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Theory for electrical detection of the magnon Hall effect induced by dipolar interactions
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We derive the anomalous Hall contributions arising from dipolar interactions to diffusive spin transport in
magnetic insulators. Magnons, the carriers of angular momentum in these systems, are shown to have a nonzero
Berry curvature, resulting in a measurable Hall effect. For yttrium iron garnet (YIG) thin films we calculate
both the anomalous and magnon spin conductivities. We show that for a magnetic field perpendicular to the
film the anomalous Hall conductivity is finite. This results in a nonzero Hall signal, which can be measured
experimentally using Permalloy strips arranged like a Hall bar on top of the YIG thin film. We show that electrical
detection and injection of spin is possible, by solving the resulting diffusion-relaxation equation for a Hall
bar. We predict the experimentally measurable Hall coefficient for a range of temperatures and magnetic field
strengths. Most strikingly, we show that there is a sign change of the Hall coefficient associated with increasing
the thickness of the film.
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I. INTRODUCTION

One of the earliest successes of the concepts of geome-
try and topology in condensed matter was the explanation
of the anomalous Hall effect in terms of the Berry phase.
The anomalous Hall effect was therefore a stepping stone for
further understanding of geometrical and topological effects,
such as the quantum Hall effect [1]. Since it is a geometrical
effect, the anomalous Hall effect is not restricted to electronic
systems. Indeed, it has also been observed for other types
of carriers, such as phonons and photons [2–4]. Since spin
waves, or magnons, are the carriers of angular momentum in
ferromagnets, the question thus naturally arises if a magnon
analog of the anomalous Hall effect can also exist. Continu-
ing the analogy with the anomalous Hall effect, the magnon
Hall effect could lead to further understanding of topology in
magnonic systems.

Previously, a thermal magnon Hall effect has been pro-
posed, where magnons are the heat carriers. First predicted for
chiral quantum magnets [5], it was subsequently observed in
Lu2V2O7 [6,7]. In these systems the chiral nature of the spin
waves provides the time-reversal-symmetry breaking that is
necessary for a finite anomalous Hall response. For forward
volume magnetostatic spin waves in a thin-film ferromagnet
a thermal magnon Hall effect has also been proposed [8,9],
where the dipole-dipole interaction provides the required sym-
metry breaking. A transverse thermal Hall conductivity has
also been calculated for this system [10], but has not yet
been measured experimentally. This is most likely due to the
small transverse thermal conductivities predicted for the most
commonly used insulating ferromagnet, yttrium iron garnet
(YIG) [6]. Moreover, phonons also contribute to the thermal
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Hall effect, and it might therefore be hard to disentangle the
contributions of the two heat carriers. An effort has been made
by Tanabe et al. [11] to excite spin waves using a coplanar
waveguide and measure the temperature gradient perpendicu-
lar to the propagation direction. However, they were only able
to measure a transverse temperature gradient in the unsatu-
rated regime, which can therefore not directly be attributed to
magnons.

Recent advances have shown that it is possible to electri-
cally inject and detect spin waves using metallic leads [12].
This has opened the way to electrically measure the magnon
Hall effect. However, a complete picture of the interaction
between the electrical detection and the Hall effect is still
lacking. Electrical detection via metal strips can significantly
modify magnon transport properties [13], and it is not clear if
a finite magnon Hall response can still survive. In this work
we therefore develop a theory for the electrical detection of
the magnon Hall effect in order to determine if the magnon
Hall effect can be measured electrically.

We numerically calculate the Hall response, using the
diffusion-relaxation equation for magnons in a Hall bar geom-
etry, as depicted in Fig. 1. In order to determine the magnitude
of the expected Hall response two contributing factors need to
be calculated: (1) the magnon spin and anomalous conductiv-
ities and (2) the boundary conditions which incorporate the
electrical detection. We numerically calculate these using a
microscopic description. Starting from the Keldysh quantum
kinetic equations [14], we derive the equation of motion of the
magnon distribution function to leading order in a semiclas-
sical expansion in gradients. This allows us to separate the
spin diffusion and anomalous Hall contributions to the spin
current.

This work is ordered as follows. We first discuss the spe-
cific Hall geometry required to measure a finite magnon Hall
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FIG. 1. The Hall bar with electrical injection and detection of
spin currents using Permalloy (Py) strips on top of YIG. Spin current
is injected by the Py strip 1, and is detected by the strips 2, 3, and
4. The color scale shows the numerical solution of the diffusion of
the magnon chemical potential throughout the film. The Hall bar has
size M × M, and the Py injectors and detectors have size La × Lb. We
assume the Py strips to be thin enough (i.e., Lb � La) such that we
can treat them as boundary conditions. The magnetic field is oriented
out of plane, as shown in Fig. 2, where also the interface between the
YIG and the Py is shown in more detail.

effect in Sec. II. Next, in order to determine the magnitude of
the magnon Hall effect we derive the equations of motion for
the spin density in Sec. III. We also show how the equations of
motion have to be modified if a metallic lead is interfaced with
the system, in order to detect or inject spins. From the equation
of motion we derive a diffusion-relaxation equation, which
fully describes the magnon diffusion and relaxation in the Hall
bar geometry, including boundary conditions. In Sec. IV we
show how the conductivities and damping can be numerically
evaluated and we discuss results for a typical thin film of YIG.
In Sec. V we solve the diffusion-relaxation equation numeri-
cally and present our results for a YIG Hall bar, where spin
waves are injected and detected electrically. A summary and
conclusion are given in Sec. VI. In Appendixes A–E we give
a more detailed derivation of the quantum kinetic equations
for general bosonic systems, and more details regarding the
diffusion-relaxation equation and the Hamiltonian.

II. SETUP

First, we discuss the experimental setup necessary to mea-
sure a magnon Hall effect electrically. We consider a Hall
bar geometry, as shown in Fig. 1. There are four terminals,
formed by metal strips on top of a YIG thin film. The strips
act as injectors and detectors of spin currents. Magnons are
injected at terminal 1 and diffuse through the film. They
are then detected at terminals 2, 3, and 4. By comparing
the detected currents at terminals 2 and 4 a Hall signal can be

FIG. 2. The considered geometry, with the magnetic field point-
ing slightly off the ẑ axis, as explained in the main text. The Py strip
on top of the YIG has a charge current I running parallel to the film,
which induces a spin current Js such that there is an accumulation of
spin at the interface between the YIG and the Py.

measured. Note that in electronic Hall experiments terminal 3
is necessary in order for a current to flow, but in our case we
have only included it for completeness.

The Berry curvature is only nonzero if either time-
reversal or inversion symmetry is broken [15]. Breaking these
symmetries can be achieved by applying a magnetic field
perpendicular to the plane, which leads to forward-volume
modes, as was previously suggested by Matsumoto and Mu-
rakami [8]. Conventionally, one would use the spin Hall effect
(SHE) in the metal strips to excite magnons in the YIG film
[12]. However, the polarization of the spin current induced
by the SHE is always in plane [16] and can therefore not
excite forward-volume modes in the YIG film. Instead, we
propose to use ferromagnetic Permalloy (Py) strips. If a charge
current flows through the Py strip, the anomalous spin Hall
effect (ASHE) induces a spin current polarized parallel to
the magnetization of the Py strip, as shown in Fig. 2. For
sufficiently large external magnetic fields the magnetization of
the Py strips and the YIG will both be aligned to the external
field. This spin current can therefore excite magnons in the
YIG film. However, the spatial direction of the spin current is
Js ∼ I × M, where I and M are the charge current and mag-
netization, respectively [17,18]. Therefore, if the magnetic
field is oriented along the ẑ direction and the charge current
flows along the ŷ direction the spin current flows along the
x̂ direction. In other words, the spin current in the Py strip
flows parallel to the YIG film and can therefore not enter it
to excite magnons. However, one can tilt the magnetic field
slightly of axis, i.e., off the ẑ axis, as depicted in Fig. 2. The
spin current induced by the ASHE then gains an out-of-plane
component and is able to excite magnons in the YIG [18]. At
the detectors the opposite process, the inverse ASHE, converts
a spin current in a measurable charge current.

III. METHOD

In this section we consider the microscopic Hamiltonian
for a thin film of YIG and derive the equations of motion for
the spin density. The formalism that we use, however, is com-
pletely general and can be applied to any bosonic Hamiltonian
with anomalous coefficients.

We consider a thin film of YIG, with N layers, of thick-
ness d = Na, with a magnetic field perpendicular to the film.
We include both the dipole-dipole and exchange interaction,
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which gives us a full description of the spin wave dynamics.
We apply a Holstein-Primakoff transformation to the Hamil-
tonian, retain terms up to second order, and Fourier-transform
along the x, y directions. We can then write the quadratic part
of the Hamiltonian as

Hk =
∑

k

(
b†

k bk
)(Ak Bk

B†
k Ak

)(
bk

b†
−k

)
, (1)

where b†
k = (b†

k(z1), . . . , b†
k(zN )) are the creation operators for

magnons with the two-dimensional wave vector k and Ak

and Bk are N × N matrices with N the number of internal
degrees of freedom within a unit cell, which is in our case
equivalent to the number of layers. More details are found in
Appendix E. We evaluate the dipole-dipole interaction us-
ing the Ewald summation method [19]. This allows us to
accurately compute the magnon spectrum, even at long wave-
lengths, where conventional summing methods are slow [20],
but where we do expect the Berry curvature to be large [9].
From the anomalous coefficients Bk, which are due to the
dipole-dipole interaction, it is clear that spin is not conserved.
The dipolar interactions couple the magnons to the lattice,
which therefore acts as a spin sink and/or source.

We note that the anomalous coefficients in the Hamiltonian
create a squeezed magnon state, which is not an eigenstate of
the spin in the z direction [21]. Between a metallic lead and
the magnetic system there is thus an interface of a squeezed
(the YIG) and a spin state with definite spin in the z direction
(the metallic lead). This leads to corrections to the spin current
over the interface, which we show in more detail in Sec. III A.

In a bosonic system with anomalous coefficients, the
Bogoliubov–de Gennes (BdG) Hamiltonian Hk is diagonal-
ized by a para-unitary transformation [22], such that

T †
k HkTk = Ek, T †

k νTk = ν, (2)

where Ek=diag[E1
k , . . . , EN

k , E1
−k, . . . , EN

−k], ν = diag[1, . . . ,

1,−1, . . . ,−1], and Tk is a para-unitary transformation ma-
trix of size 2N × 2N . Note that we only have N distinct bands,
since the bands n and n + N are related to each other via the
para-unitary structure.

In order to derive the equations of motion we perform the
gradient expansion of the Hamiltonian. We first define the
Berry connection (suppressing the k label from here onwards)

Aα = iνT †ν
(
∂kα

T
)
, (3)

where α ∈ (x, y). Numerically, we calculate the Berry connec-
tion using the componentwise form

Aα
nm = −i

[
T †(∂kα

H )T
]

nm

En − νnνmEm
, n �= m, (4)

where n, m = 1, . . . , 2N . This form also makes it clear that
the Berry connection increases close to band crossings.

From the Berry connection we define the Berry curvature
for the nth band as

�αβ
n = (

∂kα
Aβ − ∂kβ

Aα
)

nn

= i(AαAβ − AβAα )nn. (5)

The Berry curvature satisfies the sum rule
∑

n �αβ
n = 0, where

n is summed over all 2N bands. We note that these definitions

for the Berry phase and curvature are equivalent to those given
by Shindou et al. [23], who were the first to consider the
topology of magnons, and also to those of Lein and Sato [24],
who showed rigorously that the concept of the Berry phase
can be applied to BdG-type Hamiltonians.

Now we are able to derive the equations of motion for
general bosonic systems with nonzero anomalous coefficients.
As noted, this is applicable to the magnons described here, but
also for other bosonic systems, such as phonons and photons
[4,25], where geometrical effects are also known. We start
from the quantum kinetic equations in the Keldysh formalism,
which are derived by performing a Wigner transformation
and expanding the gradients up to first order [14]. Moreover,
we assume damped quasiparticles in (local) thermal equi-
librium. We have relegated the details of this calculation to
Appendix A and will only state the equation of motion for the
spin density sz(r, t ) here, which is given by

∂t s
z + ∇ · Js = �sμm, (6)

where we have only kept terms up to first order in the magnon
chemical potential μm. Here, �s describes the relaxation rate
of the magnons. The spin current Js is written componentwise
as

Jα
s = σs∂rα

μm + σ H
s

∑
β

εαβ∂rβ
μm, (7)

where σs is the magnon spin conductivity, σ H
s is the Hall con-

ductivity, and εαβ is the two-dimensional Levi-Cività symbol.
The Berry curvature only affects the magnon Hall conductiv-
ity σ H

s , and bands with a greater Berry curvature contribute
to a larger Hall conductivity. From the Keldysh formalism
the coefficients σs, σ H

s , and �s can be calculated using the
microscopic Hamiltonian, by integrating the relevant quanti-
ties over the entire Brillouin zone. We show the details of this
calculation in Appendix E. We consider a clean system in the
low-temperature limit, such that the dominant damping source
is the Gilbert damping [26]. Moreover, we disregard heat
transport, since long-range magnon transport is dominated by
the magnon chemical potential [27].

The complete magnon dynamics are thus given by Eq. (6),
where we calculate the transport coefficients using the micro-
scopic Hamiltonian. We therefore do not have to rely on fitting
parameters and only use experimentally directly measurable
properties of YIG.

A. Metallic lead

In order to model the electrical detection and injection,
we consider a metallic lead interfaced with the YIG film, as
shown in Fig. 2. As a result of this interface the equations of
motion have to be modified, such that we have at the interface
between the magnet and the metallic lead that

∂t s
z(r, t ) + ∇ · Js = �sμm + Aμm + Bμe + C, (8)

where μe is the electron spin accumulation in the lead. We
show the detailed derivation of this correction and the coeffi-
cients A, B, and C in Appendix C. The correction Aμm, with
A > 0, describes the relaxation of the magnons into the metal-
lic lead. Bμe is the injection of spin driven by the chemical
potential in the metallic lead.
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The constant C is related to the fact that the magnons
are squeezed, whereas the spins in the metallic lead are not
squeezed. The main correction is a constant injection of angu-
lar momentum into the YIG, even with zero chemical potential
in the Py lead, which is a characteristic feature of elliptic
magnonic systems [28]. The source of this spin current is the
lattice, which couples to the magnons via the dipole-dipole
interaction. The constant C is therefore zero in the absence of
dipolar interactions. There are also corrections due to dipolar
interactions to the constants A and B, which are of less impor-
tance. In absence of these corrections we would have A = −B,
such that the spin current is zero when μe = μm [27]. With the
metallic lead modeled, we now have all the necessary parts for
a full description of the dynamics of magnons in a Hall bar.

B. Diffusion-relaxation equation

We now write down the full diffusion-relaxation equation,
which we solve numerically to give the full description of the
Hall bar, including electrical injection and detection. Since
the Hall conductivities enter through antisymmetric terms in
the current, see Eq. (7), these drop out in the final diffusion-
relaxation equation, which becomes

σs∇2μm = �sμm. (9)

The Hall conductivities only appear in the expressions for
the boundary conditions, where we require that the normal
component of the current vanishes, i.e., that Js · n̂ = 0 at the
edges of the film if there is no metallic lead present, where n̂
is the normal vector to the boundary. To measure a finite Hall
response we consider a Hall bar setup, as shown in Fig. 1.
The Hall response can then be measured between terminals
2 and 4. As far as we are aware, there are no analytical
solutions for such a geometry. We therefore numerically solve
the diffusion-relaxation equation, Eq. (9).

Specifically, we solve the diffusion-relaxation equation on
the square 0 � x � M and 0 � y � M, where the diffusion
is given by Eq. (9). We use a finite element method, with a
symmetric square grid, implemented in the FREEFEM++ soft-
ware [29]. At the open boundaries we require that Js · n̂ = 0.
At the injector and detectors we have the boundary condition
Js · n̂ = J int

s (μm), where the interface current J int
s is a func-

tion of the magnon chemical potential at the interface μint
m

and includes the contributions A, B, and C as discussed in
Sec. III A. We give the full form of J int

s in Appendix D. We
then define the total spin current injected or detected at Py
strip i as Ii = ∫

∂Si
Js · n̂ ds, where ∂Si is the interface between

the Py and the YIG.

IV. HALL ANGLE AND DIFFUSION LENGTH

With the full description of the transport coefficients
complete, we now numerically evaluate these using the micro-
scopic Hamiltonian. We have relegated the derivation of these
coefficients to Appendix B. The parameters used in this work
are shown in Table I. We only consider the low-temperature
regime T < 2 K, since at higher temperatures we expect other
damping mechanisms besides the Gilbert damping to play a
role. Moreover, one might expect the ferrimagnetic branches

TABLE I. Parameters for YIG used in the numerical calculations
in this work. Note that S follows from S = Msa3/μ, where μ = 2μB

is the magnetic moment of the spins, with μB the Bohr magneton. We
are not aware of any values of the parameters μe and αIF for a YIG|Py
interface and have therefore assumed values that are equivalent to
the YIG|platinum interface. Since the injection and detection are
described in linear response, their exact values do not affect the final
results.

Quantity Value

a 12.376Å [31]
S 14.2
4πMs 1750G [32]
J 1.60K [19]
αG 10−4 [33]
αIF 10−2 [33]
μe 8μV [27]

in the YIG dispersion relation to be relevant at room tempera-
ture [30], which are not captured in our model.

First, we show the results for the spin diffusion length,
�m = √

σs/�s, for a film of thickness N = 75 in Fig. 3. The
diffusion length peaks for low temperatures, and converges to
a constant value in the high-temperature regime. This can be
explained by the energy dependence of the Gilbert damping:
for low temperature only the lowest energy bands contribute,
which have the lowest Gilbert damping, since the damping is
proportional to energy. The drop-off of the diffusion length
at low temperature and high magnetic field is explained by
the fact that the temperature is not high enough to occupy the
first band, and there is thus no transport possible. At elevated
temperatures we compare the spin diffusion length to a simple
model that only considers the lowest exchange band of YIG,
from which the spin diffusion length is estimated as lm ≈
4

√
J/3kBT Msα

2
G [27]. We expect this approximation to be only

valid for relatively high temperatures, where the higher ex-
change bands are occupied, and for thicker films. We therefore
compare this approximation with our calculations at T = 2K
and find that lm ≈ 35 μm, whereas our numerical model found
lm = 55 μm for N = 150 and H = 1800Oe. Moreover, as

0.0 0.5 1.0 1.5 2.0

T (K)

102

103

l m
(μ

m
)

N=75
1800

2000

2200

2400

2600

2800

3000

H (Oe)

FIG. 3. The spin diffusion length lm for a thin film of YIG with
thickness N = 75, for varying magnetic field strength. The corre-
sponding Hall angle is shown in Fig. 4(a).
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FIG. 4. The Hall angle θH = σ H
s /σs for two different film thicknesses, (a) N = 75 and (b) N = 150. The shaded area indicates the error,

which results from a slowly converging integral over the Brillouin zone.

is evident from Fig. 3, our numerically calculated diffusion
length also scales as 1/

√
T . For different thicknesses (not

shown here) the behavior and order of magnitude of the spin
diffusion length are similar.

Next, we consider the Hall angle, θH = σ H
s /σs. Here we

note that experimentally the Hall angle cannot be measured
directly, because magnons are not conserved. We therefore
consider the experimentally measurable Hall coefficient in
Sec. V. We compare two films with thicknesses N = 75 and
N = 150 in Fig. 4. It is clear that the Hall angle peaks for
small temperature, and tends to a lower constant value for
higher temperature. The complete drop-off at T = 0 is ex-
plained by the fact that there are no magnons thermally excited
at zero temperature.

In order to further explain these results we first need to
focus on the Berry curvature for these thin films, since the
Berry curvature is directly related to the Hall conductivity
in this system. We therefore show the Berry curvature �

yz
n

of the nth band in Fig. 5 for these two films. We can see that

the Berry curvature is largest for the lowest band, which we
therefore expect to dominate transport. Furthermore, in the
dipolar regime, at small wave vectors, the Berry curvature is
largest. This explains the temperature dependence of θH we
observe in Fig. 4. At low temperatures the dipolar magnons
dominate transport, and they have a large Berry curvature.
Furthermore, the exchange bands naturally have a larger con-
tribution to transport than the dipolar magnons (not shown
here). As the temperature increases, the ratio between the
exchange and dipolar magnons shifts towards the exchange
magnons, increasing the magnon spin conductivity, but not the
Hall conductivity.

For the film with thickness N = 150, shown in Fig. 4(b),
the Hall angle is negative for low magnetic field. Here the
shaded region indicates the error from integrating the Berry
curvature �n over the Brillouin zone. The larger errors can be
explained from the behavior of the Berry curvature close to
band crossings, as shown in Fig. 5(b). The Berry curvature
grows at band crossings but never diverges, since none of
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(a) N=75
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(b) N=150
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FIG. 5. The Berry curvature �yz
n per band for the forward-volume modes of a thin film with (a) N = 75 and (b) N = 150 layers, and a

magnetic field strength H = 1800Oe. Note the more complicated Berry curvature structure for N = 150, which is not present for the N = 75
thin film and is due to the band crossings. We also note that the Berry curvature is negative for certain bands for N = 150, but for none for
N = 75.

214426-5



GUNNINK, DUINE, AND RÜCKRIEGEL PHYSICAL REVIEW B 103, 214426 (2021)

0.0 0.5 1.0 1.5 2.0

T(K)

10−10

10−9

10−8

10−7

10−6

θ H

N
150

100

75

50

25

FIG. 6. The Hall angle θH for H = 2600Oe, as a function of
temperature and for varying thicknesses. We were not able to nu-
merically calculate θH for thicker films, so it is not clear if the Hall
angle will continue to increase.

the bands are ever degenerate. This can also be seen from
Eq. (4), where it is clear that the Berry connection matrix
and therefore the Berry curvature of the band n is inversely
proportional to the energy gap. Integrating such a function is
numerically very costly, and we only reach the precision as
indicated by the shaded region. The avoided band crossings
in the dispersion, which lead to an increased Berry curvature,
are only present for thicker films (N � 150). The results for
the Berry curvature can directly be compared to the Berry
curvature as obtained by Okamoto and Murakami [34], who
showed the same behavior as we have shown for the N = 150
film, with an enhanced Berry curvature at the band crossings
and a negative Berry curvature for some of the higher bands.

The negative Hall angle can be explained from the negative
Berry curvature, which is present for N = 150, but not for
N = 75, as was shown in Fig. 5. This sign switch of the
Hall angle is similar to what was observed by Hirschberger
et al. [35] in measuring the thermal Hall effect in a
kagome magnet.

For the forward-volume modes, the magnetic field acts as
a way to introduce a finite energy shift of the bands. This can
be used to explain the behavior of the spin diffusion length
as shown in Fig. 3. A higher magnetic field reduces the diffu-
sion length, since by shifting all the bands the magnetic field
changes which bands are occupied and therefore contribute.
For the Hall angle, θH , the magnetic field dependence is more
complicated, at least for smaller magnetic fields. As a function
of magnetic field strength, the Hall angle rises rapidly, until it
peaks for a field of strength ∼2400Oe, after which it drops
again. For higher fields, the magnetic field essentially shifts
the ratio between which type of magnons contribute at a given
energy: the exchange or the dipolar magnons. This does not
explain the low magnetic field behavior though, since we
expect this behavior to be (roughly) linear. Further research
is needed to understand this in more detail.

Since we have determined that thickness plays a role in
the Hall effect of YIG, we also show the results for a fixed
magnetic field, with increasing thickness in Fig. 6. It can
clearly be observed that the Hall angle increases for thicker
films. However, one should be aware that this is still assuming
that there is no diffusive transport along the film normal, i.e.,
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FIG. 7. The Hall coefficient 
I , which follows from the nu-
merical solution to the diffusion-relaxation equation for a Hall bar
geometry. The thickness of the film is N = 75 and this can therefore
be directly compared to the Hall angle θH in Fig. 4(a). From this
comparison it is clear that a Hall response can be measured, and that
θH is a direct predictor of 
I .

the spin diffusion length is larger than the film thickness. The
spin diffusion length for YIG thin films at the temperature
range considered here has not yet been measured, but for
T = 30 K it is roughly 5 μm [36], which would make our
description valid for thin films up to N = 5000.

We have now calculated the transport coefficients σs, σ H
s ,

and �s. Not discussed in the main text are the coefficients A, B,
and C that govern spin injection at the metallic lead interface,
which we show in Appendix C. Next, we solve the diffusion-
relaxation equation, in order to determine if the magnon Hall
effect can be measured electrically.

V. DIFFUSION IN THE HALL BAR

Experimentally, the main observable is the difference be-
tween the spin currents detected by terminals 2 and 4. We
define a Hall coefficient as the signal difference between de-
tectors 2 and 4,


I = I2 − I4

I2 + I4
. (10)

In order to confirm that a nonzero Hall angle θH results
in a finite 
I we numerically solve the diffusion-relaxation
equation. We choose M = 8 μm, La = 3 μm, and Lb = 0.1
μm, which are the same dimensions used by Liu et al. [37] to
measure the planar Hall effect in YIG. The distribution of the
chemical potential for a typical system is shown in Fig. 1. The
chemical potential diffuses through the film and gets picked
up by the three detectors. Note that the difference between the
currents picked up by detectors 2 and 4, i.e., 
I , is too small
to be visible on the color scale of Fig. 1. We then calculate the
Hall coefficient 
I for N = 75 and show the results in Fig. 7.
These results can be compared to the Hall angle, θH , in Fig.
4(a). From this comparison it is clear that the Hall angle θH

is directly related to the Hall coefficient 
I . We see little to
no effect from the magnon relaxation, since the spin diffusion
length is much longer than the size of the Hall bar. Most
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importantly, there are no (large) corrections from interface
effects due to the electrical injection and detection. This is
also the case for different thicknesses. We therefore conclude
that the magnon Hall effect can in principle be measured
electrically in a Hall bar geometry.

It is difficult to estimate if the signal we predict is mea-
surable, because nothing similar to the experiment we suggest
has yet been performed. From a previous experiment with a
YIG Hall bar [37] we can deduce that at least signals of the
order 
I ∼ 10−3 could be measured, although the injection
and detection in this experiment was done using Pt strips.
It is not clear how using Py strips would affect the signal
strength. Approximately the same resolution was achieved
when measuring the thermal magnon Hall effect [6,7], albeit
not in YIG. This would suggest that the small signals we pre-
dict fall outside of the typical experimental resolution. It thus
remains unclear if the magnon Hall effect can be measured
experimentally.

VI. CONCLUSION AND DISCUSSION

We have derived and calculated the anomalous Hall
conductivity for magnons in a thin film of YIG, using a mi-
croscopic model. Furthermore, we have shown that a nonzero
anomalous Hall conductivity results in a measurable signal in
a Hall bar setup and can be measured electrically. The magnon
Hall effect has previously only been measured thermally in
materials with a Dzyaloshinskii-Moriya spin-orbit interaction
[6], but with a Hall bar setup as discussed here this magnon
Hall effect could also be measured electrically in YIG.

Using realistic parameters we have calculated the size of
the expected Hall angle, and its dependency on temperature
and magnetic field. Moreover, we have shown that for thicker
films of YIG, there is a sign change in the Hall angle as
a function of the magnetic field, which would be a strong
experimental indicator of the magnon Hall effect.

The presented method can be applied to any bosonic
system with anomalous coefficients to determine anomalous
transport properties. In fact, the physical origins of the anoma-
lous transport properties discussed here are the dipole-dipole
interactions, which are universally present in any magnetic
system. As such, this method can be applied to a wide range
of magnetic materials.

In order to measure this effect it is possible to use the fact
that the sign of the Hall angle switches as the field is reversed.
Therefore, by comparing measurements with opposite field,
the anomalous contributions can be isolated. This is especially
useful since the spin diffusion and relaxation mean that the
distance between the injector at lead 1 and the detectors at
leads 2 and 4 is critical.

As was shown by Takahashi and Nagaosa [38] and
Okamoto et al. [39], for magnetoelastic waves the Berry cur-
vature is enhanced at the crossing of the magnon and phonon
branches. This could therefore serve to further enhance the
magnon Hall effect discussed here. The inclusion of magnon-
phonon coupling in our formalism is left for future work.
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APPENDIX A: QUANTUM KINETIC EQUATIONS

In this Appendix we derive the equation of motion for the spin density of a bosonic Hamiltonian. We start from the quantum
kinetic equations:

(ε̂ − νĤ )ĜK = ν�̂K ĜA + ν�̂RĜK , (A1)

ĜK (ε̂ − Ĥν) = ĜR�̂Kν + ĜK�̂Aν, (A2)

where hats indicate matrices in space and time, ε̂ = δ(r − r′)δ(t − t ′)ih̄∂t ′ , �̂R/A/K are the retarded, advanced, and Keldysh self-
energies, respectively, ĜR/A/K are the retarded, advanced, and Keldysh Green’s functions, and ν = diag[1, . . . , 1,−1, . . . ,−1].
We apply a Wigner transformation, defined as

A(r, t ; p, ε) =
∫

dr′
∫

dt ′Â
(

r + r′

2
, t + t ′

2
; r − r′

2
, t − t ′

2

)
e−i(k·r′−ωt ′ ),

and expand up to first order in h̄, such that we have (suppressing all labels from here on)(
ε − νH − ν�R + ih̄

2
∂t + i

2
ν(∇pH ) · ∇r

)
GK = ν�K GA, (A3)

GK

(
ε − Hν − �Aν − ih̄

2
←−
∂ t − i

2
←−∇ r · (∇pH )ν

)
= GR�Kν, (A4)

where we assume that the Hamiltonian does not depend explicitly on position or time, i.e., H (r, t ; k, ω) = H (k), and we have
used arrows to indicate to which function the derivative applies, if there are ambiguities.
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Furthermore, we define a covariant derivative as

Dkα
E ≡ T †(∂kα

H)T = ∂kα
E + iEAα − iνEνAα. (A5)

We introduce the transformed Green’s functions gR/A/K = T −1GR/A/K (T †)−1 and self-energies σ R/A/K = T †�R/A/KT and
assume damped quasiparticles in (local) thermal equilibrium, such that

σ R/A(k, ω) = ∓iν[�mm(k, ω) + �mr(k, ω)], (A6)

σ K (r; k, ω) = −2i�mm(k, ω)Fn(r, ω) − 2i�mr(k, ω)Fμm=0
n (r, ω), (A7)

where

�η
mn(k, ω) = δmn ×

{
γ η(k, ω), 1 � n � N
γ η(−k,−ω), N + 1 � n � 2N,

with η ∈ {mr, mm} representing the magnon relaxation processes (which do not conserve spin) and magnon-magnon interactions
(which conserve spin), respectively. The distribution function is defined as

Fmn(r, ω) = δmn ×
{

fB(r, ω), 1 � n � N
fB(r,−ω), N + 1 � n � 2N,

where fB = coth( h̄ω−μm

2kBT ) is the symmetrized Bose-Einstein distribution. The distribution function Fμm=0
n (r, ω) describes the

relaxation of magnons to the lattice. For brevity, we write �n(k, ω) = �mr
n (k, ω) + �mm

n (k, ω).
The retarded and advanced Green’s functions are then given by

gR/A = δnm

νn(h̄ω ± i�n) − En
. (A8)

For the Keldysh Green’s function we first solve the diagonal component of the distribution function, fn ≡ ih̄
2 gK

nn, using the
difference between Eqs. (A1) and (A2), such that

∂t fn +
∑

α

∂rα
jαn = −2

�mr
n

h̄

[
fn − h̄�n

(h̄ω − νnEn)2 + �2
n

Fμm=0
n

]
− 2

�mm
n

h̄

[
fn − h̄�n

(h̄ω − νnEn)2 + �2
n

Fn

]
, (A9)

where the current density

jαn = νn

h̄
(∂kα

En) fn + νn
i

4

∑
m �=n

[
(Dkα

E )nmgK
mn + gK

nm(Dkα
E )mn

]
(A10)

has contributions from the off-diagonal components.
We now assume that there is local thermal equilibrium, and thus that the local distribution function fn can be described by

small corrections δ fn on top of the thermal equilibrium. This is possible because the spin-conserving processes (represented
by �mm) are much faster than the non-spin-conserving processes (represented by �mr). Thus, we disregard the Fμm=0

n term in
Eq. (A9) and make the ansatz

fn = h̄�n

(h̄ω − νnEn)2 + �2
n

Fn + δ fn, (A11)

where δ fn is at least one order higher in gradients. In a steady state (such that ∂t fn = 0) we further note that from Eq. (A9) it is
clear that ∑

α

∂rα
jαn = −2

�n

h̄

(
δ fn + �mr

n

(h̄ω − νnEn)2 + �2
n

(
Fn − Fμm=0

n

))
. (A12)

This can then be solved up to first order in gradients by inserting the ansatz, Eq. (A11), into the current density, Eq. (A10), and
using the fact that gK

nm is one order higher in gradients and can thus be discarded. Then we find

δ fn = −νnh̄

2
(∂kα

En)
1

(h̄ω − νnEn)2 + �2
n

(∂rα
Fn) − h̄�mr

n

(h̄ω − νnEn)2 + �2
n

(
Fn − Fμm=0

n

)
. (A13)

In order to find gK
nm we consider the sum of Eqs. (A1) and (A2) and find for m �= n that

[2h̄ω − νnEn − νmEm + i(�n − �m)]gK
nm = − i

2

∑
α

∑
l

[
νn(Dkα

E )nl

(
∂rα

gK
lm

) − νm
(
∂rα

gK
nl

)
(Dkα

E )lm

]
. (A14)

It is convenient to proceed in the quasiparticle limit (lim�n→0+), where

lim
�→0+

fn = πδ(ω − νnEn/h̄)Fn(ω) + δ fn. (A15)
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We now use the fact that gK
nm is one order higher in gradients than fn, and as such can write

gK
nm = 1

h̄

iπ

νmEn − νnEm

∑
α

∂rα
(Dkα

E )nm[νmδ(ω − νnEn/h̄)Fn(ω) + νnδ(ω − νmEm/h̄)Fm(ω)] (m �= n), (A16)

where we have used the diagonal components fn to rewrite Eq. (A14), only keeping terms up to first order in gradients. Using
the definition of the covariant derivative in Eq. (A5) we now write the current as

jαn = νn
(
∂kα

En
)
πδ(ω − νnEn/h̄)

[
Fn − �mr

n

�n

(
Fn − Fμm=0

n

)] − 1

2�nh̄

∑
β

(
∂kα

En
)(

∂kβ
En

)
πδ(ω − νnEn/h̄)∂rβ

Fn

+ i

4h̄

∑
m �=n

∑
β

(νnνmEm − En)
(
Aα

mnAβ
nm − Aβ

mnAα
nm

)
∂rβ

[νnπ h̄δ(ω − νmEm/h̄)Fm + νmπ h̄δ(ω − νnEn/h̄)Fn], (A17)

such that we now have a full description of the equation of motion, Eq. (A9), for the distribution function of the magnons. Note
that the first term in Eq. (A17) will be zero if integrated over, due to inversion symmetry.

We continue with the spin density, which is defined as

sz(r, t ) = − ih̄

4
Tr [ĜK ],= − ih̄

4

∫
dd k

(2π )d

∫
dω

2π
Tr [T †T gK ], (A18)

such that

∂t s
z(r, t ) = 1

2

∫
dd k

(2π )d

∫
dω

2π

∑
n

(
T †T

)
nn

[∑
α

∂rα
jαn + 2

�mr

h̄

(
fn − h̄�n

(h̄ω − νnEn)2 + �2
n

Fμm=0
n

)]
, (A19)

where we have only kept terms up to first order in gradients. Since the processes described by �mm always conserve spin and
because we assume them to approximately conserve momentum, we furthermore disregard all terms related to �mm, such that
�n = �mr

n . Its inclusion up to this point was, however, necessary, since without it a local thermal equilibrium cannot be properly
defined and a current density cannot be expressed in terms of the magnon chemical potential.

APPENDIX B: COEFFICIENTS

From here on, we assume Gilbert damping for the magnon relaxation process, such that γ mr(k, ω) = 2αGh̄ω [26], where αG

is the bulk Gilbert damping parameter. With the generic equation of motion, Eq. (A19), we now derive the equation of motion
up to linear order in the magnon chemical potential, giving

∂t s
z(r, t ) +

∑
α

∂rα
Jα

s = �sμm, (B1)

where Jα
s = σαα∂rα

μm + ∑
β σ αβ∂rβ

μm, with

σαα = − 1

32h̄αGkBT

∫
d2k

(2π )2

∑
n

(T †T )nn
(∂kα

En)2

En
csch

[ En

2kBT

]2

, (B2)

σαβ = 1

32kBT h̄

∫
d2k

(2π )2

∑
n,m,m �=n

(νn(T †T )nn + νm(T †T )mm)(νnνmEm − En)�αβ
m csch

[ En

2kBT

]2

, (B3)

�s = − 1

2kBT

∫
d2k

(2π )2

∫
dω

2π

∑
n

(T †T )nn
(2αGh̄ω)2

(h̄ω − νnEn)2 + (2αGh̄ω)2
csch

[
νnh̄ω

2kBT

]2

. (B4)

Here we have disregarded the �mm term, since magnon-magnon scattering preserves momentum and should therefore not
contribute to the magnon spin conductivity σαα . We then have σs = σ xx = σ yy and σ H

s = σ xy, since the system is rotationally
invariant.

In order to calculate these coefficients we diagonalize the Hamiltonian H with a para-unitary matrix T , which also gives the
energies E . Moreover, we construct ∂kα

H , such that we calculate the Berry phase and subsequently the Berry curvature using
Eq. (4). These terms are further shown in Appendix E. We can then integrate the coefficients σ H

s , σs, and �s over the entire
Brillouin zone, where we use the translation invariance to employ the one-dimensional Gauss-Kronrod quadrature formula,
which also gives an error estimate. These results are shown in Sec. IV.
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APPENDIX C: METALLIC LEAD

We now consider how the equation of motion for the spin density has to be modified if a metallic lead is interfaced to the
ferromagnet. Attaching a metallic lead, the self-energies are modified such that �R/A/K = �

R/A/K
bulk + �

R/A/K
IF , with

�
R/A
IF (r, t ; k, ω) = ∓iαIF(h̄ω − νμe), (C1)

�K
IF(r, t ; k, ω) = 2�R

IF Fe(ω), (C2)

where

Fe(r, ω) = δnm ×
{

coth
[ h̄ω−μe

2kBT

]
, 1 � n � N

coth
[−h̄ω−μe

2kBT

]
, N + 1 � n � 2N,

(C3)

and αIF is the interfacial Gilbert damping. The equation of motion for the spin density, Eq. (A19), is then modified to ∂t sz + ∇ ·
Js = �s + �IF

s , where

�IF
s = −1

4

∫
dd k

(2π )d

∫
dω

2π
Tr

[
T †ν�K

IFT gA − T †ν�K
IFT gR + T †ν�R

IFT gK − T †ν�A
IFT gK

]
. (C4)

Noting that, up to lowest order in the interfacial coupling, the Green’s functions gR/A/K are unchanged by the interfacial self-
energies, we can further write this as (in the quasiparticle limit)

�IF
s = αIF

2h̄

∫
dd k

(2π )d
Tr [(T †(E − μe)T F (νE ) − T †ν(E − μe)Fe(νE )T ν)]. (C5)

We again keep only terms linear in μm and μe, such that we can write �IF
s = Aμm + Bμe + C, with

A = αIF

4h̄kBT

∫
d2k

(2π )2 Tr

[
T †ET csch

[ E
2kBT

]2]
, (C6)

B = −αIF

2h̄

∫
d2k

(2π )2 Tr

[
T †T coth

[ E
2kBT

]
− 1

2kBT
Ecsch

[ E
2kBT

]2

+ coth

[ E
2kBT

]]
, (C7)

C = αIF

2h̄

∫
d2k

(2π )2 Tr

[
(T †ET − E ) coth

[ E
2kBT

]]
. (C8)

APPENDIX D: BOUNDARY CONDITIONS

With the equation of motion for the spin density completely determined, we can now consider the boundary condition for the
spin density in the Hall bar geometry. For the metal strips we assume a thin strip, where La � Lb and the long side Lb interfaces
the Hall bar, as shown in Fig. 1. Then the detector can be described by Eq. (8), with the boundary condition that the current at
its interface with the main region is continuous. Thus we have∫

∂Si

dsJs · n̂ =
∫

Si

dS[(�s + A)μm + Bμe + C], (D1)

where Si is the area of detector i. Note that for the detectors μe = 0. We now Taylor expand the chemical potential in the detector
strip perpendicular to the interface, and integrate over the short side of the strip, keeping only terms linear in La, which gives the
boundary condition ∫

∂Si

dsJs · n̂ = La

∫
∂Si

ds[(�s + A)μm + Bμe + C], (D2)

where we have required that Js · n̂ = 0 at the other three sides of the detector. The boundary condition can now be identified as

Js · n̂ = J int
s (μm), (D3)

where

J int
s (μm) = La[(�s + A)μm + Bμe + C]. (D4)

APPENDIX E: HAMILTONIAN

In order to determine the dynamics of the magnons in the YIG, we describe this system using the Heisenberg spin Hamiltonian
[40]

H = −1

2

∑
i j

Ji jSi · S j − μHe ·
∑

i

Si − 1

2

∑
i j,i �= j

μ2

|Ri j |3 [3(Si · R̂i j )(S j · R̂i j ) − Si · S j], (E1)
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where the sums are over the lattice sites Ri, with Ri j = Ri − R j and R̂i j = Ri j/|Ri j |. We only consider nearest-neighbor exchange
interactions, so Ji j = J for nearest neighbors and zero otherwise. Here μ = 2μB is the magnetic moment of the spins, with
μB = eh̄/(2mec) the Bohr magneton. He is the external magnetic field, which we take strong enough to fully saturate the
ferromagnet.

We apply the Holstein Primakoff transformation up to quadratic order,

S+
i =

√
2Sbi, S−

i =
√

2Sb†
i , Sz

i = S − b†
i bi, (E2)

to the Heisenberg spin Hamiltonian, Eq. (E1), and apply the Fourier transformation in the xy plane, introducing k = (kx, ky). The
coordinate system used is summarized in Fig. 2 in the main text. We can now write the quadratic part of the Hamiltonian in the
basis (bk(z1), . . . , bk(zN ), b†

−k(z1), . . . , b†
−k(zN ))T as

Hk =
(

Ak Bk

B†
k Ak

)
, (E3)

where the amplitude factors are

Ak(zi j ) =
∑

ri j

e−ik·rA(zi − z j, r)

= δi j

[
h + S

∑
n

Dzz
0 (zin)

]
− S

2

[
Dyy

k (zi j ) + Dxx
k (zi j )

] + SJk(zi j ), (E4)

Bk(zi j ) =
∑

ri j

e−ik·rB(zi − z j, r)

= −S

2

[
Dxx

k (zi j ) − Dyy
k (zi j ) + iDxy

k (zi j )
]
, (E5)

where

Jk(zi j ) = J[δi j (6 − δ j1 − δ jN − 2 cos(kxa) − 2 cos(kya)) − δi j+1 − δi j−1], (E6)

ri j = (xi j, yi j ), and Dαβ

k (zi j ) describes the dipole-dipole interaction.
For the Berry curvature we need to calculate ∂kα

Hk, where α ∈ (x, y). This is given by

∂kα
Hk =

(
∂kα

Ak ∂kα
Bk

∂kα
B†

k ∂kα
Ak

)
, (E7)

where

∂kα
Ak(zi j ) = −S

2

[
∂kα

Dyy
k (zi j ) + ∂kα

Dxx
k (zi j )

] + 2SJa sin(kγ a), (E8)

∂kα
Bk(zi j ) = −S

2

[
∂kα

Dxx
k (zi j ) − ∂kα

Dyy
k (zi j ) + i∂kα

Dxy
k (zi j )

]
, (E9)

For the dipolar sums we apply the Ewald summation method, as previously developed by Kreisel et al. [19], and find

Dzz
k (zi j ) = πμ2

a2

∑
g

(
8
√

ε

3
√

π
e−p2−q2 − |k + g| f (p, q)

)
− 4μ2

3

√
ε5

π

∑
r

(|ri j |2 − 3z2
i j

)
cos (kxxi j ) cos (kyyi j )ϕ3/2(|ri j |2ε), (E10)

Dyy
k (zi j ) = πμ2

a2

∑
g

(
4
√

ε

3
√

π
e−p2−q2 − (ky + gy)2

|k + g| f (p, q)

)
− 4μ2

3

√
ε5

π

∑
r

(|ri j |2 − 3y2
i j

)
cos (kxxi j ) cos (kyyi j )ϕ3/2(|ri j |2ε),

(E11)

Dxy
k (zi j ) = −πμ2

a2

∑
g

(ky + gy)(kx + gx )

|k + g| f (p, q) − 4
ε5/2μ2

√
π

∑
r

yi jxi j sin(kxxi j ) sin(kyyi j )ϕ3/2(|ri j |2ε), (E12)

where

ϕ3/2(x) = e−x 3 + 2x

2x2
+ 3

√
πErfc(

√
x)

4x5/2
(E13)

and q = zi j
√

ε, p = |k + g|/(2
√

ε), and f (p, q) = e−2pqErfc(p − q) + e2pqErfc(p + q). The sums are either over the real space
lattice or the reciprocal lattice, where the reciprocal lattice vectors are gx = 2πm, gy = 2πn, {m, n} ∈ Z. ε determines the ratio
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between the reciprocal and real sums. We choose ε = a−2, such that 2pq ≈ 1 and exp[±2pq] converges quickly. Note that Dxx
k

from the symmetry Dyy
k = Dxx

k (kx → ky, ky → kx ). Taking the derivatives with respect to kx and ky we find

∂ky D
zz
k (zi j ) = πμ2

a2

∑
g

(
16p

√
ε

3
√

π
e−p2−q2 ∂ p

∂ky
+ p2

√
ε

∂ f

∂ky
+ ky + gy

2
√

εp
f (p, q)

)

+ 4μ2

3

√
ε5

π

∑
r

yi j
(|ri j |2 − 3z2

i j

)
cos (kxxi j ) sin (kyyi j )ϕ3/2(|ri j |2ε), (E14)

∂ky D
yy
k (zi j ) = −πμ2

a2

∑
g

(
8p

√
ε

3
√

π
e−p2−q2 ∂ p

∂ky
+ (ky + gy)2

|k + g|
∂ f

∂ky
+ 2(ky + gy)|k + g|2 − (ky + gy)3

|k + g|3 f (p, q)

)

+ 4μ2

3

√
ε5

π

∑
r

yi j
(|ri j |2 − 3y2

i j

)
cos (kxxi j ) sin (kyyi j )ϕ3/2(|ri j |2ε), (E15)

∂kx D
yy
k (zi j ) = −πμ2

a2

∑
g

(
8p

√
ε

3
√

π
e−p2−q2 ∂ p

∂kx
− (ky + gy)2

|k + g|
∂ f

∂kx
+ (ky + gy)2(kx + gx )

|k + g|3 f (p, q)

)

+ 4μ2

3

√
ε5

π

∑
r

zi j
(|ri j |2 − 3y2

i j

)
cos (kyyi j ) sin (kzzi j )ϕ3/2(|ri j |2ε), (E16)

∂ky D
xy
k (zi j ) = −πμ2

a2

∑
g

(ky + gy)(kx + gx )

|k + g|
∂ f

∂ky
+ (kx + gx )|k + g|2 − (ky + gy)2(kx + gx )

|k + g|3 f (p, q)

− 4
ε5/2μ2

√
π

∑
r

y2
i jxi j sin(kxxi j ) cos(kyyi j )ϕ3/2(|ri j |2ε), (E17)

where

∂ p

∂kα

= kα + gα

4εp
, (E18)

∂ f

∂kα

=
(

2qe2pqErfc(p + q) − 2qe−2pqErfc(p − q) − 4√
π

e−p2−q2

)
kα + gα

4pε
, (E19)

and the remaining terms follow from symmetry, by swapping ky ↔ kx.
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