercase) letters. Complex-valued (resp. real-
valued) functions are written with (resp. without) a tilde. For
instance, we write S̃i j ( f ) the frequency-dependent element of
the scattering matrix of the device (i.e., the VNA data) when
the power is applied at port j ∈ 1, 2 and collected at port
i ∈ 1, 2 of the device. In a similar way, we shall write si j (t ) the
real-valued time-resolved voltage that would be measured by
an oscilloscope at the port i of the device if a voltage impulse
was applied at the port j at t = 0.

A. Frequency sampling settings

1. List of frequencies

The physical signal S̃i j ( f ) is a continuous function of
the frequency. However when recorded with the VNA, it is
sampled at a list of Npoints discrete positive frequencies. For
convenient mathematical treatment it is best to use sampled
frequencies that are harmonically related, i.e.,

{ fmin = δ f , 2δ f , 3δ f , . . . , fmax = Npointsδ f }. (6)

The “start frequency” of the VNA fmin should thus ideally
be taken equal to the frequency spacing between successive

data points δ f . (Note that δ f should not be confused with the
ferromagnetic resonance linewidth � f .)

2. Negative frequency reconstruction

The back-and-forth translation between time and frequency
domains is performed using Fourier transformation. The im-
pulse responses si j (t � 0) are real-valued (voltage) functions,
so their corresponding spectra S̃i j ( f ) must be Hermitian. The
negative frequency points should thus be constructed as the
conjugate symmetric of the (measured) positive frequency
points. The zero frequency point must also be created. As spin
wave devices always rely on stable magnetic configurations,
the spin wave spectrum cannot contain modes at strictly zero
frequency. We can thus systematically assume that the SW
contribution to the transmission and reflection parameters of
the device at zero frequency vanishes. To summarize, we
complete the VNA experimental data set to get 2Npoints + 1
frequencies by setting

S̃i j (− f ) = S̃∗
i j ( f ) and S̃i j ( f = 0) = 0, (7)

where the star symbol means complex conjugate.

3. Truncation and extrapolation of the frequency spectrum

A word of caution is needed about frequency truncation:
in some cases several of the first lowest and/or last highest
frequencies within the list of Eq. (6) cannot be measured
(for instance for instrumental limitations) or should not be
measured (for instance because they only contain parasitics
radiated by wireless devices). If the spin wave signal does
not span over these problematic frequencies, zero padding can
be used to complete the data set and recover the situation of
Eq. (6).

If on the contrary the spin wave signal is not fully contained
in the accessible frequency interval, the truncation of the spec-
trum would generate overshoots and ringing artifacts in the
forthcoming time-domain data, with [sin(t )/t]-like features
convoluting the physical signals and potentially obscuring
the device response behind mathematical artifacts. Since spin
wave signals in the time domain are essentially oscillatory,
they could be easily confused with ringing artifacts, so trun-
cating a part of the frequency interval in which the spin waves
respond should definitely not be practiced in spin wave spec-
troscopy. Besides, the truncation would remove power from
the physical spectrum, so that data normalization would be
compromised.

Fortunately for typical spin wave devices, the spin wave
transceivers generally only emit and collect in a given spin-
wave wave vector interval, with steep roll-off above [16].
Owing to the spin wave dispersion relation, this ensures a
steep cutoff of the spin wave signal at high frequencies. An
abrupt high-frequency truncation above the usable spin wave
band thus does not impact the signal integrity. It may even
reduce the noise in the time-domain impulse response, as will
be shown below [see Fig. 4, panels (a) and (b)].

4. Fourier transformation to time-domain data

Provided that the spin waves are excited in the linear
regime, the impulse response can be calculated by a sim-
ple Fourier transformation of the corrected [Eq. (3)] and
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FIG. 3. Backward transmission impulse response s12(t ) for spin wave conduits of widths of 4.7 μm (left panels) and 0.85 μm (right panels)
for a propagation distance r3 = 6.9 μm. Panels (a) and (b): Field dependence of the impulse response [note the change in color scale on the
upper side of panel (a) that is necessary to better reveal the late-arriving wave packets]. Panels (c)–(g): Selected impulse responses for which
the multimode character is visible from the successive arrival of several wave packets. The red curves are the raw data s12(t ) and the black
curves are time-amplified version thereof being s12(t ) × et/τ , where the amplification is meant to correct for the time decay of the spin waves
at the theoretical rate τ = 2/� f ≈ 1 ns. Panel (h): Calculated impulse responses for several propagation distances for a theoretical lossless
spin wave mode with the dispersion relation of Fig. 2(f).

Hermitian-completed [Eq. (7)] VNA data:

si j (t � 0) = F {S̃i j ( f )}. (8)

Since the frequency data were sampled, the impulse response
is also sampled and takes 2Npoints + 1 values at harmonically
related time instants that are{

0, tresolution = 1

2 fmax
,

2

2 fmax
, . . . , tmax = 1

δ f

}
. (9)

The time resolution 1/(2 fmax) (here: 17 ps) is the duration
(FWHM) of the voltage Dirac peak that would induce the
impulse response si j (t ). By construction, the time domain
response repeats itself every tmax = 1/δ f after the maximum
time range tmax (here: 100 ns). This has practical conse-
quences: if the device were such that the transmission (i �= j)
impulse response would arrive after a wave traveling time
ttravel (or a two-way echo time if in reflection with i = j)

greater than the maximum accessible time range of the exper-
iment, then the mathematical procedure of Eq. (8) would alias
the corresponding signal fictitiously within the accessible time
range, at ttravel − tmax. A good way to check that this situation
is not encountered is to verify that a change of δ f (hence of
tmax) does not change the time-domain data.

SW signals attenuate exponentially at a time rate τ =
2/� f (here � f = 220 MHz at 5 GHz for the ferromag-
netic resonance), such that choosing a frequency resolution
of 10 MHz is more than enough to ensure δ f  � f and thus
to guarantee an alias-free time range of the spin wave signals.

B. Results of time-of-flight spin wave spectroscopy

The impulse responses in transmission resulting from
Eq. (8) are displayed in Fig. 3 for the exact same sets of data
as their frequency counterparts formerly displayed in Fig. 2.
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FIG. 4. Time-gating method to isolate the spectra of single
modes in experimental data. (a) Exponentially amplified impulse
response s21(t )et/τ for spin wave conduits of width of 4.7 μm at
18 mT after a travel distance of r3 = 6.9 μm corresponding to the
raw spectrum in (b). The attenuation rate is taken as that of FMR,
i.e., τ = 2/� f . (c)–(f): Real parts of the time-gated S̃12 spectra.
In (c), the feedthrough and the long travel time were removed,
effectively suppressing the base line and the high-frequency noise.
In (d), the fastest wave packet is kept to isolate the contribution of
a single mode. In (e), the medium-velocity wave packet is kept. In
(d), the slowest wave packet is kept. The vertical scales in (c) and
(d) were multiplied by 10.

This is done for the experimental data [panels (a) to (g)]
and the theoretical response of a single nondispersive mode
[panel (h)].

At the time of origin and soon after, a large glitch is always
present in the experimental impulse responses. The amplitude
and the overall shape of these glitches are strongly dependent
on the way the correction [Eq. (3) or qualitatively similar
options] is implemented, which indicates that it is a residue
of the imperfect subtraction of the so-called “feedthrough”
signal that comes from the direct coupling between the input
and output antennas by capacitive and inductive effects. Since
this initial part of the experimental time-domain signal is
unreliable, we shall disregard it for the discussion of the spin
wave properties.

Later in time, the receiving antennas see the arrival of
several successive wave packets. The travel times of the wave
packets vary with the magnetic field [Figs. 3(a) and 3(b)]
and increase with the propagation distance r (not shown).

With our signal-to-noise ratio, up to three successive wave
packets can be perceived in the experiments: the fast (first
arriving), the medium, and the low (third arriving) veloc-
ity wave packets. In the wide spin wave conduit case,
the amplitudes of the second and the third arriving wave
packets are so low that contrast rescaling [Fig. 3(a)] or
mathematical compensation of the e−t� f /2 decay rate of the
spin waves [Fig. 3(c)] is needed to evidence these wave
packets.

Compared to the later arriving wave packets, the first arriv-
ing one has a relatively large duration, which is an indication
that the group velocity of the corresponding mode has a larger
frequency dependence; i.e., it is more dispersive. This can
also be inferred from the comparison with the (idealized)
wave packets calculated for the single-mode nondispersive
model: in this case the wave packets would not spread upon
propagation [Fig. 3(h)]. Because of this dispersive character
of the fastest mode in the widest spin wave conduit, its group
velocity cannot be deduced exactly from the time-domain
data by a naive distance/time division. This naive calculation
would give 6.9 μm/0.7 ns ≈ 10 km/s while we will see that
it varies from 14 to 5 km/s in the investigated interval of
wave vectors. In contrast, the calculation of the group velocity
by distance/time division would be perfectly legitimate for a
nondispersive mode: the (hypothetical) distance of 7 μm is
traveled in exactly 1 ns for the idealized nondispersive mode
with 7 km/s of group velocity [Fig. 3(h)].

Coming back to the experimental data in the narrow
spin wave conduit, the signal is one order of magnitude
weaker but strong enough to assess that the first two wave
packets have comparable amplitudes, while the third one is
much weaker. Their widths in time indicate a less disper-
sive character than the fastest mode of the wide conduit.
In all cases the successive wave packets arrive at the re-
ceiving antenna after very different trip durations, such that
they correspond to branches of modes with different group
velocities, as targeted. In the next section we will show
how we can separate these branches to deduce the individ-
ual dispersion relations. Before that, we will comment on
the impulse responses of the device reflection parameters S̃11

and S̃22.
Indeed the impulse response can also be calculated for

the reflection coefficients (not shown). In this case all spin
waves are excited at t = 0 and their ringing immediately
contributes inductively to the reflected impulse response, es-
sentially with precessions that last from the time of origin
and a few τ = 2/� f , regardless of their group velocity. This
situation is the equivalent of the pulse-induced magnetometer
popularized by Silva et al. a while ago [28] but now with the
capability to excite wave vectors in a broad interval. Since
the spin wave response is very broadband and spans over
≈ 10 GHz in frequency, the decoherence of the different spin
waves right under the emitting antenna happens shortly after
the time of origin, and nothing but noise and artifactual base
line is detected in the impulse responses s11(t ) and s22(t )
after the few first 100 ps. The contributions of the differ-
ent spin waves thus cannot be separated in the reflection
signals, and S̃11 and S̃22 cannot serve our present objec-
tives, except for a crude estimation of the antenna efficiency
function [16].
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V. CONSTRUCTION OF THE DISPERSION RELATION OF
EACH FAMILY OF SPIN WAVES USING TIME GATING

We now aim to isolate the contribution of each family
of spin wave modes in the device response in order to later
deduce the dispersion relation of each family separately. Fig-
ure 4 illustrates this procedure for the widest spin wave
conduit.

A. Time gating for the selection of the contribution
of a single family of spin waves

This is performed by time-gating the impulse response
and transforming back the data to the frequency domain. The
procedure requires that the wave packets be separated in time.
For two dispersionless modes of group velocities vg1 and vg2

and same linewidth � f , this time separation is ensured for
long enough propagation distances, when∣∣∣∣ r

vg1
− r

vg2

∣∣∣∣ � 2

� f
. (10)

This condition is clearly satisfied in our cases (Fig. 3), so
we can use abrupt gates consisting of rectangular windows
starting at tstart and ending at tend. The gated spectra are
defined as

S̃gated
i j = F−1

[
F

[
S̃corr

i j ( f )
]
�(t − tstart ) �(tend − t )

]
, (11)

where � is the Heaviside function. This procedure is illus-
trated in Fig. 4 for the widest spin wave conduit. Although
this is not of direct use for our present purpose, we would
like to mention that it is possible to get better-looking data
in a rigorous manner illustrated in Figs. 4(b) and 4(c). The
(non-spin-wave-related) slowly varying base line in the S̃gated

i j
spectra is effectively removed by gating out the residue of
the feedthrough by choosing tstart = 100 ps. In addition, the
trace noise in S̃gated

i j is much reduced by setting for instance
tend = 10 ns, i.e., by gating out the noise-dominated signals
that arrive at the receiving antenna late after the spin waves.

Let us now select single families of spin wave modes. To
select the fastest branch, we gate out both the feedthrough
signal as well as the late-arriving wave packets, as shown
in Fig. 4(d). The transformed data look now very similar
to the signal expected in the single-mode theory [Eq. (4)
and Fig. 2(e)]. The contributions of the medium-velocity and
low-velocity families of modes can also be constructed [see
Figs. 4(e) and 4(f)]; they also resemble the signal expected in
the single-mode theory but with a much weaker amplitude. We
can thus try and use Eq. (4) to derive the dispersion relation
ω(kx ) of each family of spin waves.

B. Transforming scattering parameters in dispersion relations

1. Determination of the frequency dependence
of the group velocity

In the single-mode theory [Eq. (4)], the phase of the
transmission parameters solely depends on the propagation
distance r and the wave vector kx. This phase can be evaluated
from the experimental data by noticing that

S̃i j

||S̃i j ||
= e−ikx |r| (12)

such that the wave vector at a given frequency can be found
by unwrapping the phase:

kx(ω) = −1

r

[
Arg

S̃i j (ω)

||S̃i j (ω)||
]

+ 2nπ

r
, n ∈ N. (13)

Because of the 2π indetermination of the absolute phase,
the above expression is only sufficient to calculate the group
velocity ∂ω

∂kx
versus frequency, but not sufficient to define the

wave vector in a unique manner. This difficulty can be solved
by the determination of the absolute phase of Eq. (12).

2. Unequivocal determination of the wave vectors:
From the uniform modes

The most straightforward method would be to measure
independently one point of each dispersion curve. The kx = 0
point of each dispersion curve is the natural choice. Unfor-
tunately measuring the kx = 0 point of each dispersion is
difficult in a propagation experiment as this would require (i)
to be able to excite at kx = 0 and (ii) to ensure that the kx = 0
reaches the receiving antenna. The first condition is trivial to
obtain by the use of single-wire antennas [7,11]. However as
mentioned in Sec. II A the second condition is generally not
met if the spin wave conduit has a finite width, since in this
case the kx = 0 modes have vanishing group velocities and
never reach the receiving antenna. We thus measure the kx = 0
point in a different manner.

The measurement of the kx = 0 frequency can sometimes
be done thanks to a collateral effect called the distant in-
duction. Indeed part of the magnetization waves existing
below the receiving antenna can be directly inductively ex-
cited there by the long-range rf field produced by the emitting
antenna [29]. This distant-induction signal starts at a time
r/cem

g ; therefore it disappears if time gating is set to exclude
the signals arriving immediately at the receiving antenna. As
the long-range rf field of the emitting antenna varies slowly in
space, the shape of the distant induction signal should resem-
ble the susceptibility χ (ω, kx = 0) of the excited mode (see
Eq. (16) in Ref. [16]). In the transmission coefficient, we can
sometimes identify this feature, as for instance in Fig. 5(a);
see the zoom at 4.7 GHz. These tiny symmetric/asymmetric
Lorentzian features in the imaginary/real parts of the signal
are arguments to state that f (kx = 0) = 4.7 GHz for at east
one mode of the widest conduit. The linewidth of these fea-
tures at 4.7 GHz is 220 ± 20 MHz, i.e., very similar to that
of the FMR of the unpatterned film at the same frequency.
Unfortunately, the signal-to-noise ratio for the other modes is
not always high enough to perceive the kx = 0 points, such
that a more general procedure is needed.

3. Unequivocal determination of the wave vectors: From the
several propagation distances

We have thus implemented another method that solely
relies on spin wave propagation and therefore works for all
detectable modes. This procedure is illustrated in Fig. 5 for
the fastest mode of the widest conduit. The idea is to apply
Eq. (13) for several propagation distances {r1, r2, . . .} and find
the corresponding sets of integers {n1, n2, . . .} that make the
results of Eq. (13) mathematically match. In principle, if two
incommensurate propagation distances are used, there is a
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FIG. 5. Method to determine the absolute phase of the transmit-
ted spin wave signals and to disambiguate the wave vectors. (a), (b),
(c): Imaginary parts of S̃12 for propagation distances r1, r2, and r3

at 18 mT for wmag = 4.7 μm. The time gating was set to keep the
feedthrough and the first-arriving wave packet. Zoom within panel
(a): Complex signal related to the distant excitation of the kx = 0
mode. Panel (d): Dispersion relations obtained from Eq. (13) for each
propagation distance (r1: black; r2: red; r3: blue). The bold curves
that are almost superimposed correspond to the mathematically cor-
rect choices of the integration constants n1, n2, n3 within Eq. (13).
Only the first phase match is both physically and mathematically
correct. The dotted lines are when errors of 2π and 4π are done
within Eq. (13).

unique pair {n1, n2} that enables the mathematical matching.
If the propagation distances are commensurate, there is an
infinite number of sets of integers {n1, n2, . . .} that satisfy
Eq. (13). The physically relevant one must be found in these
sets.

We are in this situation since our propagation distances
are commensurate and obey r2 = 2r1 and r3 = 3r1. We thus
first identify the triplets {n1, n2, n3} so that kxr2 = 2kxr1 and
kxr3 = 3kxr1 to get the mathematical matching of the three
Eq. (13), as illustrated in Fig. 5(d). This is done by starting
with small values of n1 (say 0, 1, 2, or 3) at the lowest
frequency at which the propagating spin wave is detected.
Looking at Fig. 5, we can assess that only the first working
triplet {n1, n2, n3} leads to a physically possible dispersion
relation: the next triplets that are mathematically correct and
lead to phase matching clearly generate nonphysical disper-
sion relations that can be discarded. The dispersion curve
deduced from the first triplet seems to extrapolate to the point

FIG. 6. (a) and (b): Experimental dispersion relations (bold lines)
for spin wave conduits of widths 4.7 and 0.85 μm. Narrow lines:
Theoretical dispersion relations [Eq. (1)] of the DE1, DE2, and DE3

modes. In the models, the internal fields H0 are taken as the experi-
mental applied fields (18 and 70 mT) minus the experimental shape
anisotropy fields (6 and 30 mT) of the conduits. (c) Comparison
between the antenna efficiency function [Eq. (5)] and the modulus
of the transmission coefficients of the fastest mode for r3 = 6.9 μm.
Green curve: w = 4.7 μm and μ0Hy = 18 mT. Violet curve: w =
0.85 μm and μ0Hy = 70 mT. The vertical dotted lines indicate the
theoretical positions of the zeros and the maxima of hx (kx )2.

f (kx = 0) = 4.7 GHz formerly determined by the distant in-
duction. This consistency clearly supports our procedure.

C. Discussion on the nature of each family of modes

Figures 5(d) and 6(a) display the dispersion relation of the
fastest mode of the widest conduit. As anticipated from the
large width of the corresponding wave packet in time domain,
this mode is clearly dispersive: within this branch, the spin
waves with different wave vectors or frequencies travel at
different group velocities such that the wave packet spreads
as it travels. The group velocity decreases from 14 km/s at
kx ≈ 1 to 5 km/s at 11 rad/μm. The large amplitude of this
mode argues for the assignment of this mode to the DE1 mode.
To further support this assertion, we have plotted on Fig. 6(a)
the theoretical dispersion curve of this mode [Eq. (1)]. The
agreement is perfect with no fitting parameters, provided that
the internal field H0 is taken as the applied field Hy minus the
dipolar shape anisotropy field.

Although the agreement between the experimental disper-
sion curves and the theoretical ones is less satisfactory, the
two fastest modes of the narrowest conduit can be faithfully
assigned to the DE1 and DE3 modes. The difference stems
probably [8] from an imperfect saturation of the magneti-
zation in the experiments, while the model assumes perfect
saturation. In contrast, such an assignment cannot be done
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for the two slowest modes of the widest conduit. We believe
that they are edge modes, but accounting exactly for these
dispersion curves is beyond the scope of the present study.
Another argument supporting this interpretation is the fact
that these modes progressively disappear when increasing the
applied field far above the saturation field (not shown).

D. Consistency check and revisit of the
antenna efficiency function

The self-consistency of our approach can be finally
checked by using the modulus of the transmission parameters
for a single spin wave branch ||S̃gated

i j (ω)|| and by plotting it
versus the determined kx using the experimental dispersion
relation ω(kx ). From the single-mode theory, this modulus

should be proportional to e− |r|
Latt [hx(kx )]2 and thus ||S̃gated

i j (kx )||
should resemble the idealized antenna efficiency function. The
zeros of the two functions at knode

x ∈ {0, 2π
g+L , 2π

L , . . .} should

match perfectly. The maxima at kantinode
x should match per-

fectly only for the nondispersive modes because otherwise Latt

is a function of kx.
This consistency check is done in Fig. 6(c) for the fastest

modes of the two conduits, i.e., the DE1’s. The maximum
efficiency of the antenna, expected at kantinode

x = 3.5 rad/μm,
is found experimentally at 3.0 rad/μm instead. The zeros
of ||S̃gated

i j (kx )|| are hard to identify exactly because they are
obscured by the trace noise; however, the experimental knode

are found to match poorly with the expectations from Eq. (5).
This questions the validity of the past studies in which the
spin-wave wave vectors were postulated from the expected
efficiency function of an idealized antenna. Understanding
this difference between ||S̃gated

i j (kx )|| and Eq. (5) would require
calculating the profile of the rf fields generated by the antenna
in the presence of the magnetic medium with its magnetic sus-
ceptibility and its electrical conductance in an exact manner.
This task is beyond the scope of the present paper.

VI. SUMMARY

In summary, we have developed time-of-flight spin wave
spectroscopy to map the band structure of the spin waves in
a nanostructured film. Our method is based on the scattering
matrix of a network of inductive antennas emitting and col-
lecting the spin waves (Fig. 1). As the signal analysis is based
on the phase of the spin waves after propagation, specific
experimental precautions must be taken while designing the
length of the microwave circuitry [Eq. (2)].

In general, several spin wave branches contribute to this
signal which renders this signal complicated to account

for [Fig. 2(d)]. The construction of the dispersion relation
of a given spin wave branch requires isolating its con-
tribution. If the spin wave branches have different group
velocities they can be conveniently sorted by time-of-flight
spectroscopy. For this purpose, we mathematically transform
the data to get the transmission impulse response in time-
domain using Eq. (8). The different spin wave branches are
viewed as wave packets that reach successively the receiving
antenna after different travel times (Fig. 3). The wave packets
can then be separated by time gating [Eq. (11)] if a large
enough propagation distance [Eq. (10)] is used.

The time-gated responses are then used to calculate the
contribution of a each spin wave branch to the frequency
domain scattering matrix, which recovers an intuitive shape
(Fig. 4). Under reasonable assumptions [16], the dispersion
relation of a branch of spin waves stems from the absolute
phase of the transmission parameter related to this branch
[Eq. (4)]. Unfortunately the phase can only be determined
[Eq. (13)] with a 2π uncertainty. This difficulty can be circum-
vented if several propagation distances are harnessed (Fig. 5).
Alternatively, it can be solved by an independent measure-
ment of one point of the dispersion curve, for instance the
kx = 0 one. Finally, the consistency of the whole procedure
can be checked (Fig. 6) by the back calculation of the antenna
emission spectrum in reciprocal space and, when possible,
by a comparison to the expected spin wave band structure.
Our method should be applicable to various situations, and
in particular it should be well adapted to spin waves that are
within the exchange regime [30] where other characterization
techniques such as Brillouin light scattering are difficult to
implement.
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