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Majorana correlations in the Kitaev model with ordered-flux structures
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We study the effects of the flux configurations on the emergent Majorana fermions in the S = 1
2 Kitaev

model on a honeycomb lattice, where quantum spins are fractionalized into itinerant Majorana fermions and
localized fluxes. A quantum spin liquid appears as the ground state of the Kitaev model in the flux-free sector,
which has intensively been investigated so far. In this flux sector, the Majorana fermion system has linear
dispersions and shows power-law behavior in the Majorana correlations. On the other hand, periodically arranged
flux configurations yield low-energy excitations in the Majorana fermion system, which are distinctly different
from those in the flux-free state. We find that one of the periodically arranged flux states results in the gapped
Majorana dispersion and the exponential decay in the Majorana correlations. The Kitaev system with another
flux configuration exhibits a semi-Dirac-type dispersion, leading to the power-law decay with a smaller power
than that in the flux-free sector along symmetry axes. We also examine the effect of the randomness in the
flux configurations and clarify that the Majorana density of states is filled by increasing the flux density, and
power-law decay in the Majorana correlations remains. The present results could be important to control the
motion of Majorana fermions, which carries the spin excitations, in the Kitaev candidate materials.

DOI: 10.1103/PhysRevB.103.214421

I. INTRODUCTION

Spin transport in the quantum spin systems has attracted
much interest as a fundamental magnetic phenomenon but
also in applications to spintronics. In the insulating magnets,
the spin degrees of freedom are carried by the magnons in
the magnetically ordered states with long-range spin-spin cor-
relations. A flow of the spin angular momentum has been
observed experimentally in the compounds such as Y3Fe5O12

and LaY2Fe5O12 [1–4]. By contrast, the spin transport in
the nonmagnetic state has been discussed recently. One of
the typical examples is the one-dimensional antiferromag-
netic Heisenberg chain [5,6], where a quantum spin liquid
is realized with quasi-long-range spin-spin correlations. The
measurement of the spin Seebeck effect in the candidate com-
pound Sr2CuO3 has clarified that the spinons can carry the
excitations of the spin degree of freedom [6]. In this system,
the spin transport is governed by the gapless dispersion of
the spinons originating from the quasi-long-range spin-spin
correlations.

Another candidate of quantum spin liquids is provided by
the Kitaev quantum spin model [7], which has been exten-
sively examined [8–17]. This model is exactly solvable and
possesses two types of elementary excitations: itinerant Majo-
rana fermions and localized fluxes [7]. In the ground-state flux
configuration, the Majorana fermion system is gapless while
spin correlations are extremely short ranged, and a spin gap
exists in the magnetic excitations. In our previous paper [18],
we have examined the spin transport in the Kitaev model. We
have found that the spin excitation propagates in the Kitaev

quantum spin liquid despite the short-ranged spin correlations.
Also, it has been clarified that the spin transport is carried
by the Majorana fermions and its velocity corresponds to
the slope of the linear dispersion [19]. These suggest the
importance of the Majorana correlations for the spin transport
in the Kitaev system. Nevertheless, these correlations have
not been discussed in detail. Furthermore, it is not clear how
Majorana correlations are affected by the spatial distribution
of fluxes, which are the other degrees of freedom owing to the
spin fractionalization. Then, a question arises: Is it possible
to manipulate the motion of itinerant Majorana fermions and
to generate a “Majorana insulator” in terms of the fluxes? It
is highly desired to examine how the spin transport mediated
by the Majorana fermions is controlled by the flux degree of
freedom when one considers the realistic spintronic devices
using the Kitaev candidate materials such as A2IrO3 (A = Li,
Na, Cu) [20–25], α-RuCl3 [26,27], YbCl3 [28], and OsxCl3
[29]. This problem should be common to the honeycomb
lattice systems with linear dispersions like graphene, where
the periodic defects or impurities make the Dirac semimetallic
system insulating [30–32].

Motivated by this, we investigate how the Majorana cor-
relations are affected by the flux degree of freedom, which
emerges due to the spin fractionalization inherent in the
Kitaev model. In particular, we focus on two uniform flux
and two ordered-flux configurations. We find that the linear
dispersions are present in the uniform cases and the Ma-
jorana correlations are well scaled by its velocity and the
number of the point node. We also find that the periodi-
cally aligned flux configurations induce distinct low-energy
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FIG. 1. (a) S = 1
2 Kitaev model on the honeycomb lattice. Red,

blue, and green lines represent the x, y, and z bonds, respectively.
Shaded region with partly numbered sites presents the spin chain
composed of x and y bonds for the Jordan-Wigner transformation
(see text). (b) Hexagonal plaquette with sites p1, p2, . . . , p6 shown
for the local operator Wp. ηpl and ηpr denote the left and right z bonds
on the plaquette.

features, gapped and semi-Dirac-type dispersions. The present
results suggest that the flux configurations play a crucial role
for the low-energy properties of the Majorana fermions. Since
these mediate the spin transport in the Kitaev spin liquids,
we expect that the mobility can be manipulated by the flux
degree of freedom, which might be useful for applications
to spintronics devices. We also address how the random flux
configuration affects Majorana correlations, which may be
important to discuss the stability of the spin transport against
thermal fluctuations.

The paper is organized as follows. In. Sec. II, we introduce
the Kitaev model on the honeycomb lattice and briefly explain
our methods. The low-energy properties and Majorana corre-
lations for the systems with flux configurations are examined
to clarify the role of flux degrees of freedom in Sec. III.
A summary is given in the last section. The effects of the
three-spin interactions are discussed in the Appendix.

II. MODEL AND HAMILTONIAN

We consider the Kitaev model on the honeycomb lattice
given by

H = −Jx

∑
〈i, j〉x

Sx
i Sx

j − Jy

∑
〈i, j〉y

Sy
i Sy

j − Jz

∑
〈i, j〉z

Sz
i Sz

j, (1)

where 〈i, j〉α stands for the nearest-neighbor pair on the
α(= x, y, z) bonds, as depicted in Fig. 1(a). Sα

i (= 1
2σα

i ) is
the α component of the S = 1

2 spin at ith site and σα is
the α component of the Pauli matrices. Jα is the exchange
coupling on the α bonds. In this model, there are local con-
served quantities on hexagonal plaquettes in the honeycomb
lattice. The corresponding operator Wp is defined on each
plaquette p as

Wp = σ x
p1

σ y
p2

σ z
p3

σ x
p4

σ y
p5

σ z
p6

, (2)

where pi (i = 1, 2, . . . , 6) is the site in the plaquette p [see
Fig. 1(b)]. One finds W 2

p = 1, [H,Wp] = 0, and [Wp,Wq] = 0.
Therefore, the eigenstates for the Hamiltonian (1) can be spec-
ified by the set of wp, |ψ〉 = |ψ ; {wp}〉, where wp(= ±1) is

the eigenvalue of the local operator Wp. The anticommutation
relation {Wp, Sy

p1} = 0 leads to the absence of the spin mo-
ment (〈ψ |Sy

p1 |ψ〉 = 0), and long-range spin-spin correlations
[〈ψ |Sy

p1 Sα
i |ψ〉 = 0 (i �= p6 and α �= y)]. Since this relation is

satisfied for each topologically equivalent plaquette in the
system, the quantum spin-liquid state without spin-spin cor-
relations beyond nearest-neighbor sites is realized for any
configuration of wp. It is known that the ground state belongs
to the subspace with wp = 1 for all plaquettes [7]. This allows
us to regard a plaquette with wp = −1 as an excited flux
and the subspace for the ground state can be identified as a
flux-free sector.

To discuss how flux configurations affect low-energy prop-
erties, we introduce a Majorana representation for the Kitaev
spin model given in Eq. (1). First, by regarding the honeycomb
lattice as a set of spin chains composed of x and y bonds, we
perform the Jordan-Wigner transformation S+

i = ∏i−1
i′ (1 −

2ni′ )a
†
i , S−

i = ∏i−1
i′ (1 − 2ni′ )ai, Sz

i = ni − 1
2 , where a†

i and
ai are the creation and annihilation operators of the fermion
at ith site. The Hamiltonian is then expressed as

H = −Jx

4

∑
(rb,r′w)x

(
arb − a†

rw

)(
ar′w + a†

r′w

)

− Jy

4

∑
(rb,r′w)y

(
arb + a†

rw

)(
ar′w − a†

r′w

)

− Jz

4

∑
r

(2nrb − 1)(2nrw − 1), (3)

where arb (arw ) is an annihilation operator of the fermion
at the black (white) site on the rth z bond and (rb, r′w)α
means the nearest-neighbor pair linked by the α-bond [see
Fig. 1(a)]. Exactly speaking, nonlocal terms originating from
the periodic boundary condition appear, in addition to Eq. (3).
However, its effect should be negligible when we focus
on the low-energy properties in the thermodynamic limit.
Therefore, we proceed our discussions, simply neglecting the
corresponding terms. Now, Majorana fermion operators γ , γ̄

are introduced [33–35] as{
iγrw = arw − a†

rw
γ̄rw = arw + a†

rw
,

{
γrb = arb + a†

rb
iγ̄rb = arb − a†

rb

, (4)

where Majorana operators satisfy γ
†
i = γi, γ̄

†
i = γ̄i, {γi, γ j} =

{γ̄i, γ̄ j} = 2δi j . The Hamiltonian (1) is then rewritten as

H = − iJx

4

∑
(rb,r′w)x

γrbγr′w − iJy

4

∑
(rb,r′w)y

γrbγr′w

− iJz

4

∑
r

ηrγrbγrw, (5)

where ηr = iγ̄rbγ̄rw. Since [H, ηr] = 0, [ηr, ηr′ ] = 0, and
η2

r = 1, ηr is a Z2 local conserved quantity. Namely, on a
certain plaquette, the local operator Wp is represented as Wp =
ηplηpr , where ηpl and ηpr are defined on the left and right
z bonds on the plaquette p [see Fig. 1(b)]. Then, each flux
configuration is described by the set of {ηr} and low-energy
properties can be discussed on the basis of Eq. (5).

In this study, we focus on two uniform flux configurations
and two periodically aligned flux configurations, as shown
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FIG. 2. Four flux configurations in the Kitaev model on the
honeycomb lattice. Each empty (shaded) hexagon on the plaquette
p represents the eigenvalue of the local conserved quantity wp =
1(wp = −1). Thin (bold) green lines on the rth z bond represent
ηr = 1 (ηr = −1). The ground state (the configuration I) of the
Kitaev model belongs to the subspace with {wp = 1} (a). The con-
figuration II is specified by the full-flux state (b). (c) , (d) Represent
the ordered-flux configurations III and IV, respectively.

in Fig. 2. Diagonalizing the Majorana Hamiltonian in each
flux configuration, we calculate the dispersion relation of the
itinerant Majorana fermions E (k) and its density of states
ρ(E ). Furthermore, we calculate Majorana correlation func-
tions C(drr′ ) = |〈γrbγr′w〉| along the horizontal axis as one
of symmetry axes, where drr′ = |r − r′|. Namely, Majorana
correlations in the same sublattice are exactly zero 〈γrbγr′b〉 =
〈γrwγr′w〉 = 0 for arbitrary r and r′ since the system is
bipartite.

Here, we introduce the unit cell including six z bonds
with {ηA, ηB, . . . , ηF }, as shown in Fig. 3(a). This allows
us to treat four configurations shown in Fig. 2 on an equal
footing for the Majorana representation given in Eq. (5).
The uniform flux configurations I, II and ordered-flux con-
figurations III, IV are specified by η(I) = {1, 1, 1, 1, 1, 1},
η(II) = {1,−1, 1,−1, 1,−1}, η(III) = {1, 1, 1,−1,−1,−1},
and η(IV) = {1,−1, 1, 1,−1, 1}, respectively. The Brillouin
zone for the Kitaev model is originally given by the hexagon
in Fig. 3(b), where the lattice constant is set as a unit of length.
The reduced one for the large unit cell is represented by the
rectangle, which is shown as the shaded area. Hereafter, we
restrict our discussions to the isotropic case with J = Jx =
Jy = Jz. We then examine the low-energy excitations in the
Kitaev models with the different flux configurations.

III. RESULTS

A. Ordered-flux configurations

First, we focus on the uniform flux configurations I and II
to discuss the low-energy properties of the Majorana fermions
and Majorana correlations in the Kitaev model. By diagonal-
izing the Hamiltonians with fixed configurations η(I) and η(II),
we obtain the dispersion relations and density of states, as
shown in Fig. 4. It is known that, in the ground state with
the flux-free configuration I, the elementary excitations have

FIG. 3. (a) Shaded region represents the unit cell and two bold
arrows represent the translation vectors for the unit cell. (b) The
corresponding Brillouin zone.

the gapless dispersion with the velocity vI = (
√

3/4)J [7].
Namely, the corresponding nodal points appear at K and K ′
points in the original Brillouin zone, while at the 	 point
in this reduced one. This massless dispersion leads to the
long-range propagation in the spin transport [18,19]. We also
evaluate the flux gap 
F = 0.066J [7,36], which is obtained
by the lowest-energy change by flipping two neighboring wp

in the finite cluster with N = 2 × 180 × 180, where N is the
number of sites. It is also found that in the state with the flux

FIG. 4. (a) Thin blue (bold red) lines represent dispersion re-
lations in the system with the flux configuration I (II). (b) The
corresponding density of states.
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FIG. 5. Majorana correlation C(d ) as a function of the distance
d . Two lines with distinct powers are guides to eyes. The inset shows
rescaled Majorana correlations C(d )/nv.

configuration II, there exist gapless excitations and the nodal
points are located between the 	 and S points, as shown in
Fig. 4(a). Its velocity is given by vII = (

√
2/4)J , which is

slightly smaller than vI. We note that, in the Majorana fermion
system with the flux configuration II, two nodal points are
located at (kx, ky) = (π/6,

√
3π/6) and (−π/6,−√

3π/6),
and thereby the total number is four, nII = 4. This is twice
larger than that for the configuration I, nI = 2. These lead to
a large difference in the density of states at low-energy region
[see Fig. 4(b)] since it is given by ρ(E ) ∼ (

√
3/4π )nE/v2.

The flux gap of the system with the flux configuration II is
obtained as 
F = 0.077J .

Figure 5 shows the Majorana correlation functions for the
ground states in two uniform flux sectors I and II along the
symmetry directions. It is found that the Majorana correlation
functions decay with period 3 in both cases. A similar oscilla-
tory behavior has been observed in the finite-size dependence
of the energy [7] and flux gap [36]. These common features
originate from the Kitaev spin liquid with the gapless linear
dispersions in the Majorana fermion systems. An important
point is that both Majorana correlations exhibit two types of
d dependence. One is a power-law decay with d−2, which
is a dominant contribution while the other is scaled by d−3.
The power-law behavior is consistent with the absence of the
excitation gap in the Majorana dispersion. This is in contrast
to the fact that there are gapped spin excitations and spin-spin
correlations are extremely short-ranged. We also find in Fig. 5
that the Majorana correlation in the flux configuration I is
smaller than that in II. The difference comes from the number
of the nodal points n, and their velocities v. To clarify this
issue, we show C/nv in the inset of Fig. 5. The two curves
for the dominant contribution in the flux configurations I and
II appear to be on a common curve, suggesting that it is
scaled by nv.

Next, we consider the ordered-flux configurations III and
IV as shown in Figs. 2(c) and 2(d). These flux configurations
are characterized by the same unit vectors, but different low-
energy properties appear. The dispersion relation and density
of states are shown in Figs. 6(a) and 6(b). We find that, in the
Majorana fermion system with the flux configuration III, the

FIG. 6. (a) Thin blue (bold red) lines represent the dispersion
relations in the system with the flux configuration III (IV). (b) The
corresponding density of states. (c) Solid red (dashed blue) lines
represent the Majorana velocity around the 	 (S) point in the state
with the flux configuration IV.

finite Majorana excitation gap (
M = 0.177J ) appears in the
low-energy region in addition to the finite-energy gap around
E = 0.6J . This leads to the exponential decay in the Majorana
correlations, as shown in Fig. 7(a). Therefore, we can say
that the “Majorana insulator” is realized by this periodically
aligned flux configuration. Indeed, this state is topologically
trivial, which will be discussed in Appendix. On the other
hand, the system with the flux configuration IV is gapless at
the 	 and S points, as shown in Fig. 6(a). We wish to note
that these points are characterized by semi-Dirac-type behav-
ior, where the dispersion relation is parabolic along a certain
axis and linear along the other. Namely, there are two semi-
Dirac-type dispersions at the 	 point and one at the S point.
Figure 6(c) shows the angle θ dependence of the velocity at
k0(= 	 or S), where it is defined by v(θ ) = lim
k→0 E (k0 +

k)/|
k| with θ = tan−1 
ky/
kx. It is found that, in the
case with [θ = mπ/3 (m = 0, 1, . . . , 5)], one of three ve-
locities vanishes and its dispersion is parabolic. This yields
interesting low-energy dependence in the density of states
ρ(E ) ∼ E1/2. Figure 7(b) shows that Majorana correlations
in the state with the flux configuration IV. We find that, in
the short-range region (d < 40), the values of correlations
are randomly distributed, in contrast to the configurations I,
II, and III with a certain periodicity in C(d ). On the other
hand, power-law behavior clearly appears in larger d region,
where Majorana correlation function obeys d−3 dominantly
and smaller correlations show a decay with d−4. The behavior
is in contrast to that in the cases I and II with the isotropic
linear dispersion discussed above. Namely, Majorana correla-
tions in the other directions should obey d−2 since Majorana
fermions have the finite velocity, as shown in Fig. 6(c).
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FIG. 7. Majorana correlation functions in the system with the
ordered-flux configurations III (a) and IV (b). Note that (a) and
(b) are semi-log and log-log plots. Solid line in (a) represents the
exponential function with ξ = 1.8. Dashed and dotted-dashed lines
in (b) represent the functions with d−3 and d−4, for reference.

B. Effects of the disorder in flux configurations

We also consider the effects of the flux disorder in the
ordered-flux Kitaev systems discussed above, which should
be important to understand how robust the spin transport is
against thermal fluctuations in the realistic materials. Now,
the flux density is defined as nF = NF /Np = 2NF /N , where
NF and Np are the numbers of fluxes and plaquettes, respec-
tively. In the system with nF = 0.5, the fluxes are randomly
distributed, and its ground state should capture the essence of
the Kitaev system at the intermediate temperatures [37,38].
When nF = 0 (nF = 1), the flux-free (full-flux) configuration
is realized with long-range Majorana correlations. By con-
trast, in the general case with 0 < nF < 1, one may expect
that the randomness yields the localization in each wave func-
tion, leading to short-ranged correlations. Therefore, it is not
clear how the Majorana correlations are changed by the flux
disorder. To clarify the effects of the random flux configura-
tions, we prepare more than 100 distinct clusters with N =
2 × 180 × 180. We diagonalize the Hamiltonian for each flux
configuration by means of the singular value decomposition
[36,39]. The obtained ground-state energy Eg as a function
of the flux density nF is shown in Fig. 8(a). We find that the
minimum of the curve is located at nF = 0, which is consistent
with the fact that the ground state of the Kitaev model is
indeed realized in the flux-free sector [7]. The maximum is
located around nF = 0.95. This implies that the finite energy
is necessary to remove a flux in the state with the configuration

FIG. 8. (a) Ground-state energy as a function of the flux density
in the system with the random configurations (N = 2 × 180 × 180).
Open circles with the dashed line represent the results for the effect
of the flux disorder in the configuration III (see text). (b) Density of
states in the Kitaev model with disordered configurations. The data
are for nF = 0, 0.1, 0.2, . . . , and 1 from the bottom to the top.

II, as discussed above. Due to the convex structure in the
energy curve, one may expect that the phase separation occurs
in the Kitaev system with the fixed-flux density. However,
Wp is a local conserved quantity in the Kitaev model (1),
and thereby its configuration is never changed. Therefore, the
phase separation does not occur in the disordered state.

Figure 8(b) shows the density of states for the sys-
tem with random configurations. When nF = 0, linear
behavior appears around E ∼ 0 and the peak structure ap-
pears around E/J = 0.5. Introducing the fluxes, we find
that the peak structure smears and the density of states
around lower-energy states increases. In particular, a sharp
peak structure develops around E ∼ 0, suggesting that
low-energy excitations are induced by the random fluxes.
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FIG. 9. Majorana correlation function in the Kitaev model with
disordered configurations. The data are averaged over more than 100
samples for the cluster with N = 180 × 180 × 2.

Similar behavior also appears when some fluxes with wp =
−1 are randomly inverted to wp = +1 in the state with
the flux configuration II (nF = 1). Namely, the lowest-
energy level is evaluated around 
M/J ∼ 10−5 in the
finite cluster with 0 < nF < 1, which should indicate that
the disordered system is gapless in the thermodynamic limit.

Although low-energy properties are clarified in the disor-
dered systems, it is still unclear whether Majorana correlations
are long ranged or not. To clarify this, we calculate the
Majorana correlations. The obtained results are shown in
Fig. 9. Our results for each nF suggest that the correlation
function obeys the power law with respect to distance al-
though the boundary effect appears d � 30. This is similar
to the results for both uniform flux configurations I and II.
Therefore, the randomness in the flux configuration little af-
fects low-energy properties of the Kitaev spin liquid, which is
consistent with the recent results [38].

We also discuss the “Majorana insulator” with the flux
configuration III. Its energy Eg/N = −0.194 is lower than the
random flux states with nF = 1/3 (Eg/N = −0.192), which
should originate from the gap formation in the Majorana
dispersion [see Fig. 8(a)]. To examine the stability of the
state against the flux disorder, we prepare the flux-disordered
configurations, which are obtained by flipping {ηr} in the con-
figuration III with a certain probability p3. The energy for this
disordered system is shown as the open circles with the dashed
line in Fig. 8. By introducing the disordered fluxes in the con-
figuration III, the properties of the Majorana fermions inherent
in the configuration III smear. In fact, the energy increases and
approaches the energy curve obtained above around nF ∼ 0.4.
As for Majorana correlations, power-law behavior appears if
one focuses on long-range behavior. Nevertheless, the rapid
decrease still appears in the short-range correlations (d � 5),
as shown in Fig. 10(a). This implies that the Kitaev system
with the gapped flux configuration III is stable against the flux
disorder. This is consistent with the fact that the gap structure
in the density of states still remains although low-energy states
are induced by the disorder, as shown in Fig. 10(b).

Before conclusion, we would like to comment on the
spin transport in the Kitaev system although it is beyond
the scope of this study. It has been clarified that, in the Ki-
taev model, the spin transport is mediated by the itinerant

FIG. 10. (a) Majorana correlation function and (b) density of
states in the Kitaev model. The flux configurations for the flux
densities nF = 0.333, 0.365, and 0.393 are generated by flipping {ηr}
in the configuration III with the probabilities p3 = 0, 0.05, and 0.1,
respectively. The data are averaged over more than 100 samples for
the cluster with N = 180 × 180 × 2.

Majorana fermions [18]. This phenomenon is dominated by
the velocity of gapless Majorana fermions, which is regarded
as the “Majorana metal.” Owing to this feature in the Ma-
jorana fermion system, long-range spin transport is realized
despite the presence of the spin gap. On the other hand, the
flux configuration III yields the excitation gap in the Majorana
dispersion, corresponding to the “Majorana insulator,” where
the spin transport shows an exponential decay. Exploiting
these features, one could manipulate the motion of carriers
of the spin excitations on the basis of the flux configuration,
which may open the Majorana-mediated spintronics. Unfor-
tunately, nobody has ever succeeded to propose a reliable
way for creating and annihilating fluxes in realistic materials
before. It is an interesting problem to clarify how fluxes are
generated and the flux configurations are controlled, which is
now under consideration.

IV. SUMMARY

We have studied the S = 1
2 Kitaev model on the honey-

comb lattice to reveal how flux configurations affect Majorana
correlations. It has been clarified that the systems with the
uniform flux configurations have linear dispersions with nodal
points and a power-law behavior with d−2 appears in the
Majorana correlations. The system with ordered-flux config-
uration III has the gapped dispersion and the exponential
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FIG. 11. Lattice structure of the Kitaev model with zigzag edges.

decay appears in the Majorana correlations. This means that
Majorana insulator is realized in terms of this flux configura-
tion. On the other hand, the Kitaev system with the configu-
ration IV exhibits the semi-Dirac-type dispersion, leading to
the power-law decay with d−3. We have discussed the effects
of the randomness in the flux configuration to clarify that
power-law behavior appears in the Majorana correlations. It is
also interesting to discuss how robust Majorana correlations
are in the related models such as the bilayer Kitaev model
[40–42], Kitaev-Heisenberg model [10], and higher-spin
models [43–49].
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FIG. 12. Dispersion relations in the zigzag-edge Kitaev model
with flux configurations I (a), II (b), and IV (c) when h/J = 0.1, 0.1,
and 0.4, respectively. The shaded regions represent the continuum for
the bulk dispersion.

FIG. 13. Majorana excitation gap 
 as a function of h in the
Kitaev model with the ordered-flux configuration III.

APPENDIX: EFFECT OF THE THREE-SPIN
INTERACTION

In the Appendix, we consider the three-spin interactions,
which break the time-reversal symmetry, to clarify how the
topological state is realized [7,15,50–53]. We also clarify that
the gapped state with the flux configuration III is topologically
trivial. Here, we introduce the interaction term defined by

H ′
eff = h

∑
(i jk)

Sα
i Sβ

j Sγ

k , (A1)

where h is the magnitude of interaction and the summation
takes over adjacent three spins, e.g., (i, j, k) = (p2, p3, p4)
and (α, β, γ ) = (x, y, z). The other symmetry-equivalent
pairs are shown in Fig. 1(b). We note that this is derived
as the low-energy Hamiltonian for the ground state by
means of the third-order perturbation theory for the
Zeeman Hamiltonian H ′ = −∑

i(h
′
xSx

i + h′
ySy

i + h′
zS

z
i ),

where h′ is the external magnetic field [7]. The Hamiltonian
(A1) is represented in terms of the Majorana operators as

H ′
eff = − ih

8

∑
p

(γp1γp5 + ηprγp1γp5 + ηplγp3γp1

+ γp4γp2 + ηplγp2γp6 + ηprγp6γp4). (A2)

FIG. 14. Dispersion relations in the zigzag-edge Kitaev model
with flux configuration III when h/J = 0.2 (a), 0.46 (b), 0.55
(c), and 0.8 (d). The shaded regions represent the continuum for the
bulk dispersion.
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Since this Hamiltonian is quadratic, one discusses low-energy
properties in the same framework as Eq. (5). Here, we con-
sider the Kitaev model with the edges, as shown in Fig. 11.
This allows us to examine how three-spin interactions in-
duce the excitation gap, and whether or not the topological
edge modes are induced inside of the excitation gap. First,
we deal with the gapless systems with flux configurations
I, II, and IV. Figure 12 shows the dispersion relations in
the Kitaev model with zigzag edges. In the system with the
configuration I, the interaction induces the excitation gap
with 
 = (3

√
3/4)h and edge modes inside the gap [7,17].

Similar behavior appears in the system with the configuration
II, where the bulk excitation gap 
 = (

√
3/4)h appears with

topological edge states. As for the semi-Dirac-type system
with the configuration IV, we find that the excitation gap
is induced with 
 = (7/32)h2 and some topological edge
modes appear. Therefore, we can say that the three-spin terms
drive the gapless systems to the topological state with a finite
bulk gap.

As discussed in the text, the system with the flux
configuration III has the gap in the Majorana excitation. Now,
we consider how stable the gapped state is against the three-
spin interactions. Figure 13 shows the Majorana excitation
gap in the bulk system. It is found that, by introducing the
interactions, the excitation gap decreases and finally reaches
zero at the critical value (h/J )c1 ∼ 0.45. Beyond the critical
value, we find two additional critical values (h/J )c2 ∼ 0.485
and (h/J )c3 ∼ 0.628. These mean the existence of, at least,
three phase transitions. To clarify the topological nature of
four distinct phases, we show in Fig. 14 the dispersion re-
lations in the system with zigzag edges. When h/J = 0.2,
the edge modes are below the bulk continuum. Therefore, this
gapped state is topologically trivial. On the other hand, when
hc1 < h, there exist topological edge states in the inside of
the bulk gap. Therefore, topological phase transitions occur in
the system with the flux configuration III. Beyond the critical
value hc1, the number of edge states is finite and topological
states are realized.
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