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Point-group selection rules and universal momentum-transfer dependencies for inelastic neutron
scattering on molecular spin clusters
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Recent significant progress in inelastic neutron scattering (INS) has rendered this technique even more useful
for the characterization of magnetic systems, including molecular spin clusters. By so-called four-dimensional
INS on single-crystal probes, excitation spectra can be recorded in large portions of momentum-transfer (Q) and
energy-transfer (E) space. Spin-selection rules permit �S = 0, ±1 transitions between different spin multiplets.
Additional selection rules can be imposed by point-group symmetry but were not discussed yet. As most
synthetic spin clusters with interesting magnetic properties have high molecular symmetry, a clear understanding
of this issue will be helpful for interpreting INS spectra. Here we discuss point-group INS selection rules
for magnetically isotropic or anisotropic spin clusters. Rings and a number of spin polyhedra with cubic or
icosahedral symmetry are chosen as illustrative and relevant examples. These systems exhibit a significant
number of point-group selection rules in isotropic spin models, and most of them maintain a smaller number
of selection rules in anisotropic spin models. We also explain how the Q dependence of certain excitations
depends exclusively on the point-group symmetry of the states involved in the transition, an aspect that had
thus far only been detailed for spin rings. We provide the universal Q-dependent intensity functions (and
their powder-averaged forms) for a set of polyhedra (cube, icosahedron, truncated tetrahedron, cuboctahedron,
dodecahedron, icosidodecahedron, and truncated icosahedron). Overall, these results help to disentangle the
relevant dynamical information contained in INS spectra from those features that are entirely determined by
molecular symmetry.
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I. INTRODUCTION

The rich set of magnetic properties and phenomena ob-
served in exchange-coupled spin clusters [1–3] has opened up
the prospect of using magnetic molecules in future technol-
ogy, including quantum computing [4–9], high-density data
storage [10–12], magnetic cooling [13], or spintronics devices
[14]. Inelastic neutron scattering (INS) is a key experimental
technique for studying magnetic excitations in such systems.
At an early stage, INS was applied to study exchange in-
teractions in dimers and other small spin clusters [15–17].
More recently, INS played an important role in determin-
ing the microscopic interactions (effectively represented by
spin-Hamiltonian parameters) of molecular spin clusters, in-
cluding nanomagnets, antiferromagnetic spin rings, and other
systems (see Refs. [18–22] for reviews). With a single ex-
ception [23], powder probes were used. In this way, only the
dependence of the INS intensity on energy transfer (E) and the
magnitude of momentum transfer (Q) could be investigated.
Recent dramatic progress in instrumentation (the installation
of new spectrometers or detectors), new tools for data anal-
ysis, and the availability of sufficiently large single crystals
now permits four-dimensional (4D) INS experiments, where
the three-dimensional (3D) momentum-transfer vector Q can
be measured [22]. That is, the INS cross section becomes a
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function of E and Q instead of just E and Q, and this facilitates
the extraction of information on spin dynamics. 4D-INS has
already provided detailed insights into the physics of various
spin clusters [22,24–28], and the possibilities of this technique
are expected to further expand in the future [21,22]. It is
worth noting that quantum computers were demonstrated to
be useful for simulating 4D-INS spectra [29], which could
become an interesting option for systems that are too large
for exact diagonalization of the spin Hamiltonian. However,
the present work is focused on those features of the INS cross
section which are fixed by molecular symmetry, where exact
or approximate eigenstates are not needed.

Isotropic exchange is usually the dominant contribution to
the spin Hamiltonian of first-row transition-metal spin clusters
[1]. Owing to the �S = 0,±1 spin-selection rule, INS transi-
tions between different spin multiplets yield information on
exchange-coupling constants. It is well known that additional
selection rules arise if the magnitude of the total spin of a
subset of sites is conserved (see comments and references in
the Theory section). However, more general selection rules
deriving from the point-group symmetry were not considered.
We are aware of only one work which very briefly touches on
this issue [30].

Here, we discuss INS selection rules imposed by molec-
ular symmetry in isotropic and anisotropic systems. The
isotropic systems are symmetric under permutations of sites
[31]. Anisotropic Hamiltonians generally break permutation
and spin symmetry, but combinations of permutations and
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spin rotations according to operations of the molecular point
group still represent symmetries and may impose constraints
on INS transition-matrix elements. Spin rings and a num-
ber of polyhedra (cube, icosahedron, truncated tetrahedron,
cuboctahedron, dodecahedron, icosidodecahedron, and trun-
cated icosahedron) are chosen as illustrative examples.

The Q dependence is sometimes completely determined
by the symmetry species of the states involved in the INS
transition [32]. Then exact eigenstates are required only to cal-
culate the absolute intensity. The detailed analysis in Ref. [32]
was limited to cyclic systems. Our generalized analysis (see
Theory section) leads to Eq. (13), which is a main result of
the present work. For the indicated isotropic spin polyhedra,
we tabulate and plot all universal Q-dependent functions in
Results and Discussion. This information should be useful
for interpreting high-resolution INS spectra of the given types
of systems (and the outlined simple formalism can be used
to derive the respective information for other species, too),
which will conceivably become available by future combined
synthetic and experimental efforts.

II. THEORY

Spin Hamiltonian. The determination of the Ji j coupling
constants that parameterize the isotropic Heisenberg Hamilto-
nian,

Ĥ (0) =
∑
i< j

Ji j ŝi · ŝ j, (1)

is a major goal of many INS studies. Besides SU (2) spin-
rotational symmetry, an isotropic spin Hamiltonian (which
may include also biquadratic exchange, three-center terms,
etc.) is symmetric under site permutations that correspond
to real-space symmetry transformations of the cluster. Spin-
permutational symmetry (SPS, [31]) is a manifestation of
molecular symmetry and leads to a point-group classification
of exchange multiplets [33]. Note, however, that the SPS
group sometimes represents only a subgroup of the full point
group of a molecule, as discussed by Waldmann [31]. For
example, for a planar spin ring with N sites and a DNh molec-
ular point group, Ĥ (0) has SPS symmetry DN , while the full
DNh group becomes relevant for a general anisotropic spin
model (see below). The simple SPS symmetry remains intact
when uniaxial anisotropy terms (conserving Ŝz) are included
[31]. In numerical studies, combining SPS with Ŝz is highly
useful for block-diagonalizing the Hamiltonian [31,34,35].
Even smaller blocks are obtained when adapting the basis
to the full SU (2) spin symmetry (Ŝ2 and Ŝz) [1,36], but a
combination of SU (2) with SPS is technically considerably
more demanding [31,37,38]. In a sense, the symmetry labels
of energy eigenstates are obtained as a byproduct and provide
valuable qualitative information on spectroscopic transitions
(as well as selection rules for anisotropy-induced spin mixing
[30,39], and other properties [40,41]), where the INS tech-
nique is of central interest to the present work.

The reliable determination of anisotropic interactions by
experiments or quantum-chemical calculations remains chal-
lenging. For ions with si > 1

2 , single-ion zero-field splitting
(ZFS) is often most important (taking the form ŝi · Di · ŝi, with
a traceless symmetric ZFS tensor Di). Further common terms

are symmetric (ŝi · Di j · ŝ j ) and antisymmetric (di j · ŝi × ŝ j )
coupling between nearest neighbors (NN). The orientation
of a vector di j is fixed with respect to specific symmetry
elements [1,42], and in high-symmetry systems (including
many polyhedra), antisymmetric exchange is overall excluded
(di j = 0). On the other hand, symmetric couplings are never
excluded on account of point-group symmetry (although they
were apparently claimed to be absent in spin tetrahedra [43]).
One may consider Ĥ (1) as defined in Eq. (2),

Ĥ (1) =
∑
i< j

ŝi · Di j · ŝ j, (2)

where (up to a factor that can be different for different types
of spin pairs) Di j is a traceless symmetric tensor of rank 2,

Di j = ni jnT
i j − 1

3 1, (3)

with the unit vector ni j = Ri j/|Ri j | pointing from site i to
site j. This affords an anisotropic spin Hamiltonian which
is in accord with the point-group symmetry of the cluster.
However, the specific form of anisotropic contributions is not
relevant here.

SU (2) and SPS symmetry are each broken by general
anisotropic interactions as represented, e.g., by Eqs. (2) and
(3). However, when the SPS operations are combined with
appropriate spin rotations, one recovers the symmetry group
of the anisotropic Hamiltonian [39,43,44]. Point-group labels
can still be attached to eigenstates, and INS selection rules
may ensue, as explained below. We only mention in passing
that a Zeeman term would completely break the symmetries
of anisotropic spin Hamiltonians, unless the magnetic field is
applied along a symmetry axis or perpendicular to a symme-
try plane (inversion symmetry stays intact for arbitrary field
orientations) [39].

INS point-group selection rules. The differential neutron-
scattering cross section is given by Eq. (4) [32,45],

d2σ

d�dω
= γ e2

mec2

k′

k
e−2W (Q,T )

×
∑
n,m

e−En/kT

q(T )
Inm(Q)δ

(
ω − Em − En

h̄

)
, (4)

where � denotes the solid angle, h̄ω is the energy transfer,
Q = k − k′ is the scattering vector, e−2W (Q,T ) is the Debye-
Waller factor, e−En/kT /q(T ) is the Boltzmann factor, and all
other symbols have their usual meaning. Inm(Q) is defined in
Eq. (5),

Inm(Q) =
∑
i, j

F ∗
i (Q)Fj (Q)eiQ·(Ri−R j )

×
∑
α,β

(
δαβ − QαQβ

Q2

)
〈n|ŝiα|m〉〈m|ŝ jβ |n〉, (5)

where α, β = x, y, z, and Ri is the position vector of the
ith spin center (the sums over i and j independently run
over all N sites), and |n〉 and |m〉 are energy eigenstates.
For transition-metal ions with a rather localized and isotropic
spin density, it is a good approximation to treat the magnetic
form factor as isotropic, Fi(Q) = Fi(Q) (but other open-shell
species can have significant anisotropy [46]). Overall, for INS
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experiments conducted on molecular spin clusters thus far, the
dependence of the cross section on the orientation of Q can
be taken to be contained in Inm(Q), Eq. (5) [21]. A spherical
average must be taken for powder samples [16,32],

Īnm(Q) ≡
∫

Inm(Q)

4π
d�. (6)

For isotropic systems, this yields Eq. (7) [32],

Īnm(Q) = 2

3

∑
i, j

F ∗
i (Q)Fj (Q) j0(QRi j )

∑
α

〈n|ŝiα|m〉〈m|ŝ jα|n〉,

(7)

where j0(x) = sin(x)/x is a spherical Bessel function, and
Ri j = |Ri − R j | (Ref. [32] also derives Īnm(Q) for anisotropic
systems). For simplicity, ignoring the other factors in Eq. (4),
we call Inm(Q) and Īnm(Q) the single-crystal and powder INS
intensity, respectively. The spin-selection rules (�S = 0,±1,
�M = 0,±1; transitions S = 0 → S = 0 are not allowed) are
set by the conditions under which a matrix element 〈n|ŝiα|m〉
vanishes. However, 〈n|ŝiα|m〉 can also vanish on account of
point-group symmetry.

Suppose that states |n〉 and |m〉 transform according to
irreducible representations �n and �m of the SPS group,
respectively. The N-site spin operators {ŝi} span the (gener-
ally reducible) N-dimensional representation �(N ). (Cartesian
components α of operators ŝiα are not affected by permuta-
tions, but they are mixed when permutations are combined
with spin rotations, see the discussion on selection rules
in anisotropic systems below.) Then all 〈n|ŝiα|m〉 vanish, if
�∗

n × �(N ) × �m does not contain the totally symmetric rep-
resentation �1. The determination of selection rules is thus
straightforward, requiring only the direct-product table for the
SPS group in addition to the decomposition of �(N ) in terms
of irreducible representations.

For certain coupling topologies, the isotropic spin Hamil-
tonian is left invariant by all permutations within a subset
of sites, such that the squared total spin of the subsystem
becomes a good quantum number. This applies, for example,
to individual pairs in equilateral triangles, the square, and
other systems; INS transitions are limited to changes of the
total spin of a subsystem by 0 or 1 units [47–50], where
in the presence of several subsystems (e.g., two dimers in a
square), the total spin of only one subsystem may change in
the transition. Although a well-defined subsystem spin can be
a manifestation of molecular symmetry, we do not count the
resulting selection rules as genuine point-group selection rules
in the general sense but rather classify them as combined spin-
and point-group selection rules.

Anisotropic systems are somewhat more complicated. As
explained in detail elsewhere [39,43,44], spin permutations
must be combined with global spin rotations to leave the
anisotropic zero-field Hamiltonian invariant. For systems with
even spin (meaning that 2

∑
i si is an even number), eigen-

states can be labeled with respect to the molecular point
group, but the respective double group must be considered
for odd-spin systems (where 2

∑
i si is an odd number) [44].

The determination of selection rules again requires analysis
of the representation spanned by {ŝi}. However, spin rotations
mix Cartesian components so that symmetry operations are

represented by matrices of dimension 3N × 3N (instead of
N × N in the isotropic case). The decomposition of the {ŝi}
basis thus becomes similar to a symmetry classification of
vibrational, rotational, and translational modes in molecules
[51]. If �∗

n × �(3N ) × �m does not contain �1, all 〈n|ŝiα|m〉
vanish. Additional details are discussed for specific examples
in Results and Discussion.

Q dependence determined by SPS symmetry. Waldmann has
shown that in certain isotropic systems the Q dependence of
the INS intensity Inm(Q) is completely fixed by the symmetry
species �n and �m [32]. Symmetric spin rings were considered
in detail [32]. In the cyclic or dihedral groups (CN or DN ),
Inm(Q) takes a universal form (up to a multiplicative constant)
for given �n and �m, irrespective of the uniform local quantum
number s. More complicated groups were not discussed. Our
consideration of point-group selection rules offers the oppor-
tunity to investigate this issue in more detail, as explained in
the following.

To simplify the discussion, we consider unpolarized tran-
sitions by summing up intensities for transitions between
all pairs of magnetic states belonging to the two different
spin multiplets. We also sum over components kn and km

of �n and �m, respectively (for multidimensional SPS repre-
sentations). The resulting total sum is denoted by I�n�m (Q).
Assuming that all sites are equivalent, we define I�n�m (Q) =
|F (Q)|2L�n�m (Q). Apart from a factor (which is irrelevant for
our discussion), the Wigner-Eckart theorem allows us to write
L�n�m (Q) in terms of reduced matrix elements (RMEs) of the
T̂(1)(si ) rank-1 irreducible tensor operators (ITOs),

L�n�m (Q) =
∑
i, j

eiQ·(Ri−R j )
∑
kn,km

〈�n, kn‖T̂(1)(si )‖�m, km〉

× 〈�m, km‖T̂(1)(s j )‖�n, kn〉. (8)

The polarization factor, δαβ − QαQβ/Q2, cf. Eq. (5), has
been averaged out by the combined summation over magnetic
quantum numbers of both multiplets. We stress that n and m
denote different spin multiplets, but they may both have the
same SPS symmetry (that is, our discussion is valid for both
�n 	= �m and �n = �m).

The {ŝi} basis spans �1 exactly once. In obvious notation,

T̂�1 = 1√
N

∑
i

T̂(si) = 1√
N

T̂(S), (9)

where T̂(S) refers to the total spin, Ŝ = ∑
i ŝi (here and in

the following, the rank-1 superscript on ITOs was dropped
to avoid clutter). Matrix elements between states belonging
to different spin multiplets vanish, 〈�n, kn‖T̂(S)‖�m, km〉 =
0, due to spin symmetry. In other words, INS tran-
sitions cannot be caused by the T̂�1 transition opera-
tor. This is a combined spin- and point-group selection
rule.

Let � denote the representation spanned by {ŝi}, where we
exclude �1 from �. We shall assume that � contains exactly
one irreducible representation �l such that �∗

n × �l × �m

contains �1, and we further assume that �l occurs exactly
one time in �. A unitary matrix v mediates the transfor-
mation from the local basis {ŝi} to the symmetry-adapted
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basis,

T̂�qkq =
∑

i

v�qkq,iT̂(si ), (10)

where �qkq is a compound index (�qkq = 1, 2, ..., N ) which
can include a specific irreducible representation more than
once. The reverse transformation is given in Eq. (11),

T̂(si ) =
∑
�qkq

v∗
�qkq,iT̂�qkq . (11)

Inserting Eq. (11) into Eq. (8) and using the assumption
that only T̂�l kl transition operators can have nonvanishing
matrix elements gives us Eq. (12):

L�n�m (Q) =
∑
i, j

eiQ·(Ri−R j )
∑

kl ,k′
l ,kn,km

v∗
�l kl ,iv

∗
�l k′

l , j

× 〈�n, kn‖T̂�l kl ‖�m, km〉〈�m, km‖T̂�l k′
l
‖�n, kn〉.

(12)

We ultimately employ the Wigner-Eckart theorem for point
groups [52,53] to factor out the dependence of spin RMEs on
the combination of components (kl , k′

l , km, kn) of multidimen-
sional SPS representations,

L�n�m (Q) = 〈�n‖T̂�l ‖�m〉〈�m‖T̂�l ‖�n〉
×

∑
i, j

eiQ·(Ri−R j )
∑

kl

v∗
�l kl ,iv�l kl , j , (13)

where the double-bar matrix elements 〈�n‖T̂�l ‖�m〉 now de-
note combined spin- and SPS-RMEs (which are again left
undefined up to an irrelevant factor). Note the single complex-
conjugation sign in v∗

�l kl ,i
v�l kl , j . Equation (13) refers to the

case where �∗
n × �m contains �l exactly once. In nonsimple

groups, �l can occur multiple times in �∗
n × �m (e.g., in the

Ih group, Fg × Hg contains Hg twice, etc.) [53]. Then the
prefactor in Eq. (13) would be a linear combination of RME
products (cf. Ref. [54] on the generalized Wigner-Eckart the-
orem). However, the important Q-dependent part of Eq. (13)
is not affected in such cases.

Equation (13) generalizes the results of Waldmann [32] and
is a central result of the present work. Equation (13) shows
that only the total intensity requires dynamical information in
terms of the RMEs, whereas the Q dependence is completely
determined by the SPS symmetry labels �n and �m (which de-
termine �l ), irrespective of the local spin quantum number s.
We define K�l (Q) to be the Q-dependent factor for transitions
mediated by the �l transition operator,

K�l (Q) =
∑
i, j

eiQ·(Ri−R j )
∑

kl

v∗
�l kl ,iv�l kl , j . (14)

Defining w�l kl ,i = e−iQ·Riv�l kl ,i, we can write K�l (Q) more
compactly,

K�l (Q) =
∑
i, j

∑
kl

w∗
�l kl ,iw�l kl , j . (15)

In summary, Eq. (13) was obtained for an isotropic spin
system where all sites are equivalent, where � contains ex-
actly one �l (with �l occurring just once), such that �∗

n ×
�l × �m contains �1, and n and m denote different spin

multiplets. (A magnetically unpolarized transition was only
assumed for notational convenience, see comments above;
polarized transitions would still need to take into account
the polarization factor.) If these conditions are not met, the
Q dependence of the INS intensity is generally not fixed by
symmetry and will require a certain amount of dynamical in-
formation. (However, in a few cases, systems that host sets of
spin sites which are not equivalent by symmetry may still have
transitions characterized by a definite K�l (Q) or K̄�l (Q); see
the discussion on symmetry breaking in the Results section
for spin rings, the cube, and the icosahedron.) Regarding the
dynamical information required to define Q dependencies for
transitions that are not characterized by a universal K�l (Q), for
simplicity we shall consider the special case where �l occurs
h times in � (h > 1), assuming further that �l , �m, and �n

are one-dimensional. The rank-1 ITOs T̂p
�l

, p = 1, 2, ..., h, are
defined by a set of orthogonal vectors vp

�l
. Thus from Eq. (12),

L�n�m (Q) =
∑
i, j

eiQ·(Ri−R j )
∑
p,p′

(
v

p
�l ,i

)∗
v

p′
�l , j

× 〈�n‖T̂p
�l

‖�m〉〈�m‖T̂p′
�l

‖�n〉, (16)

which does not factorize into a Q-dependent and an RME part.
Thus the least amount of dynamical information required to
describe the Q dependence, for h = 2, is a ratio of two RMEs,
〈�m‖T̂1

�l
‖�n〉/〈�m‖T̂2

�l
‖�n〉.

In the Results and Discussion section, we tabulate those
transition types (characterized by �n and �m) which are asso-
ciated with a unique K�l (Q) and list analytical expressions
for the K�l (Q) functions for a number of spin polyhedra
with cubic or icosahedral symmetry. We lastly mention that
in ferromagnetic spin clusters with uniaxial anisotropy of
Ising type, the zero-temperature excitations observable in INS
can be found in the M = ±(Smax − 1) sector (where M is
the Ŝz eigenvalue and Smax = ∑

i si; the ground state has
M = ±Smax) [55]. Due to its connection to concepts famil-
iar from extended magnetic systems, a simple formalism for
gaining an intuitive and pictorial understanding of such excita-
tions has been termed ferromagnetic cluster spin-wave theory
(FCSWT) [55]; see Refs. [56,57] for applications to INS.
The ferromagnetic (M = Smax) ground state transforms as
�1, while the (N−1) different excited states (M = Smax − 1)
span � (that is, the representation spanned by {ŝi}, exclud-
ing �1). This implies that all possible K�l (Q) functions can
be found among the (zero-temperature) FCSWT transitions.
Therefore our Eq. (14) for K�l (Q) is formally equivalent to
equations describing the Q dependence in FCSWT transi-
tions (cf. Ref. [56]), although we have here derived it in a
broader context. For the spin polyhedra studied in Results and
Discussion, this analogy with FCSWT has prompted us to ad-
ditionally report analytical expressions for Q dependencies for
all FCSWT transitions, including those that are not associated
with a universal K�l (Q) function (this applies to those �l that
occur more than once in �).

III. RESULTS AND DISCUSSION

We first discuss INS point-group selection rules in isotropic
and anisotropic symmetric spin rings and then turn to a num-
ber of polyhedra, which are paradigmatic for spin frustration
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TABLE I. Symmetry labels �l specifying K�l (Q) functions for
unpolarized INS transitions �n → �m in the isotropic D6 spin ring.a

A1 A2 B1 B2 E1 E2

A1 0 0 B1 0 E1 E2

A2 0 0 0 B1 E1 E2

B1 B1 0 0 0 E2 E1

B2 0 B1 0 0 E2 E1

E1 E1 E1 E2 E2 E2 N/A
E2 E2 E2 E1 E1 N/A E2

aThe SPS labels �n and �m of the two different multiplets involved
in the transition are given in boldface in the first row and column,
respectively. The �l are given in the bulk of the table. An entry 0
means that the transition is forbidden. The N/A entry marks transi-
tions which do not have a uniform Q dependence [that is, K�l (Q) is
undefined]. The table is symmetric about the diagonal.

in finite systems and display a number of interesting proper-
ties at the classical and quantum levels of description [58].
Chemical synthesis has thus far realized only a subset of
these polyhedra in terms of magnetic molecules, and of these
only an icosidodecahedral spin cluster was characterized by
powder INS (yielding rather broad spectra [59]). However, the
present results for INS selection rules and K�l (Q) functions
should be useful for interpreting possible future experiments
on new molecules that may emerge from chemical synthesis.

Spin rings. For DN spin rings with an even number
N of sites, the fundamental basis �(N ) spanned by {ŝi}
contains A1, B1, and every single one of the (N−2)/2 dif-
ferent twofold-degenerate E representations exactly once (all
Mulliken symmetry labels follow Ref. [53]). For example,
�(4) = A1 ⊕ B1 ⊕ E, or �(6) = A1 ⊕ B1 ⊕ E1 ⊕ E2. A2 and
B2 are excluded. The ensuing INS selection rules for N = 6
can be read from Table I and hold for all DN spin rings
(with even N; transitions A → A or B → B are only ex-
cluded between different multiplets, see comments above).
With the only exception of transitions between different E
representations (E1 → E2, or, equivalently, E2 → E1; Inm(Q)
is symmetric under an interchange of initial and final states n
and m), all transitions have a defined K�l (Q). We state without
proof that this is true for all even N; transitions of the type

TABLE II. Coefficients c̄�l
t defining K̄�1 (Q) functions for the

isotropic D6 spin ring. Spin sites are numbered consecutively around
the ring.a

B1 E1 E2 n(t )

(1, 1) 1 1 1 6
(1, 2) −2 1 −1 12
(1, 3) 2 −1 −1 12
(1, 4) −1 −1 1 6

aOne representative site pair (i, j) for each group t of symmetry-
equivalent pairs is given in the first column. The c̄�l

t are defined in
Eq. (18) and are given in the columns headed by a �l symmetry label.
The last column lists the number n(t ) of pairs in every group, which
yields the c�l

t coefficients for K�1 (Q) [Eq. (17)] via c�l
t = c̄�l

t /n(t ).
The n(t ) always have a common factor of N (the number of sites).

E1 → E1, or E2 → E2, etc., do have a defined K�l (Q), where
�l is either B1, or an E representation.

In order to compactly report the K�l (Q) functions, all pos-
sible two-index combinations (i, j) are grouped into sets of
symmetry-equivalent pairs (formally also counting i = j as a
pair). As an example, for a symmetric N = 4 ring, there are
three types of pairs, which comprise (a) (i, j) = (1, 1), (2,
2), (3, 3), and (4, 4); (b) nearest neighbors, (i, j) = (1, 2),
(2, 3), (3, 4), and (4, 1); and (c) next-nearest neighbors,
(i, j) = (1, 3) and (2, 4).

In an expansion of K�l (Q) in terms of cos(Q · Ri j ),

K�l (Q) =
∑

t

c�l
t

∑
(i, j)∈t

cos(Q · Ri j ), (17)

t indexes a group of equivalent pairs [cos(Q · Ri j ) =
1
2 (eiQ·Ri j + eiQ·R ji ), cf. Eq. (14)]. This expansion has a total
number of N2 terms, that is, it includes (i, j) = (1, 2) and
(i, j) = (2, 1), etc. Equation (17) implicitly defines K�l (Q)
through the c�l

t coefficients.
Upon powder averaging, cos(Q · Ri j ) becomes j0(QRi j ).

All pairs in a set t have the same Ri j = |Ri j |. Therefore the
expansion for K̄�l (Q) (the powder average of K�l (Q), up to an

FIG. 1. Single-crystal INS intensity functions K�l (Q) for a D6 spin ring lying in the xy plane, with two spin sites on the x axis. Panels
(a), (b), and (c) refer to �l = B1, �l = E1, and �l = E2, respectively. Here and in all other K�l (Q) plots in this work, we assume that nearest-
neighbor sites are at a distance of R = 3 Å. Red color marks high and blue color marks low (zero) intensity. For visibility, the color scales are
different for different plots.
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TABLE III. Symmetry labels �l specifying K�l (Q) functions for
unpolarized INS transitions �n → �m in the isotropic D5 spin ring.
For further explanations, see the footnote to Table I.

A1 A2 E1 E2

A1 0 0 E1 E2

A2 0 0 E1 E2

E1 E1 E1 E2 N/A
E2 E2 E2 N/A E1

irrelevant constant) contains just a single summation,

K̄�l (Q) =
∑

t

c̄�l
t j0(Qrt ), (18)

where rt is the distance Ri j for pairs (i, j) ∈ t . The c̄�l
t co-

efficients are simply related to c�l
t through the number n(t )

of pairs in t , via c̄�l
t = n(t )c�l

t . Our tables below list only c̄�l
t

and n(t ). For the D6 spin ring, these quantities are collected
in Table II. Each one of the four different pair types is spec-
ified in the first column of Table II by one member of each
set, specifically, (i, j) = (1, 1), (1, 2), (1, 3), and (1, 4) for
t = 1, 2, 3, 4.

To avoid any misunderstandings and to illustrate the
described instructions for extracting functions K�l (Q) and
K̄�l (Q) from Table II, we exemplarily write them out for
�l = B1:

KB1 (Q) = 1 − 1
3 [cos(Q · R12) + cos(Q · R23) + cos(Q · R34)

+ cos(Q · R45) + cos(Q · R56) + cos(Q · R61)]

+ 1
3 [cos(Q · R13) + cos(Q · R24) + cos(Q · R35)

+ cos(Q · R46) + cos(Q · R62) + cos(Q · R51)]

− 1
3 [cos(Q · R14) + cos(Q · R25) + cos(Q · R36)]

(19)

and

K̄B1 (Q) = 1 − 2 j0(R12) + 2 j0(R13) − j0(R14). (20)

A plot of KB1 (Q) [see Fig. 1(a)] was already shown else-
where [60] (without a group-theoretical analysis, however),
but the respective plots of KE1 (Q) and KE2 (Q) [compare
Figs. 1(b) and 1(c) to Figs 6(b) and 6(c) in Ref. [60]] are
apparently incorrect in the cited work.

We note that the K�l (Q) functions can be obtained based
on the cyclic group CN . E representations of DN fall apart into

TABLE IV. Coefficients c̄�l
t defining K̄�1 (Q) functions for the

isotropic D5 spin ring. Sites are numbered consecutively around the
ring. For more explanations, see footnote to Table II.

(i, j) E1 E2 n(t)

(1, 1) 2 2 5
(1, 2) −1 + √

5 −1−√
5 10

(1, 3) −1−√
5 −1 + √

5 10

FIG. 2. Symmetry breaking D6h → D3h (D6 → D3 for the
isotropic spin Hamiltonian) by distorting the structure either along
the B1u normal mode (leading to two inequivalent trimers) or along
the B2u normal mode (leading to three equivalent dimers).

two “separably degenerate” [61] conjugate representations of
CN , and the individual intensities are added up (see Ref. [32]).

In the context of symmetry breaking, we shall briefly
discuss systems that host multiple sets of sites, where point-
group operations permute sites only within the separate sets.
As a concrete example, we consider two types of D6 → D3

symmetry breaking. For a planar spin ring with D6h molecular
symmetry, distortions along the B1u or B2u normal coordinate
break symmetry D6h → D3h (see Fig. 2), which corresponds
to D6 → D3 for the isotropic spin Hamiltonian. Keep in mind,
though, that SPS symmetry breaking need not be accompa-
nied by changes in the geometric arrangement of the magnetic
ions.

The B1u distortion affords two separate trimers, so the
system is partitioned into n = 2 sets of N = 3 sites each.
On the other hand, the B2u distortion leads to dimeriza-
tion, keeping all six sites equivalent. In the latter case, {ŝi}
spans �(6) = A1 ⊕ A2 ⊕ 2E, so INS transitions A1 → A1 and
A2 → A2 are forbidden. On the other hand, distortions in
D2N spin rings, D2N → DN , which produce n = 2 sets with
N members each (this obtains for the B1u distortion in the
foregoing D6 → D3 example), will simply double all repre-
sentations compared to an N-site DN system. For example,
{ŝi} spans �(6) = 2(A1 ⊕ E) = 2A1 + 2E for D6 → D3, or
�(12) = 2(A1 ⊕ B1 ⊕ E1 ⊕ E2) for D12 → D6, etc. Thus, the
same INS selection rules valid for N-site DN systems still hold,
but Q dependencies are not uniquely defined by symmetry,
because all representations occur multiple times. There is,
however, one exception to the latter statement on selection

FIG. 3. Single-crystal INS intensity functions K�l (Q) for a D5

spin ring lying in the xy plane, with one site on the x axis. Panels (a)
and (b) refer to �l = E1 and �l = E2, respectively.
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TABLE V. Isomorphism between generators of the real-space
D6h point group (left column) and symmetry operations of the corre-
sponding anisotropic spin Hamiltonian (right column).a

C6 P̂12P̂23P̂34P̂45P̂56 × exp(−i 2π

6 Ŝz )

C2 P̂16P̂25P̂34 × exp(−iπ Ŝy )

Ci P̂14P̂25P̂36

aSites are numbered consecutively around the ring. The ring lies
in the xy plane, with two sites on the x axis. A permutation that
corresponds to a real-space rotation about some axis by angle φ

must be combined with a spin rotation about that same axis, but by
the opposite angle (−φ), in order to represent a symmetry of the
anisotropic Hamiltonian [39].

rules and Q dependencies, because now two orthogonal A1

operators can be formed: the total-spin operator, Eq. (9),
which cannot cause transitions between different multiplets,
and a Néel-type vector operator,

T̂A1 =
∑

i

(−1)i ŝi, (21)

where sites in the first and second set have odd and even
numbers, respectively. Thus, transitions between multiplets
that transform as the same one-dimensional representation
become allowed, and they have a universal Q dependence
because there is only one transition operator, Eq. (21). The
Q-dependent function for such transitions is given in Eq. (22),

KA1 (Q) =
∑
i, j

eiQ·Ri j (−1)i+ j, (22)

which is the same functional form as KB1 (Q) in the symmetri-
cal D2N system (or KB(Q) in C2N ). More generally, in systems
with DN symmetry, with n sets of N sites, the above-specified
general selection rules are valid. For example, for the Mn12

single-molecule magnet with S4 molecular symmetry, it is
a good approximation to regard a Heisenberg model with
D4-SPS [30], so there are n = 3 sets of N = 4 equivalent
centers. Selection rules arise from the fact that A2 and B2

are excluded from �(12) = 3(A1 ⊕ B1 ⊕ E). As A1 occurs

FIG. 4. Polyhedra studied in the present work. A spin is
positioned at every vertex (marked by spheres): (a) cube, (b) icosahe-
dron,(c) truncated tetrahedron, (d) cuboctahedron, (e) dodecahedron,
(f) icosidodecahedron, and (g) truncated icosahedron. Pictures of the
polyhedra were generated with the PYMOL software.

three times, transitions A1 → A1, A2 → A2, B1 → B1, or
B2 → B2 can be mediated by two different T̂A1 operators,
and there is consequently no universal KA1 (Q) function. In
other words, there is no universal Q dependence, even when
neglecting differences in form factors between different types
of ions. In later sections we address additional consequences
of symmetry breaking for the cube and the icosahedron.

As a general point it is worth mentioning that transitions
may be excluded for certain directions of Q. Expressing
Inm(Q) of Eq. (5) in terms of V̂ = ∑

i e−iQ·Ri ŝi and assuming
a uniform form factor for all ions yields Eq. (23),

Inm(Q) = |F (Q)|2
∑
α,β

(
δαβ − QαQβ

Q2

)
〈n|V̂ †

α |m〉〈m|V̂β |n〉.

(23)

For a planar molecule, V̂ = Ŝ if Q is perpendicular to
the plane, leading to Inm(Q) = 0. In a sense, this is another
combined spin- and point-group selection rule, although the
geometrical planarity of the molecule does not show up in the
isotropic spin Hamiltonian.

TABLE VI. Decompositions of the fundamental representations �(N ) and �(3N ) for SPS or permutational-rotational symmetry groups of
isotropic and anisotropic spin models, respectively, for the spin polyhedra considered in this work. Mulliken symmetry labels follow Ref. [53].

System N Group �(N ) �(3N )

Cube 8 Oh A1g ⊕ A2u ⊕ T1u ⊕ T2g
A1u ⊕ A2g ⊕ Eg ⊕ Eu ⊕ 2T1g

⊕T1u ⊕ T2g ⊕ 2T2u

Icosahedron 12 Ih Ag ⊕ T1u ⊕ T2u ⊕ Hg
Au ⊕ 2T1g ⊕ T1u ⊕ T2g ⊕ Fg

⊕Fu ⊕ Hg ⊕ 2Hu

Truncated tetrahedron 12 Td A1 ⊕ E ⊕ T1 ⊕ 2T2 A1 ⊕ 2A2 ⊕ 3E ⊕ 5T1 ⊕ 4T2

Cuboctahedron 12 Oh A1g ⊕ Eg ⊕ T1u ⊕ T2g ⊕ T2u
A1u ⊕ A2g ⊕ A2u ⊕ Eg ⊕ 2Eu

⊕3T1g ⊕ 2T1u ⊕ 2T2g ⊕ 2T2u

Dodecahedron 20 Ih Ag ⊕ T1u ⊕ T2u ⊕ Fg ⊕ Fu ⊕ Hg
Au ⊕ 2T1g ⊕ T1u ⊕ 2T2g ⊕ T2u⊕
2Fg ⊕ 2Fu ⊕ 2Hg ⊕ 3Hu

Icosidodecahedron 30 Ih
Ag ⊕ T1u ⊕ T2u ⊕ Fg ⊕ Fu

⊕2Hg ⊕ Hu

Au ⊕ 3T1g ⊕ 2T1u ⊕ 3T2g ⊕ 2T2u

⊕3Fg ⊕ 3Fu ⊕ 3Hg ⊕ 4Hu

Truncated icosahedron 60 Ih
Ag ⊕ T1g ⊕ 2T1u ⊕ T2g ⊕ 2T2u

⊕2Fg ⊕ 2Fu ⊕ 3Hg ⊕ 2Hu

Ag ⊕ 2Au ⊕ 5T1g ⊕ 4T1u ⊕ 5T2g

⊕4T2u ⊕ 6Fg ⊕ 6Fu ⊕ 7Hg ⊕ 8Hu
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TABLE VII. Oh symmetry labels �l specifying K�l (Q) functions
for unpolarized INS transitions �n → �m in the isotropic spin cube.
For further explanations, see the footnote to Table I.

A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u

A1g 0 0 0 0 T2g 0 A2u 0 T1u 0
A2g 0 0 0 T2g 0 A2u 0 0 0 T1u

Eg 0 0 0 T2g T2g 0 0 A2u T1u T1u

T1g 0 T2g T2g T2g T2g T1u 0 T1u T1u N/A
T2g T2g 0 T2g T2g T2g 0 T1u T1u N/A T1u

A1u 0 A2u 0 T1u 0 0 0 0 0 T2g

A2u A2u 0 0 0 T1u 0 0 0 T2g 0
Eu 0 0 A2u T1u T1u 0 0 0 T2g T2g

T1u T1u 0 T1u T1u N/A 0 T2g T2g T2g T2g

T2u 0 T1u T1u N/A T1u T2g 0 T2g T2g T2g

For DN spin rings with odd N, �(N ) spans A1 and all
(N−1)/2 different E representations exactly once, with A2

excluded. For example, �(5) = A1 ⊕ E1 ⊕ E2, or �(7) = A1 ⊕
E1 ⊕ E2 ⊕ E3. The resulting selection rules for D5 can be read
from Table III. Just like for even N, all types of transitions,
except those between multiplets belonging to different E rep-
resentations, have a defined K�l (Q), see Table IV. This is
indeed a property holding for all N � 3.

The K�l (Q) functions are inversion symmetric, K�l (Q) =
K�l (−Q). Therefore, in the D5 ring, each K�l (Q) has sym-
metry D5 × Ci = D5d in Q space. This manifests as a tenfold
rotational symmetry in the Qx, Qy plane, see Fig. 3.

We next discuss anisotropic spin rings based on groups DN

or DNh. For D6h, the isomorphism between the group gen-
erators of the real-space symmetry group and the respective
symmetry group of the anisotropic spin Hamiltonian is given
in Table V.

The permutation operator corresponding to a C6 rotation
can be written as a product of overlapping interchanges,
P̂123456 = P̂12P̂23P̂34P̂45P̂56. [For s = 1

2 , P̂i j = 1
2 (1 + 4ŝi · ŝ j )

[62].] In an uncoupled spin basis, P̂123456 effects a cyclic shift
in the ŝiz eigenvalues mi,

P̂123456|m1, m2, m3, m4, m5, m6〉 = |m6, m1, m2, m3, m4, m5〉.
(24)

In an isotropic model for a molecule with D6h symme-
try, real-space operations C3

6 and Ci correspond to the same
SPS operation, so the isotropic spin Hamiltonian can be
said to have only D6 SPS symmetry (and full spin-rotational
symmetry). However, in the anisotropic case, the operations
corresponding to C3

6 and Ci differ by a spin rotation by an-

TABLE VIII. Coefficients c̄�l
t defining K̄�1 (Q) functions for the

isotropic spin cube. Site numbers are defined in Fig. 5. For more
explanations, see the footnote to Table II.

A2u T1u T2g n(t)

(1, 1) 1 1 1 8
(1, 2) −3 1 −1 24
(1, 3) 3 −1 −1 24
(1, 4) −1 −1 1 8

FIG. 5. Schlegel diagram for the cube, where only those sites are
numbered which form inequivalent pairs with site 1.

gle π about the z axis. This also implies that spin-rotational
symmetry is not completely broken, because the anisotropic
Hamiltonian is invariant under exp(−iπ Ŝz ).

Taking an anisotropic s = 1
2 ring with D6h symmetry as an

example, the decomposition of the basis of 26 = 64 states in
terms of irreducible representations is given in Eq. (25):

�(64) = A1g ⊕ 2A1u ⊕ 5A2g ⊕ 2A2u ⊕ 4B1g ⊕ 5B2g ⊕ 4B2g

⊕ B2u ⊕ 6E1g ⊕ 5E1u ⊕ 5E2g ⊕ 4E2u (25)

We briefly comment on the similarity between a symme-
try analysis of the combined translational (3), rotational (3),
and vibrational (3N−6) degrees of freedom spanned by the
position vectors {Ri} [51] and the respective problem for {ŝi}.
For operations corresponding to proper real-space rotations,
{Ri} and {ŝi} transform isomorphically, but this is not true for
improper rotations. As an example, the inversion operation
Ci effects a permutation among the {Ri} and inverts all local
axis systems (overall, Ri → −R j), while the {ŝi} are only
permuted (that is, ŝi → ŝ j , cf. Table V).

In an anisotropic D6 ring, �(18) spanned by {ŝi} includes
all representations at least once, �(18) = A1 ⊕ 2A2 ⊕ B1 ⊕
2B2 ⊕ 3E1 ⊕ 3E2. Therefore no INS selection rules are ex-
pected. However, in D6h, A1g and B1u are missing,

�(18) = A1u ⊕ A2g ⊕ A2u ⊕ B1g ⊕ B2g ⊕ B2u ⊕ 2E1g

⊕ E1u ⊕ E2g ⊕ 2E2u. (26)

Thus some transitions are forbidden (e.g., A1g → A1g or
A1g → B1u), with analogous relations for other DNh sys-
tems (with N even). In the D5 ring, all representations
are included in �(15) = A1 ⊕ 2A2 ⊕ 3E1 ⊕ 3E2, precluding
selection rules. We shall not specifically discuss odd-spin
systems (for rings, this obtains for odd N and s = 1

2 , 3
2 , ...)

but note that �n and �m would then refer to fermionic repre-
sentations of the respective double group, while �(3N ) is still
decomposed in terms of bosonic representations. As usual, a
transition �n → �m is forbidden if �∗

n × �(3N ) × �m does not
contain �1.

Lastly, for anisotropic rings lying in the xy plane, we have
V̂ = Ŝ, when Q = (0, 0,±Q)T , as explained [see Eq. (23)].
To determine if a transition with momentum transfer perpen-
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FIG. 6. Single-crystal INS intensity functions K�l (Q) in a spin cube. First row (panels (a)–(c)): C4 axis oriented along z, site coordinates
(±1.5, ±1.5, ±1.5)Å. Second row [(d)–(f)]: C3 axis oriented along z, and yz is a mirror plane of the cube. The �l labels are A2u [(a), (d)], T1u

[(b), (e)], and T2g [(c), (f)]. In panel (a), KA2u (Q) = 0.

dicular to the ring plane is allowed, we must determine how
Ŝ transforms in the rotational-permutational symmetry group
(Ŝ is symmetric under all permutations). In DNh (N � 3),
Ŝ transforms as A2g ⊕ E1g for even N and as A′

2 ⊕ E′′
1 for

odd N, and the resulting selection rules are easily derived. A
more general discussion of how INS intensities can vanish for
specific Q is beyond the scope of this work.

Spin polyhedra. The polyhedra that are discussed here
are shown in Fig. 4. The fundamental representations �(N )

and �(3N ) spanned by the set {ŝi} in the groups relevant for
isotropic and anisotropic spin Hamiltonians, respectively, are
collected in Table VI.

The decompositions of �(N ) and �(3N ) were independently
calculated here, but for several (perhaps all) of the considered
polyhedra, the �(N ) decompositions were reported elsewhere
(see, e.g., Refs. [40,63,64]; symmetry labels in Ref. [63] did

TABLE IX. Ih symmetry labels �l specifying K�l (Q) functions
for unpolarized INS transitions �n → �m in the isotropic spin icosa-
hedron. For further explanations, see the footnote to Table I.

Ag T1g T2g Fg Hg Au T1u T2u Fu Hu

Ag 0 0 0 0 Hg 0 T1u T2u 0 0
T1g 0 Hg Hg Hg Hg T1u T1u 0 T2u N/A
T2g 0 Hg Hg Hg Hg T2u 0 T2u T1u N/A
Fg 0 Hg Hg Hg Hg 0 T2u T1u N/A N/A
Hg Hg Hg Hg Hg Hg 0 N/A N/A N/A N/A
Au 0 T1u T2u 0 0 0 0 0 0 Hg

T1u T1u T1u 0 T2u N/A 0 Hg Hg Hg Hg

T2u T2u 0 T2u T1u N/A 0 Hg Hg Hg Hg

Fu 0 T2u T1u N/A N/A 0 Hg Hg Hg Hg

Hu 0 N/A N/A N/A N/A Hg Hg Hg Hg Hg

not include the Ci operation in groups Ih = I × Ci or Oh =
O × Ci). Besides, decompositions of �(3N ) could be easily
deduced from information on the symmetries of vibrational
normal modes (where available). Take the truncated icosa-
hedron as an example, most famously realized in the C60

fullerene. In the group Ih = I × Ci, {Ri} and {ŝi} transform
isomorphically with respect to I, but oppositely under Ci (see
comments above). Separating the translational and rotational
degrees of freedom (T1g and T1u) from �(180) (last entry in
Table VI) and switching parity (g → u, u → g) yields the
symmetry decomposition for vibrational normal modes in C60

[65].
We shall list our results for the INS Q dependencies for

these systems in the order of their appearance in Table VI. We
plot all K�l (Q) in Qz = 0 planes in Q space that are perpendic-
ular to a threefold, fourfold, or fivefold symmetry axis (where
the symmetry axis is defined as the z axis). In the former two
cases, the plots have sixfold and fourfold rotational symmetry,
as well as translational symmetry. In planes perpendicular to
a fivefold axis, K�l (Q) has tenfold rotational symmetry (see
comments above) and it is quasiperiodic under translations.
For portraying the K�l (Q) functions in plots, we chose larger

TABLE X. Coefficients c̄�l
t defining K̄�1 (Q) functions for the

isotropic spin icosahedron. Site numbers are defined in Fig. 7. For
more explanations, see footnote to Table II.

T1u T2u Hg n(t)

(1, 1) 1 1 1 12
(1, 2)

√
5 −√

5 −1 60
(1, 3) −√

5
√

5 −1 60
(1, 4) −1 −1 1 12
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FIG. 7. Schlegel diagram for the icosahedron. Only those sites
are numbered which form inequivalent pairs with site 1.

ranges in Q space than for the spin rings (keeping the in-
ternuclear distance at a more or less representative value of
R = 3 Å), even though intensities of magnetic transitions with
such large Q may be difficult (or impossible, due to kinematic
constraints) to observe with current INS facilities. However,
in several cases our plot range in the Qx, Qy plane is still not
large enough to display the periodicity or quasiperiodicity.

Cube. Pseudocubic spin clusters of mixed-metal [66], lo-
calized mixed-valence [67], and uniform-valence [68] type
were reported (however, in the latter case [68], the lig-
ands bridging a cubic core of eight Co2+ ions break cubic
symmetry). To the best of our knowledge, no symmetric
cubes, where all eight spin sites are equivalent, were obtained
yet.

The general structure of reporting the K�l (Q) functions
comprises two tables and two figures. First, Table VII contains
information on �l as a function of �n → �m, as well as infor-
mation on forbidden transitions and those that do not have a

TABLE XI. Td symmetry labels �l specifying K�l (Q) functions
for unpolarized INS transitions �n → �m in the isotropic truncated
tetrahedron. For further explanations, see the footnote to Table I.

A1 A2 E T1 T2

A1 0 0 E T1 N/A
A2 0 0 E N/A T1

E E E E N/A N/A
T1 T1 N/A N/A N/A N/A
T2 N/A T1 N/A N/A N/A

defined K�l (Q). Second, the coefficients c̄�l
t [see Eq. (18)], the

number n(t ) of pairs in each group t , and one representative
pair defining each group t are collected in Table VIII. The
numbering of sites is defined in a Schlegel diagram drawn
in Fig. 5, and the K�l (Q) are finally plotted in two different
planes in Q space in Fig. 6.

Interestingly, under certain conditions K�l (Q) functions,
or, more frequently, their powder averages K̄�l (Q), still ap-
ply to systems with lower SPS symmetry. To illustrate this
point, we consider Oh → D4 SPS symmetry breaking in the
cube, whereupon the representations occurring in �(8)=A1g ⊕
A2u ⊕ T1u ⊕ T2g (cf. Table VI) become A1g → A1, A2u →
B1, T1u → A2 ⊕ E, and T2g → B2 ⊕ E, yielding overall

�(8) = A1 ⊕ B1 ⊕ A2 ⊕ B2 ⊕ 2E. (27)

Then, for transitions between one-dimensional representa-
tions of D4 that are mediated by T̂B1 , the universal KB1 (Q)
function for the D4 system is the same as KA2u (Q) in the Oh

system, to the degree that deviations from a geometrical Oh

structure can be neglected. As the A2 and B2 transition opera-
tors in the D4 system originate from a single component of T1u

and T2g, respectively, the single-crystal functions KA2 (Q) and
KB2 (Q) are different from KT1u (Q) and KT2g (Q), because each

FIG. 8. K�l (Q) functions for the icosahedron. First row [(a)–(c)]: C5 axis oriented along z. Second row [(d)–(f)]: C3 axis oriented along z.
In all cases, yz is a mirror plane of the icosahedron. The �l label is T1u [(a), (d)], T2u [(b), (e)], or Hg [(c), (f)].
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TABLE XII. Coefficients c̄�l
t defining K̄�l (Q) functions for the

isotropic truncated tetrahedron.a Site numbers are defined in Fig. 9.
For more explanations, see footnote to Table II.

T1 E T2(I) T2(II) n(t )

(1, 1) 1 1 3 3 12
(1, 2) −1 −1 −2 5 24
(1, 3) −1 1 −1 1 12
(1, 4) 2 −2 −4 −2 48
(1, 5) −1 −1 6 −3 24
(1, 6) 0 2 2 −4 24

aThe entries for T2(I) and T2(II) refer to FCSWT transitions, with
adjacency-matrix eigenvalues of J[T2(I)] = −1 and J[T2(II)] = 2,
respectively, see main text.

of the latter results from summing over all three components.
However, the powder averages K̄A2 (Q) and K̄B2 (Q) are the
same as K̄T1u (Q) and K̄T1u (Q), respectively (again, assuming
that the geometrical structure remains a perfect cube). Another
example of symmetry breaking is discussed for the icosahe-
dron in the following section.

An anisotropic spin Hamiltonian for the cube with NN
couplings [Eqs. (2) and (3)] has an artificially high symmetry,
because certain spin rotations and permutations are separate
symmetries, affording a complicated group of order h = 1152.
The symmetry is reduced to Oh when anisotropic couplings
between other sites (beyond nearest neighbors) are included.
Only A1g is excluded from �(24) (cf. Table VI). Therefore only
transitions A1g → A1g, A1u → A1u, A2g → A2g, and A2u →
A2u are forbidden in a general anisotropic spin cube.

Icosahedron. An unusual first-order field-dependent mag-
netization discontinuity in the classical Heisenberg icosahe-
dron [69] indicates a large jump in the magnetization quantum
number in a quantum-mechanical treatment for large values of
s [41,69]. Similar effects had been detected in the dodecahe-
dron and the truncated icosahedron [70] and were later studied
in more detail [71]. Somewhat unfortunately, intense efforts to
synthesize an icosahedral spin cluster were not successful but
yielded an {Fe9} species composed of Fe3+ (s = 5

2 ) ions, cor-
responding to a tridiminished icosahedron [72]. This molecule
was studied by INS [73,74]. It is certainly not excluded that

FIG. 9. Schlegel diagram for the truncated tetrahedron, where
only those sites are numbered which form inequivalent pairs with
site 1.

FIG. 10. K�l (Q) functions for the truncated tetrahedron. First
row [(a), (b)]: S4 axis oriented along z. Second row [(c), (d)]: C3 axis
oriented along z. In all cases, yz is a mirror plane of the truncated
tetrahedron. The �l label is T1 [(a), (c)] or E [(b), (d)].

genuine spin icosahedra will exist at a later time. The informa-
tion on Q dependencies is altogether contained in Table IX,
Table X, Fig. 7, and Fig. 8 .

As another example for the consequences of SPS sym-
metry breaking, we consider Ih → D5d (e.g., by stretching
or contracting the icosahedron along a C5 axis). Upon
symmetry descent, T1u → A2u ⊕ E1u, T2u → A2u ⊕ E2u, and
Hg → A1g ⊕ E1g ⊕ E2g, and we overall obtain

�(12)= 2A1g ⊕ 2A2u ⊕ E1g ⊕ E2g ⊕ E1u ⊕ E2u. (28)

In addition to the trivial total-spin operator [Eq. (9)], there
is a second �1=A1g operator in �(12),

T̂A1g = 5(ŝ1 + ŝ4) −
∑
i 	=1,4

ŝi, (29)

where sites on the C5 axis have numbers 1 and 4. This op-
erator [Eq. (29)] transforms as a single component of Hg

TABLE XIII. Oh symmetry labels �l specifying K�l (Q) func-
tions for unpolarized INS transitions �n → �m in the isotropic
cuboctahedron. For further explanations, see the footnote to Table I.

A1g A2g Eg T1g T2g A1u A2u Eu T1u T2u

A1g 0 0 Eg 0 T2g 0 0 0 T1u T2u

A2g 0 0 Eg T2g 0 0 0 0 T2u T1u

Eg Eg Eg Eg T2g T2g 0 0 0 N/A N/A
T1g 0 T2g T2g N/A N/A T1u T2u N/A N/A N/A
T2g T2g 0 T2g N/A N/A T2u T1u N/A N/A N/A
A1u 0 0 0 T1u T2u 0 0 Eg 0 T2g

A2u 0 0 0 T2u T1u 0 0 Eg T2g 0
Eu 0 0 0 N/A N/A Eg Eg Eg T2g T2g

T1u T1u T2u N/A N/A N/A 0 T2g T2g N/A N/A
T2u T2u T1u N/A N/A N/A T2g 0 T2g N/A N/A
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FIG. 11. Schlegel diagram for the cuboctahedron. Only sites
forming inequivalent pairs with site 1 are numbered.

in Ih. While KA1g (Q) in D5d is different from KHg (Q) in
Ih, because KHg (Q) is obtained by summing over all five
components of Hg, the powder average K̄A1g (Q) in the D5d

system is the same as K̄Hg (Q) in the Ih system (to the degree
that changes in the geometrical structure can be neglected),
and K̄A1g (Q) = K̄E1g (Q) = K̄E2g (Q). By the same reasoning,
K̄E1u (Q) and K̄E2u (Q) in D5d agree with K̄T1u (Q) and K̄T2u (Q)
in Ih, respectively. We refrain from discussing symmetry
breaking for other polyhedral clusters, where similar consid-
erations would apply. The important message is that universal
K�l (Q) functions, or, more frequently, just the powder-
averaged K̄�l (Q) functions for the symmetrical systems may
describe certain transitions also in systems with lower SPS
symmetry.

Truncated tetrahedron. Different types of spin clusters
taking the shape of a truncated tetrahedron were synthe-
sized [75,76] but not magnetically characterized in much
detail. Classical and quantum-spin models for the antifer-

TABLE XIV. Coefficients c̄�l
t defining K̄�l (Q) functions for the

isotropic cuboctahedron. Site numbers are defined in Fig. 11. For
more explanations, see footnote to Table II.

Eg T2g T1u T2u n(t )

(1, 1) 1 1 1 1 12
(1, 2) −2 0 2 −2 48
(1, 3) 2 −2 0 0 24
(1, 4) −2 0 −2 2 48
(1, 5) 1 1 −1 −1 12

romagnetic Heisenberg model were investigated in Refs.
[77,78].

We here encounter the case that �(12) = A1 ⊕ E ⊕ T1 ⊕
2T2 (Table VI) contains T2 more than once. Therefore no
universal function KT2 (Q) exists which would describe tran-
sitions A1 → T2 or A2 → T1, cf. Table XI. However, as the
number of ferromagnetic molecules studied by INS increases
[56,57,79], we chose to still report two different KT2 (Q) for
transitions from the “ferromagnetic” A1 multiplet with S =
Smax to the two different T2 multiplets with S = Smax − 1
(unpolarized FCSWT transitions, see Theory section). The
KT2 (Q) are still calculated according to Eq. (14) using orthog-
onal eigenvectors of T2 states, obtained from diagonalization
of the Hamiltonian matrix (effectively the adjacency matrix J,
with nonzero entries of 1 between all interacting sites) in the
respective 2 × 2 subspace. The entries for T2(I) and T2(II) in
Table XII are identified by the respective eigenvalues J of the
adjacency matrix J (a constant energy shift and multiplication
by a constant relates these eigenvalues to energies [63]).

We only plot functions KE(Q) and KT1 (Q) in Fig. 10.
However, apart from a trivial scaling in Q space required
when choosing a different uniform edge length (Fig. 10
refers to R = 3 Å), these plots are not universally valid, be-
cause there are two topologically inequivalent edges in the

FIG. 12. K�l (Q) functions for the cuboctahedron. First row [(a)–(d)]: C3 axis oriented along z. Second row [(e)–(h)]: C4 axis oriented along
z. In all cases, yz is a mirror plane of the cuboctahedron. The �l label is Eg [(a), (e)], T1u [(b), (f)], T2g [(c), (g)], or T2u [(d), (h)].
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FIG. 13. Schlegel diagram for the dodecahedron. Only sites
forming inequivalent pairs with site 1 are numbered.

truncated tetrahedron (the same applies for the truncated
icosahedron, Fig. 18). No INS selection rules are expected in
the anisotropic truncated tetrahedron, because �(36) contains
all representations at least once (cf. Table VI).

Cuboctahedron. Cuboctahedral molecules comprising
12 Cu2+ ions (s = 1

2 ) were synthesized [80,81], but no
INS experiments were performed yet. Theoretical studies
[40,82,83] of the antiferromagnetic Heisenberg model have
offered some qualitative insights into aspects pertaining to the
kagomé spin lattice. The information on Q dependencies is
contained in Table XIII, Table XIV, Fig. 11, and Fig. 12. The
absence of A1g from �(36) (cf. Table VI) implies that there
are a few INS selection rules in an anisotropic cuboctahe-
dron (these are straightforwardly determined and not detailed
here).

Dodecahedron. The Heisenberg model on the dodeca-
hedron was discussed in the context of fullerenes [27,61].
A 3D spin configuration corresponding to the classical so-
lution of the Heisenberg model is recovered in ab initio
generalized Hartree-Fock (GHF) calculations for the smallest
fullerene, the C20 cage molecule [84]. Full exact diagonal-

TABLE XV. Ih symmetry labels �l specifying K�l (Q) functions
for unpolarized INS transitions �n → �m in the isotropic spin dodec-
ahedron. For further explanations, see the footnote to Table I.

Ag T1g T2g Fg Hg Au T1u T2u Fu Hu

Ag 0 0 0 Fg Hg 0 T1u T2u Fu 0
T1g 0 Hg N/A N/A N/A T1u T1u Fu N/A N/A
T2g 0 N/A Hg N/A N/A T2u Fu T2u N/A N/A
Fg Fg N/A N/A N/A N/A Fu N/A N/A N/A N/A
Hg Hg N/A N/A N/A N/A 0 N/A N/A N/A N/A
Au 0 T1u T2u Fu 0 0 0 0 Fg Hg

T1u T1u T1u Fu N/A N/A 0 Hg N/A N/A N/A
T2u T2u Fu T2u N/A N/A 0 N/A Hg N/A N/A
Fu Fu N/A N/A N/A N/A Fg N/A N/A N/A N/A
Hu 0 N/A N/A N/A N/A Hg N/A N/A N/A N/A

ization for the antiferromagnetic s = 1
2 dodecahedron and

Lanczos exact diagonalization for s = 1 revealed some typical
features of spin-frustrated systems [35]. A Gd20 molecule
resembling a dodecahedron and a Gd50 Keplerate species
where a Gd20 dodecahedron encloses a Gd30 icosidodecahe-
dron (with approximate Ih symmetry; a similar molecule with
a Ni30 icosidodecahedron encapsulating a La20 dodecahedron
has basically ideal Ih symmetry [85,86]) were synthesized
recently; their magnetic properties were rationalized based on
the classical Heisenberg model [87]. We are not aware of any
INS studies for spin dodecahedra. Our results for K�l (Q) are
summarized in Table XV, Table XVI, Fig. 13, and Fig. 14.

Icosidodecahedron. Antiferromagnetic spin clusters which
possess the structure of an icosidodecahedron were realized
in terms of the so-called Keplerate molecules {Mo72V30}
[88,89], {W72V30} [90], {Mo72Cr30} [91], and {Mo72Fe30}
[92,93], with magnetic ions V3+ (s = 1

2 ), Cr3+ (s = 3
2 ),

and Fe3+ (s = 5
2 ), respectively. The rather broad features of

powder INS spectra [59] for {Mo72Fe30} could be partially
explained by theoretical analyses [40,59,94]. Our present gen-
eral results cannot be used to draw additional information
from the existing INS data for {Mo72Fe30} but are expected to

FIG. 14. K�l (Q) functions for the dodecahedron. First row [(a)–(e)]: C3 axis oriented along z. Second row [(f)–(j)]: C5 axis along z. In all
cases, yz is a mirror plane of the dodecahedron. The �l label is T1u [(a), (f)], T2u [(b), (g)], Fg [(c), (h)], Fu [(d), (i)], or Hg [(e), (j)].
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FIG. 15. Schlegel diagram for the icosidodecahedron. Only sites
forming inequivalent pairs with site 1 are numbered. The Cartesian
distance from site 1 increases with site number.

become useful if higher-resolved spectra of similar molecules
are recorded in the future.

In Table XVII we show only those transitions which
involve at least one one-dimensional representation of
Ih, because none of the transitions between multidimen-
sional representations has a defined universal K�l (Q). An
|Ag, S = 0〉 or |Au, S = 0〉 ground state is expected in the an-
tiferromagnetically coupled system [40], and therefore most
zero-temperature excitations have a defined K�l (Q). The
K�l (Q) functions are listed in Table XVIII, referring to the
pair numbering in Fig. 15. The universal K�l (Q) functions
are plotted in Fig. 16. It is worth noting that the density
matrix renormalization group (DMRG) method reaches its
current limits for s = 5

2 [95]; see also Ref. [96] for a different
variational method. Analytical information on Q dependen-
cies appears valuable, particularly for systems with large s,
because exact or approximate eigenvectors are not needed.
We finally mention that INS intensities can be estimated by
the rather demanding dynamical DMRG technique [97].

Truncated icosahedron. The Heisenberg model on the
truncated icosahedron was first discussed in the context of
the C60 fullerene molecule [70]. As for the dodecahedral
C20, the classical 3D spin configuration is recovered in ab
initio GHF calculations on C60 [84]. For antiferromagnetic

TABLE XVI. Coefficients c̄�l
t defining K̄�1 (Q) functions for the

isotropic dodecahedron. Site numbers are defined in Fig. 13. For
more explanations, see the footnote to Table II.

T1u T2u Fg Fu Hg n(t )

(1, 1) 1 1 1 1 1 20
(1, 2)

√
5 −√

5 −2 0 1 60
(1, 3) 2 2 1 −3 −2 120
(1, 4) −2 −2 1 3 −2 120
(1, 5) −√

5
√

5 −2 0 1 60
(1, 6) −1 −1 1 −1 1 20

TABLE XVII. Ih symmetry labels �l specifying K�l (Q) func-
tions for unpolarized INS transitions �n → �m in the isotropic
icosidodecahedron. For further explanations, see the footnote to
Table I. Only transitions involving at least one one-dimensional
representation are given, because all the other transitions would have
the entry N/A.

Ag T1g T2g Fg Hg Au T1u T2u Fu Hu

Ag 0 0 0 Fg N/A 0 T1u T2u Fu Hu

Au 0 T1u T2u Fu Hu 0 0 0 Fg N/A

TABLE XVIII. Coefficients c̄�l
t defining K̄�1 (Q) functions for the

isotropic icosidodecahedron.a Site numbers are defined in Fig. 15.
For more explanations, see footnote to Table II.

T1u T2u Fg Fu Hu Hg(I) Hg(II) n(t)

(1, 1) 1 1 1 1 1 1 1 30
(1, 2) 1 + √

5 1−√
5 −1 1 −2 −2 2 120

(1, 3) 2 2 −1 −3 0 1 −1 120
(1, 4) −1 + √

5 −1−√
5 −1 −1 2 1 −1 120

(1, 5) 0 0 4 0 0 −2 −2 120
(1, 6) 1−√

5 1 + √
5 −1 1 −2 1 −1 120

(1, 7) −2 −2 −1 3 0 1 −1 120
(1, 8) −1−√

5 −1 + √
5 −1 −1 2 −2 2 120

(1, 9) −1 −1 1 −1 −1 1 1 30

aThe entries for Hg(I) and Hg(II) refer to FC-
SWT transitions, with adjacency-matrix eigenvalues
of J[Hg(I)] = −2 and J[Hg(II)] = 2, respectively.

TABLE XIX. Ih symmetry labels �l specifying K�l (Q) functions
for unpolarized INS transitions �n → �m in the isotropic truncated
icosahedron. For further explanations, see the footnote to Table I.
Only transitions involving at least one one-dimensional representa-
tion are given, because all the other transitions would have the entry
N/A.

Ag T1g T2g Fg Hg Au T1u T2u Fu Hu

Ag 0 T1g T2g N/A N/A 0 N/A N/A N/A N/A
Au 0 N/A N/A N/A N/A 0 T1g T2g N/A N/A
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FIG. 16. K�l (Q) functions for the icosidodecahedron. First row [(a)–(e)]: C5 axis oriented along z. Second row [(f)–(j)]: C3 axis along z. In
all cases, yz a mirror plane of the icosidodecahedron. The �l labels are T1u [(a), (f)], T2u [(b), (g)], Fg [(c), (h)], Fu [(d), (i)], or Hu [(e), (j)].

couplings, even the s = 1
2 system is too large for Lanczos

exact diagonalization, and different methods were applied
to estimate the ground-state energy variationally [98–100]
(most recently by DMRG [101]), or by perturbation theory
[70]. As of yet, there apparently exist no spin clusters of this
type.

TABLE XX. Coefficients c̄�l
t defining K̄�1 (Q) functions for the

isotropic truncated icosahedron. Site numbers are defined in Fig. 17.
For more explanations, see footnote to Table II.a

{T1g

T2g

}
Fg(I) Fg(II) Hg(I)

{ Hg(II)
Hg(III)

}
n(t)

J 1
2 (−3 ± √

5) −2 1 1 1
2 (1 ∓ √

13)
(1, 1) 2 3 3 3 78 1
(1, 2) −2 −2 2 1 26 ∓ 8

√
13 1

(1, 3) −1 ± √
5 −4 1 2 13 ∓ 31

√
13 2

(1, 4) −1 ∓ √
5 1 −4 −2 65 ∓ 5

√
13 4

(1, 5) 2 ∓ 2
√

5 2 −2 −4 −26 ∓ 34
√

13 4
(1, 6) −1 ± √

5 1 −4 −2 65 ± 13
√

13 4
(1, 7) 2 ± 2

√
5 2 −2 −4 −26 ± 2

√
13 8

(1, 8) −2 1 2 −2 26 ± 16
√

13 4
(1, 9) 4 −8 −4 4 −52 ± 16

√
13 8

(1, 10) 0 2 10 −4 −104 ± 8
√

13 8
(1, 11) −1 ∓ √

5 −4 1 2 13 ± 23
√

13 8
(1, 12) −2 6 −3 6 −78 8

aThe K̄�1 (Q) functions have universal character for �l = T1g and
�l = T2g only; the other K̄�1 (Q) refer to FCSWT excitations in a
Heisenberg model with a uniform coupling constant between all
neighboring sites [cf. Fig. 4(g)]. There is a symmetry about pairs
(1,12)–(1,13), c̄1,13 = c̄1,12, c̄1,14 = c̄1,11, …, c̄1,24 = c̄1,1. This sym-
metry also holds for the n(t), where we eliminate a common factor
of 60 from the n(t) reported in the last column. The J values in
the second row are eigenvalues of the adjacency matrix, which are
essentially the energies of FCSWT states (in the context of the
Hückel model, analytical energy expressions were already reported
in Ref. [64]).

There are only two universally valid functions, KT1g (Q) and
KT1u (Q), see Table XIX, but we report also K�l (Q) functions
for all FCSWT transitions in Table XX, Table XXI, and Ta-
ble XXII. This requires the equivalent of solving the Hückel
model on C60 in analytical form; analytical expressions for
the Hückel eigenvalues are reported in Ref. [64]. Following
the numbering of Fig. 17, there is a symmetry in the c̄ con-
tributions to K�l (Q) about the pairs (1,12)–(1,13), that is,
either c̄1,13 = c̄1,12, c̄1,14 = c̄1,11, …, c̄1,24 = c̄1,1 (symmetric),
or c̄1,13 = −c̄1,12, c̄1,14 = −c̄1,11, …, c̄1,24 = −c̄1,1 (antisym-
metric).

FIG. 17. Schlegel diagram for the truncated icosahedron. Only
sites forming inequivalent pairs with site 1 are numbered. The num-
bering follows Krivnov et al. (cf. Fig. 3 in Ref. [99]).

214422-15



SHADAN GHASSEMI TABRIZI PHYSICAL REVIEW B 103, 214422 (2021)

TABLE XXII. Continuation of Table XX. Coefficients are an-
tisymmetric about the pairs (1,12)–(1,13), c̄1,13 = −c̄1,12, c̄1,14 =
−c̄1,11, …, c̄1,24 = −c̄1,1.

{ Fu(I)
Fu(II)

} { Hu(I)
Hu(II)

}

J − 1
2 (1 ± √

17) − 1
2 (1 ± √

5)
(1, 1) 34 10
(1, 2) ∓8

√
17 ∓2

√
5

(1, 3) −17 ∓ 9
√

17 −5 ∓ 3
√

5
(1, 4) −17 ± 9

√
17 −5 ± 3

√
5

(1, 5) 68 ± 8
√

17 −10 ± 2
√

5
(1, 6) −17 ∓ 7

√
17 −5 ± 5

√
5

(1, 7) −68 ± 8
√

17 10 ± 2
√

5
(1, 8) −17 ∓ 3

√
17 10

(1, 9) ±8
√

17 ∓4
√

5
(1, 10) ±4

√
17 ∓8

√
5

(1, 11) −17 ± 7
√

17 −5 ∓ 5
√

5
(1, 12) −17 ± 3

√
17 10

In Fig. 18 the universally valid functions K�l (Q) with �l =
T1g and �l = T2g are plotted. All irreducible representations
occur at least once in �(180) (Table VI). Therefore anisotropic
interactions are expected to lift all INS selection rules in the
truncated icosahedron.

IV. CONCLUSIONS

We have shown how the point-group symmetry of molec-
ular spin clusters can impose selection rules on inelastic
neutron scattering (INS) transitions. Selection rules are ob-
tained based on a decomposition of the set of local spin
operators in terms of irreducible representations of the point

FIG. 18. K�l (Q) functions for the truncated icosahedron. First
row [(a), (b)]: C3 axis oriented along z. Second row [(c), (d)]: C5 axis
along z. In all cases, yz is a mirror plane of the truncated icosahedron.
The �l label is T1g [(a), (b)] or T2g [(c), (d)].

group. Spin-permutational symmetry must be considered for
isotropic systems, while for anisotropic systems the combi-
nation of permutation and rotation operations requires one to
take into account the vector character of spin operators.

The huge potential of 4D-INS spectroscopy makes it highly
likely that additional spin clusters will be characterized by
this technique in the future. An efficient accumulation and
simulation of data should profit from clearly separating those
features that are determined by symmetry from those that

TABLE XXI. Continuation of Table XX. Coefficients are antisymmetric about the pairs (1,12)–(1,13), c̄1,13 = −c̄1,12, c̄1,14 = −c̄1,11, …,
c̄1,24 = −c̄1,1.

{ T1u(I)
T1u(II)

} { T2u(I)
T2u(II)

}

J 1
4 [3 + √

5 ∓
√

38−2
√

5] 1
4 [3−√

5 ∓
√

38 + 2
√

5]
(1, 1) 356 356

(1, 2) ∓4
√

89(37 + 16
√

5) ∓4
√

89(37−16
√

5)

(1, 3) 89(3 + √
5) ∓

√
178(919−317

√
5) 89(3−√

5) ∓
√

178(919 + 317
√

5)

(1, 4) 89(3−√
5) ∓

√
178(839 + 269

√
5) 89(3 + √

5) ∓
√

178(839−269
√

5)

(1, 5) 178(−1 + √
5) ∓ 2

√
178(499 + 233

√
5) 178(−1−√

5) ∓ 2
√

178(499−233
√

5)

(1, 6) 89(3 + √
5) ∓

√
178(1031−461

√
5) 89(3−√

5) ±
√

178(1031 + 461
√

5)

(1, 7) 178(1 + √
5) ∓ 2

√
178(19 + √

5) 178(1−√
5) ∓ 2

√
178(19−√

5)

(1, 8) −2(89 ±
√

89(593 + 64
√

5)) −2(89 ∓
√

89(593−64
√

5))

(1, 9) 4(89
√

5 ±
√

89(37 + 16
√

5)) 4(−89
√

5 ±
√

89(37−16
√

5))

(1, 10) ∓16
√

89(13−4
√

5) ±16
√

89(13 + 4
√

5)

(1, 11) 89(3−√
5) ∓

√
178(151−67

√
5) 89(3 + √

5) ±
√

178(151 + 67
√

5)

(1, 12) −2(89 ±
√

89(193−32
√

5)) −2(89 ±
√

89(193 + 32
√

5))
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contain nonredundant dynamical information. We have here
provided a generalized discussion of how the dependence
of the INS cross section on the momentum-transfer vector
Q is under certain conditions completely determined by the
symmetry species of the states involved in a transition, an
issue that had so far been detailed only for cyclic spin systems.
In the present work, INS selection rules and Q dependencies
were discussed for spin rings and a number of cubic and
icosahedral spin polyhedra. Analytical expressions for uni-
versal Q-dependent intensity functions were tabulated. For
small isotropic polyhedra (e.g., cuboctahedron, icosahedron,
etc.), many types of transitions have symmetry-determined Q

dependencies; there still exist a few transitions with universal
Q dependencies in the truncated icosahedron. In such cases,
only the absolute INS intensity contains information on the
spin dynamics, thereby affording a clear separation of geomet-
rical and dynamical effects. Overall, we hope this work will
provide additional motivation to further pursue the synthesis
and subsequent INS characterization of spin clusters of high
molecular symmetry.
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