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Channeling of spin waves in antiferromagnetic domain walls

Hyeon-Kyu Park and Sang-Koog Kim *

National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute
of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea

(Received 23 February 2021; revised 7 May 2021; accepted 28 May 2021; published 10 June 2021)

We theoretically calculated ultrafast propagations of spin waves channeled in antiferromagnetic Bloch-type
domain walls based on a phenomenological theory developed by Hals et al. [Phys. Rev. Lett. 106, 107206
(2011)]. Our analytical derivation demonstrates that the dispersion relation of such channeled spin waves exhibits
an extremely high group velocity, up to ∼18.7 km/s, without any forbidden gap. Further, such electromagnetic-
wave-like dispersion relation allows for dispersionless and translational transmission of trains of low-frequency,
long-wavelength digital signals in the channel. Our results offer guidelines for the development of ultrafast
information signal processing in nanoscale magnonic circuits composed of antiferromagnetic domain walls.
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I. INTRODUCTION

Antiferromagnets are novel magnetic materials composed
of sublattices of antiferromagnetically coupled spins that
result in zero net magnetization. Most common antiferromag-
netic materials (e.g., MnF2, NiO, and FeBO3) are composed
of two sublattices that are ordered according to the stag-
gered Néel order at sufficiently low temperature [1]. It was
found that Néel orders of antiferromagnets are controllable
via optical switching [2–4], which enables facile formation
of metastable magnetic textures such as domain walls and
skyrmions. The dynamics of antiferromagnetic domain walls
is known to be much faster than that of their ferromagnetic
counterparts, owing to the interatomic transfer of angular mo-
mentum within the spin system [5–7]. Also, the absence of
the skyrmion Hall effect in antiferromagnets enables unidirec-
tional current-driven motion of antiferromagnetic skyrmions
[8,9]. These features make antiferromagnets a promising al-
ternative to ferromagnets in the field of spintronics.

Spin waves, on the other hand, are small deviations in lo-
cal magnetizations that coherently propagate across magnetic
media. Optically excited spin waves in antiferromagnets show
their resonant modes in the terahertz regime [10–12], and thus
allow for faster operation of spin-wave devices [13] than do
their ferromagnetic counterparts. The spin-wave dynamics of
atomistic antiferromagnets, in the absence of uniaxial mag-
netic anisotropy, is captured by a simple pictorial model’s
linear dispersion law (ω ∝ k) [14]. More concrete forms of
dispersion law for spin waves in antiferromagnets are posited
in a phenomenological theory developed by Hals et al. [15] for
a two-sublattice antiferromagnetic continuum. In the absence
of externally applied magnetic fields, the dispersion of spin
waves for antiferromagnets in a uniform state with uniaxial
magnetic anisotropy along the z axis is given by the solution
of the Klein-Gordon equation ω = γ

MS

√
a(Ak2 + Kz ), where γ

is the gyromagnetic ratio, MS is the saturation magnetization,
a is a homogeneous exchange constant, A is the exchange
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stiffness, and Kz is the uniaxial magnetic anisotropy [5,16].
A few conclusions can be derived from this. First, the group
velocity of spin waves in antiferromagnets is impeded by the
presence of uniaxial magnetic anisotropy, which manifests in
many antiferromagnetic materials such as MnF2 [17,18] and
FeF2 [19]. Second, those spin waves must overcome a for-
bidden frequency gap of ωgap = γ

√
aKz

MS
in order to be excited.

To enhance the group velocity of spin waves as well as to
eradicate the forbidden gap, the channeling of spin waves
inside domain walls has been proposed as an alternative to
the reduction of uniaxial anisotropy itself in the case of ferro-
magnets [20]. Since Winter’s original prediction of spin-wave
channeling in domain walls [21], both theoretical [20,22–24]
and experimental [25,26] studies have enhanced its efficiency
and value by confining spin waves to reconfigurable domain
wall composed curved paths.

Here, we explored the robust dynamics of spin waves’
propagation in antiferromagnetic Bloch-type domain walls,
as analytically derived based on a phenomenological theory
for a two-sublattice antiferromagnet within the exchange ap-
proximation [15] and as further confirmed by micromagnetic
simulations. In the case of ferromagnets, a gapless quasilinear
dispersion relation for wall-bound spin-wave modes hosted
by a Bloch-type domain wall is predicted [20]. In contrast to
the ferromagnetic case, we found that the spin-wave modes
hosted by an antiferromagnetic domain wall have much sim-
pler dispersion relations due to the absence of dipolar volume
charges. This dispersion relation resembles that of electro-
magnetic waves, enabling transmission of a binary digital
signal (composed of trains of pulsed signals) resulting thereby
in the concept of “digital magnonics” as an analog to conven-
tional digital electronics. We demonstrated the dispersionless
and translational transmission of a train of several pulses
generated by a sinusoidal magnetic field over the course of
half a period.

II. THEORY

We considered a two-dimensional ultrathin antiferromag-
netic nanostrip, the longitudinal axis of which is placed on the
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FIG. 1. Schematics of antiferromagnetic system considered in
this work. (a) Toy model of antiferromagnetic domain walls of
Bloch type. Each of the differently colored arrows corresponds to
an atomistic magnetic moment on each sublattice of the bipartite
antiferromagnets. (b) Toy model of antiferromagnetic domain walls
represented in terms of Néel vector n (= m1−m2

2 ). Small deviations
of Néel vectors that propagate along a specific direction are called
spin waves (indicated as transparent arrows). (c) Coordinate system
considered in this work. The transparent thin arrows indicate a con-
ventional Cartesian coordinate system composed of êx , êy, and êz.
The transparent green thick arrow at the center indicates the Néel
vector in its ground state, n0. With respect to n0 and j = êy, i is
chosen such that i = j × n0.

x axis under no external magnetic field. In Fig. 1(a), a model of
antiferromagnetic domain walls of the Bloch type is illustrated
with two-color arrows indicating two different magnetizations
(unit vectors m1 and m2) on each sublattice. Once represented
by the Néel order (n = m1−m2

2 ), the antiferromagnetic domain
wall can be considered to be in the same configuration as that
of its ferromagnetic counterpart, as illustrated in Fig. 1(b).
The antiferromagnetic domain wall separates two domains of
upward and downward Néel orders. Since we assume a single
monolayer lattice in the model, we can ignore spin-wave
excitations along the z axis. The free energy of this system,

which is composed of a bipartite antiferromagnetic material
with an isotropic exchange stiffness A and a uniaxial magnetic
anisotropy Kz, is given as [15]

F =
∫

a

2
m2 + A

2

∑
i=x,y,z

(∂in)2 − Kz

2
(n · ẑ)2dV ,

which is expressed in terms of the staggered Néel vector
n = m1−m2

2 and the averaged magnetization field m = m1+m2
2 .

In the static state, the conditions m1 = −m2 and m = 0 lead
to the free energy Fstatic = ∫

A
2

∑
i=x,y,z (∂in)2 − Kz

2 (n · ẑ)2dV .
The fields n and m are further constrained to obey n · m =
0 and n2 = 1. The dynamic governing equations proposed
by Hals et al. are given as ṅ = (γμ0fm − G1ṁ) × n and
ṁ = (γμ0fn − G2ṅ) × n + (γμ0fm − G1ṁ) × m, where γ is
the effective gyromagnetic ratio; μ0 is the vacuum perme-
ability; G1 and G2 are dimensionless damping constants,
which are arithmetic combinations of the Gilbert damping
constant of each sublattice [27]; and fn and fm are the ef-
fective fields associated with n and m, respectively. The
variation of the free energy with the aid of suitable Lagrangian
multipliers subject to the aforementioned constraints leads
to fm = − 1

μ0MS

δF
δm = − a

μ0MS
m and fn = − 1

μ0MS

δF
δn = A

μ0MS
n ×

(∇2n × n) + Kz

μ0MS
(n · ẑ)n × (ẑ × n). Those equations would

yield the same results even if the two sublattices were ex-
changed [15].

To find appropriate spin-wave solutions, we neglect the
damping terms and linearize the equations given above by
considering small variations around the ground Néel vec-
tor n = n0(x) + δn(x, t ) with n0 = n(x, 0) and the averaged
magnetization field m = m(x, t ). Then, the first-order equa-
tions are given as [16]

MS

γ
δṅ = −am × n0,

MS

γ
ṁ = A(∇2n0 × n0 + ∇2δn × n0 + ∇2n0 × δn)

+ Kz[(n0 · ẑ)ẑ × n + (δn · ẑ)ẑ × n0].

Now, we assume a Bloch-type domain-wall profile in
the system. In the case of Néel-type domain walls, a
similar derivation can be obtained by permutation be-
tween the x and y coordinates. We introduce Walker’s
Bloch-type domain-wall profile centered along y = 0,
i.e., n0 = [sech( y

�
), 0, tanh( y

�
)], with the characteristic

length of domain walls � = √
A/Kz, which minimizes the

free energy of this system in the static state, Fstatic =∫
A
2

∑
i=x,y,z (∂in)2 − Kz

2 (n · ẑ)2dV . We also make use of
monochromatic waves, δn = [ni(y)i + nj (y)j]eiωt−ik·x and
m = (mi(y)i + mj (y)j)eiωt−ik·x. In the expression, we use spa-
tially smoothly varying and mutually orthogonal basis vectors
i and j in order to express the fluctuating fields δn and m
in the plane perpendicular to n0. As illustrated in Fig. 1(c),
we choose to transform the coordinates with j = [0, 1, 0] and
i = j × n0 = [tanh( y

�
), 0, −sech( y

�
)] for the sake of calcu-

lation simplicity.
Here, we assume that the spin waves are propagating along

the x axis, i.e., kx = k. By arranging the resultant equations on

214420-2



CHANNELING OF SPIN WAVES IN … PHYSICAL REVIEW B 103, 214420 (2021)

the basis of i and j, we obtain

iωMS

γ
ni = −amj, (1)

iωMS

γ
n j = ami, (2)

iωMS

γ
mi

= A
d2n j

dy2
−Ak2n j + Kz

[
sech2

(
y

�

)
−tanh2

(
y

�

)]
n j, (3)

iωMS

γ
mj

= −A
d2ni

dy2
+Ak2ni+Kz

[
tanh2

(
y

�

)
−sech2

(
y

�

)]
ni. (4)

Equations (1) and (2) describe the dynamics of small vari-
ations around the ground Néel vector, δn, in the i and j
directions, respectively, while Eqs. (3) and (4) correspond to
the dynamics of the canted magnetization m in the i and j
directions, respectively. The dispersion relations for each pair
of (ni, mj) and (n j , mi) components were obtained by coupling
Eq. (1) to Eq. (4), and Eq. (2) to Eq. (3).

Now, there exist various virtual sets of solutions accord-
ing to the spatial profiles of ni and n j , and their second

spatial derivatives, d2ni
dy2 and d2n j

dy2 . However, for the condi-
tions ω = 0 and k = 0, the pair of equations are expressed
as − d2n

dỹ2 + (tanh2 ỹ − sech2 ỹ) = 0 with ỹ = y
�

. Thus, there
exists a real-valued pair of solutions for both the (ni, mj) and
(nj , mi) components, and they are wall-confined spin-wave
modes [21],

ni = K sech

(
y

�

)
, mj = L sech

(
y

�

)
, (5a)

and

n j = M sech

(
y

�

)
, mi = N sech

(
y

�

)
, (5b)

with the dispersion relation ω = γ

MS

√
aAk2, where K , L, M,

and N are constants.
The dispersion relation for spin waves channeled in anti-

ferromagnetic domain walls is even simpler than that for spin
waves channeled in ferromagnetic ones [20,28], due to the
absence of dipolar volume charges. Also, the dispersion rela-
tion resembles that obtained from the Klein-Gordon equation
without a mass, but the concomitant spin waves rather have
a hyperbolic secant cross-sectional profile. Along the x axis,
ni and n j correspond to −δnz(= − δn · ẑ) and δny(=δn · ŷ),
and mi and mj correspond to −mz and my in Cartesian co-
ordinates, respectively. Thus, the δnz and my (or δny and mz)
components must obey the gapless dispersion law as given by
ω = γ

MS

√
aAk2.

Figure 2 shows a plot of the above dispersion equation
(blue solid line) using a set of material parameters accordant
with MnF2 (a = 2.67 × 108 J/m3, A = 9.32 × 10−12 J/m,
MS = 4.71 × 105 A/m, and Kz = 3.92 × 105 J/m3) [17,29],
as compared with the dispersion relation in a uniform state
(blue dashed line). The dispersion of ω = γ

MS

√
aAk2 allows

FIG. 2. Comparison between dispersion relations for spin waves
in antiferromagnets with different metastable states. The blue solid
line indicates the dispersion relation for spin waves channeled in anti-
ferromagnetic domain walls, while the blue dashed line indicates the
dispersion relation for spin waves in antiferromagnets with uniform
Néel vectors.

for a maximum possible group velocity, which, in the case
of a uniform state, is asymptotically approachable only at an
infinite frequency. For a specific antiferromagnet of MnF2

with the material parameters given in Refs. [17,29] along with
the gyromagnetic ratio of a free electron, the group velocity is
estimated to be ∼18.7 km/s, which is one order of magnitude
higher than that for ferromagnetic permalloy both in the uni-
form state and in domain walls (1.0–3.5 km/s) [20,24,30,31].
Such gapless dispersion for spin waves channeled in anti-
ferromagnetic domain walls allows for high group velocities
even in long-wavelength and low-frequency regimes. This
feature allows for lower power dissipation [P = (G1/γ )ṁ2 +
(G2/γ )ṅ2] that is proportional to the square of frequency [15]
as well as employment of transistor circuits in a high-gain
regime.

III. NUMERICAL SIMULATION

According to the above analytical prediction, in order to
confirm the validity of such high group velocity in the long-
wavelength regime, we conducted numerical simulations of
spin waves channeled in antiferromagnetic domain walls. The
model system is an ultrathin nanostrip of 41 nm width, 401
nm length, and monolayer thickness, as shown in Fig. 3(a).
The cell size used is 1 nm × 1 nm. Since the strip is as thin
as 0.33 nm [18], we assumed nonexcitation of spin waves
along the thickness (z axis). The initial magnetization state
[Fig. 3(a)] was obtained by relaxation with a Bloch-type
domain-wall configuration for the sufficiently long time of 5.0
ns. In the simulation, the total free energy F with respect to a
perturbative magnetic field H was given as

F =
∫

a

2
m2 + A

2

∑
i=x,y,z

(∂in)2 − Kz

2
(n · ẑ)2 − μ0MSH · mdV,
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FIG. 3. Spin-wave excitations along straight antiferromagnetic
domain wall. (a) Néel-vector configurations of components nz and
nx in the metastable ground state. Such Néel-vector configura-
tions locally minimize the free energy in the static state, Fstatic =∫

A
2

∑
i (∂in)2 − Kz

2 (n · ẑ)2dV . (b-1) Dispersion relation for spin
waves channeled in antiferromagnetic domain wall of Bloch type.
The white dotted lines denote the analytically derived dispersion
relation, ω = γ

MS

√
aAk2. (b-2) Dispersion relation for spin waves

traveling longitudinally in uniformly magnetized antiferromagnet.
(c) Temporal spatial profile of spin-wave component of nj , obtained
by inverse Fourier transform at frequency of 0.25 THz. The spin
waves are well channeled in the domain wall. (d) Cross-sectional
spin-wave profile at x = 100 nm (red lines) and numerically calcu-
lated hyperbolic secant profile (blue dotted lines).

where a = 4zJS2/l3, A = zJS2/2l , and Kz = 2DS2/l3 in
terms of coordinate number z, lattice parameter l , the
number of spins per atom S, exchange energy J , and
anisotropy energy D [16–18,29]. The first, second, third.
and last terms correspond to homogeneous exchange en-
ergy, inhomogeneous exchange energy, uniaxial anisotropy
energy, and Zeeman energy, respectively. Under this condi-
tion, the effective fields fm and fn become fm = − a

μ0MS
m +

n × (H × n) and fn = A
μ0MS

n × (∇2n × n) + Kz

μ0MS
(n · ẑ)n ×

(ẑ × n) − (n · H)m. To compare the simulation and analyti-
cal calculations, we used material parameters corresponding
to the G-type antiferromagnet MnF2 of a rutile structure
(a = 2.67 × 108 J/m3, A = 9.32 × 10−12 J/m, MS = 4.71 ×
105 A/m, and Kz = 3.92 × 105 J/m3) along with the gyro-
magnetic ratio of free electrons [17,29]. In order to excite
a number of spin waves with different frequencies at once,
we applied a nonharmonic sinc-function magnetic field,

H = H0
sin[2π f (t−t0 )]

2π f (t−t0 ) ẑ (t0 = 0.5 ps, f = 1 THz, H0 = 10 Oe),
to a central region of 41 nm × 1 nm.

With the functional derivatives and H plugged into the
effective field terms, we integrated the resultant equations
by the fourth-order Runge-Kutta method. The resultant dis-
persion obtained from the fast Fourier transform (FFT) of
the excitation of the Néel-vector field nj is given in the
left side of Fig. 3(b). The numerical simulation agrees well
with the analytical derivation, ω = γ

MS

√
aAk2, marked by the

white dotted line. An FFT of the canted magnetization mi,
which is directly coupled to nj according to Eqs. (2) and
(3), also displayed a dispersion relation like this [32]. We
additionally compared the dispersion curve obtained from the
FFTs of the mx oscillations in a uniformly magnetized nanos-
trip, along with the analytical form of ω = γ

MS

√
a(Ak2 + Kz )

marked by the white dotted line, as shown in the right side of
Fig. 3(b). In order to verify the spin-wave propagations along
the Bloch-type domain wall, the temporal profiles of nj were
obtained by inverse FFTs at a specific frequency of 0.25 THz
[Fig. 3(c)]. The cross-sectional spin-wave profiles (red line)
along the y axis at the specific position of x = 100 nm also are
shown in Fig. 3(d), whose result agrees well with the analyt-
ical derivation (blue dashed line), K sech( y

�
) and L sech( y

�
).

Channeling of spin waves with hyperbolic secant profiles was
well demonstrated at other frequencies [32]. Experimentally,
the presence of those bound spin waves can be demonstrated
with the help of a three-magnon scattering process [33,34]
through which one can analyze magnonic excitations in or-
der to detect abnormal frequency peaks using time-resolved
optical techniques [35]. One interesting consequence of such
linear dispersion relation of spin waves channeled in an an-
tiferromagnetic domain wall is that the phase and group
velocity are equivalent to a constant value of γ

MS

√
aA in any

frequency regime, leading to a dispersionless transmission of
pulsed signals, just like an electromagnetic wave (or a light)
in a vacuum. This means that in the antiferromagnetic domain
wall, all frequencies have the same group velocity.

From an application point of view, such gapless linear
dispersion offers a great benefit to implementation of the
transmission of binary (or multilevel) digital signals in the
form of trains of pulsed signals as in digital electronics along
with lower power consumption. In digital magnonics, spin
waves in antiferromagnetic domain walls are transmitted in
the form of pulsed signals encoding binary digits without
Joule heating and with long coherence length. One example
of the propagation of pulsed signals channeled in antiferro-
magnetic domain walls is shown in Fig. 4(a). We used the
same geometry as in Fig. 3(a) and neglected the damping
parameters in order to prevent the pulses from attenuating.
The pulses were generated with a field pulse in the central
region (41 nm × 1 nm) composed of a sinusoidal oscillation,
Hp = Hp,0 sin(2π fpt )ẑ ( fp = 0.8 THz, Hp,0 = 10 Oe) over
half a period. The temporal evolution of the ny component
of the pulsed signal is shown for three instant times after
the application of the pulsed field. Over 6 ps, the pulsed
signals only underwent a dispersionless, translational mo-
tion, because every contribution of spin waves with different
wave numbers translated according to the same phase ve-
locity, γ

MS

√
aA. That is, the pulsed signal ny can be written
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FIG. 4. Temporal variation of (a) ny component of pulsed spin
waves in antiferromagnetic domain wall and (b) my component of
pulsed spin waves in uniform antiferromagnet shown at three in-
stant times of t = 2 ps, t = 4 ps, and t = 6 ps. The pulsed spin
waves propagate (a) without dispersion in the antiferromagnetic
domain wall and (b) with considerable dispersion in the uniform
antiferromagnet.

ny(x, t ) = ∑
ω

∑
k n̂y(ω, k)eiωt−ikx, where n̂y(ω, k)eiωt−ikx is

the contribution of ny from harmonic waves of frequency ω

and wave number k, and their phase velocity is |vp| = |ω
k | =

γ

MS

√
aA. The average group velocity of the pulse was 18.1

km/s, close to the analytical derivation of 18.7 km/s. Based
on this idea, we provide an example application of digital-
signal transmission along an antiferromagnetic domain-wall
channel in the Supplemental Material S3 [32]. For compari-

son, we also simulated the temporal evolution of spin-wave
pulses in an assumed uniform antiferromagnet in the right
side of Fig. 3(b). The damping parameters were neglected
in this case as well, and the applied pulsed field was Hp =
Hp,0 sin(2π fpt )ŷ ( fp = 0.8 THz, Hp,0 = 10 Oe) over half a
period. As seen from the three instant times after application
of the pulsed magnetic fields [Fig. 4(b)], the pulsed signals in
the uniform antiferromagnets showed a significant dispersion,
since each contribution of my had different phase velocities at
different ω and k values.

IV. CONCLUSION

In conclusion, we developed a theory of the dispersion
of spin waves propagating in an antiferromagnetic domain
wall. By assuming that the metastable static magnetization is
aligned in Walker’s profile, we revealed that the dispersion
is gapless with a constant group velocity in all frequencies,
like light in a vacuum. Our derived dispersion relation allows
for magnetic sources of very low frequency to excite long-
wavelength spin waves. Since the propagation properties of
spin waves channeled inside domain walls depend only on the
intrinsic magnetic parameters, the coherence length for the
spin waves propagating in domain walls is expected to sig-
nificantly enhance that for spin waves in magnetic domains.
Such longer coherence lengths are essential for realization of
spin-wave logic gates that encode information in either the
amplitude or the phase of spin waves. Moreover, transmis-
sion of pulsed signals along antiferromagnetic domain-wall
channels is expected to be applicable to digital magnonics, as
binary pulse signals are typically generated by metal oxide
semiconductor field-effect transistor (MOSFET) devices ow-
ing to their rapid on-off switching behavior.
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