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Absorption of microwaves by random-anisotropy magnets
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Microscopic model of the interaction of spins with a microwave field in a random-anisotropy magnet has been
developed. Numerical results show that microwave absorption occurs in a broad range of frequencies due to the
distribution of ferromagnetically correlated regions on sizes and effective anisotropy. That distribution is also
responsible for the weak dependence of the absorption on the damping. At a fixed frequency of the ac-field,
spin oscillations are localized inside isolated correlated regions. Scaling of the peak absorption frequency agrees
with the theory based upon the Imry-Ma argument. The effect of the dimensionality of the system related to
microwave absorption by thin amorphous magnetic wires and foils has been studied.
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I. INTRODUCTION

In conventional ferromagnets the ac field can induce the
uniform ferromagnetic resonance (FMR) and/or excite spin
waves with a finite wave vector. In the presence of strong
disorder in the local orientation of spins, however, that ex-
ists in spin glasses and amorphous ferromagnets, spin waves
must be localized whereas the existence of the FMR be-
comes nonobvious. On general grounds one should expect that
random magnets would exhibit absorption of the ac power
in a broad frequency range that would narrow down when
spins become aligned on increasing the external magnetic
field.

Collective excitation modes have been observed in random
magnets in the past [1–3]. In spin glasses they were attributed
[4] to the random anisotropy arising from Dzyaloshinskii-
Moriya interaction and analyzed [5] within hydrodynamic
theory [6,7]. Later Suran and co-workers studied collective
modes in amorphous ferromagnets with random local mag-
netic anisotropy [8] and reported evidence of their localization
[9]. Longitudinal, transverse, and mixed modes have been
observed in thin amorphous films. Detailed analysis of these
experiments, accompanied by analytical theory of the uniform
spin resonance in the random anisotropy (RA) ferromagnet
in a nearly saturating magnetic field, has been recently given
by Saslow and Sun [10]. Experimental evidence of localized
spin excitations and micromagnetic models of the observed
phenomena have also been reported in inhomogeneous thin
magnetic films [11], submicron magnetic heterostructures
[12], and in films where the inhomogeneous magnetic field
was generated by a tip of a force microscope [13].

A rigorous approach to this problem in RA ferromagnets
requires investigation of the oscillation dynamics of a system
of a large number of strongly interacting spins in a random
potential landscape. Although it was not possible at the time
when most of the above-mentioned work on RA magnets was
performed, the capabilities of modern computers allow one to

address this problem numerically in great detail. Such a study
must be worth pursuing because of the absence of the rigorous
analytical theory of random magnets and with an eye on their
applications as microwave absorbers.

In this paper we consider the dynamics of an amorphous
ferromagnet consisting of up to 500 000 spins within the RA
model. It assumes (see, e.g., Refs. [14–16] and references
therein) that spins interact via ferromagnetic exchange but
that directions of local magnetic anisotropy axes are randomly
distributed from one spin to another. In the past this model
was successfully applied to the description of static properties
of amorphous magnets, such as the ferromagnetic correlation
length, zero-field susceptibility, the approach to saturation,
etc. [17].

The essence of the RA model can be explained in the
following terms. The ferromagnetic exchange tends to align
the spins in one direction, but it has no preferred direction.
In the absence of the magnetic field, such direction in a
crystalline body is determined by the magnetic anisotropy
that arises from the violation of the rotational symmetry by
the crystal lattice. Still, due to the time-reversal symmetry,
any two states with opposite directions of the magnetization
have the same energy. In a macroscopic magnet this leads to
the formation of ferromagnetically aligned magnetic domains.
Magnetic particles of sizes below 1 μm typically consist of
one such domain.

This changes in an amorphous magnet. If no material
anisotropy was introduced by a manufacturing process, such
a magnet would be lacking global anisotropy axes. Random
on-site magnetic anisotropy disturbs the local ferromagnetic
order but cannot break it at the atomic scale a because the RA
energy per site DR is small compared to the exchange energy
J . The resulting magnetic state can be understood within the
framework developed in the seminal papers of Larkin [18],
and Imry and Ma (IM) [19]. Due to random local pushes
from the RA the magnetization wonders around the magnet at
the nanoscale in a random-walk manner (see Fig. 1) with the
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FIG. 1. Spin configuration in a two-dimensional (2D) RA ferro-
magnet obtained by relaxation from random initial orientations of
three-component Heisenberg spins. Spins form correlated regions—
Imry-Ma domains. The color coding reflects the sign of the
out-of-plane sz component of the spin with orange/green correspond-
ing to positive/negative. The in-plane spin components sx, sy are
shown by white arrows.

ferromagnetic correlation length given by R f /a ∝
(J/DR)2/(4−d ), where d is the dimensionality of the system.

This statement, known as the IM argument, works for
many systems with quenched randomness, such as disor-
dered antiferromagnets [20], flux lattices in superconductors
[21], charge-density waves [22], liquid crystals and polymers
[23,24], and superfluid 3He -A in aerogel [25]. In the case of
the RA ferromagnet it suggests that the RA, no matter how
weak, breaks the long-range ferromagnetic order for d = 1–3,
although the order can persist locally on the scale R f that can
be large compared to the interatomic distance a if DR � J .
For the same ratio DR/J , the lower is the dimensionality
of the system, the smaller is the correlated region. (For-
mally, the long-range order is restored in higher dimensions
d = 4, 5, . . . .)

A fundamental feature of the RA model is that it can
be rescaled in terms of spin blocks of size r > a with the
effective strength of random anisotropy D′

R ∼ DR(a/r)d/2 and
the effective exchange J ′ ∼ J (a/r)2 up to the size r at which
D′

R ∼ J ′, which is the essence of the IM argument. This can be
useful for numerical work, but it also means that the model is
intrinsically nonperturbative. It describes a strongly correlated
system that cannot be treated perturbatively on small DR/J .
The latter is evidenced by the IM result for the ferromagnetic
correlation length R f .

One deficiency of the IM model is that it ignores topologi-
cal defects [26] (apparent in Fig. 1) that lead to metastability.
It was recently argued that random field (RF) converts a
conventional ferromagnet into a topological glass in which
ferromagnetically correlated regions (often called IM do-
mains) possess nonzero topological charges [27]. Although
this argument was made for the RF rather than the RA, the

two models have much in common due to the fact that the
RA creates a local anisotropy field that acts on spins similarly
to the RF. The RA model, however, is more nonlinear than
the RF model. High metastability, history dependence, and
memory effects [28] exhibited by ferromagnets with random
magnetic anisotropy reveal complex nonergodic temporal be-
havior typical of spin glasses [29].

Fueled by potential applications, there has been a large
body of recent experimental research on the absorption of mi-
crowave radiation by nanocomposites composed of magnetic
nanoparticles of various shapes and dimensions, embedded
in dielectric matrices [30]. With the use of more and more
exotic shapes and materials, the complexity of such systems
has increased dramatically in recent years [31–33], but their
evaluation as microwave absorbers has been largely empirical
and often a matter of luck rather than driven by theory.

Here we investigate the microwave absorption by the RA
magnet in a zero external field. This case is the least obvious
from the theoretical point of view and the least studied in
experiments, although it must be the most interesting one for
applications. We consider the model in which the ferromag-
netic correlation length is dominated by the RA that is large
compared to the local dipolar fields. As has been discussed
above, static properties of this model were intensively inves-
tigated in the past, and good agreement with experiment was
achieved. However, theoretical studies of the dynamics were
scarce. Our goal is to fill that gap and try to understand the
fundamental physics of the absorption of the ac power by
the random magnet without focusing on material science. The
reference to microwaves throughout the paper is determined
by the outcome: The peak absorption happens to be in the
microwave range due to the typical strength of the magnetic
anisotropy.

We should emphasize that this problem is noticeably dif-
ferent from the microwave absorption by a nanocomposite.
Coated magnetic particles or particles dissolved in a dielectric
medium are absorbing the ac power more or less inde-
pendently when neglecting weak dipole-dipole interaction
between them. On the contrary, in the amorphous ferromagnet
all spins are coupled by the strong exchange interaction, and
they respond to the ac field collectively. Metastability and
magnetic hysteresis exhibited by the RA magnet [16] makes
such response highly nontrivial.

Here, we study the regime of the linear energy trans-
fer from the input mode (the ac field) into a continuum of
magnetic modes. Linear resonance transitions require a small
amplitude of the ac field that is the case in many practical
situations. In the linear regime, transitions between different
metastable states of the random magnet are rare, and most
of the spins are precessing near their local energy minima.
The physics of the linear energy transfer into the continuum
is similar for both classical and quantum systems (Fermi’s
“golden rule”).

Our most interesting observation is that the absorption of
the microwave power in the RA magnet is dominated by spin
oscillations localized inside well-separated ferromagnetically
correlated regions (IM domains) that at a given frequency are
in resonance with the microwave field. In that sense there is a
similarity with a nanocomposite where certain particles react
resonantly to the ac field of a given frequency. However, the
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number of such areas in a random magnet must be greater due
to the higher concentration of spins.

The paper is organized as follows. The RA model and
the numerical method for computing the absorption of the ac
power are introduced in Sec. II. Results of the computations
are given in Sec. III. Interpretation of the results, supported
by snapshots of oscillating spins, is suggested in Sec. IV. Es-
timates of the absorbed power and implications of our findings
for experiments are discussed in Sec. V.

II. THE MODEL AND NUMERICAL METHOD

We consider the classical Heisenberg RA model described
by the Hamiltonian,

H = −J

2

∑
i, j

si · s j − DR

2

∑
i

(ni · si )
2 − h(t ) ·

∑
i

si, (1)

where the first sum is over nearest neighbors, si is a three-
component spin of a constant length s, DR is the strength of
the easy axis RA in energy units, ni is a three-component unit
vector having random direction at each lattice site, and h(t ) =
h0 sin(ωt ) is the ac magnetic field in energy units. We assume
ferromagnetic exchange J > 0. Factor 1/2 in front of the first
term is needed to count the exchange interaction Js2 between
each pair of spins once. In the numerical work we consider a
chain of equally spaced spins in one dimension (1D), a square
lattice in 2D, and a cubic lattice in three dimensions (3D).
For the real atomic lattice of square or cubic symmetry the
single-ion anisotropy of the form −(n · s)2 would be absent,
the first nonvanishing anisotropy terms would be fourth power
on spin components. However, in our case the choice of the
lattice is merely a computational tool that should not affect
our conclusions.

The last term in Eq. (1) describes Zeeman interaction of the
spins with the ac magnetic field of amplitude h0 and frequency
ω. We assume that the wavelength of the electromagnetic
radiation is large compared to the size of the system so that
the time-dependent field acting on the spins is uniform in
space. This corresponds to situations of practical interest when
the microwave radiation is incident to a thin dielectric layer
containing random magnets.

As in microscopic studies of static properties of random
magnets [14,17,26], we assume that in the absence of net
magnetization the dynamics of the spins is dominated by the
local exchange and the effective random magnetic anisotropy.
The latter is determined by the amorphous structure factor or
the size of the grain in a sintered material. It is typically large
compared to the dipole-dipole interaction (DDI) between the
spins. Adding DDI to the problem would have resulted in
a considerable slowdown of the numerical procedure since
the study of RA ferromagnets requires system of size large
compared to the ferromagnetic correlation length. It would
be justified only if DDI was significantly changing the re-
sults, which is not the case here. This can be understood in
the following terms. Long-range magnetostatic interactions
in crystalline ferromagnets are responsible for the formation
of magnetic domains of size ranging from micrometers to
millimeters depending on the geometry of the sample [15]. On
the contrary, the RA leads to the formation of much smaller

nanometer size Imry-Ma domains for which local interactions
are dominant.

The effective exchange field acting on each spin from the
nearest neighbors in d dimensions is 2dJs. In our model it
competes with the anisotropy field of strength 2sDR. The case
of a large random anisotropy 2sDR � 2dJs, that is, DR � dJ ,
is obvious. It corresponds to a system of weakly interacting
randomly oriented spins, each spin aligned with the local
anisotropy axis n. Due to the two equivalent directions along
the easy axis the system possesses high metastability with the
magnetic state depending on history.

On the contrary, weak anisotropy DR � dJ cannot destroy
the local ferromagnetic order created by the strong exchange
interaction. The direction of the magnetization becomes only
slightly disturbed when one goes from one lattice site to the
other. As in the random walk problem, the deviation of the
direction of the magnetization would grow with the distance.
In a d-dimensional lattice of spacing a the average statistical
fluctuation of the random anisotropy field per spin in a volume
of size R scales as Deff = 2sDR(a/R)d/2. Since Heisenberg
exchange is equivalent to J (∇s)2 in a continuous spin-field
model, the ordering effect of the exchange field scales as
2dJs(a/R)2. The effective exchange and anisotropy energies
become comparable at R ∼ R f , where

R f ∼ a(dJ/DR)2/(4−d ) (2)

determines the ferromagnetic correlation length. The exact
numerical factor in front of (dJ/DR)2/(4−d ) is unknown, but
the existing approximations and numerical results suggest
that it increases progressively with the dimensionality of the
system [15,26].

Since magnetic anisotropy has relativistic origin its
strength per spin is usually small compared to the exchange
per spin. Anisotropy axes in the amorphous ferromagnet are
determined by the local arrangement of atoms. When the
latter has a short-range order the axes are correlated within
structurally ordered grains whose size must replace a in the
RA model. This results in a greater effective RA, making
both limits DR � dJ and DR � dJ relevant to amorphous
ferromagnets [14,16].

As to the Zeeman interaction of the ac field with the
spins, that is determined by the amplitude of h in Eq. (1),
and in all situations of practical interest it would be smaller
than all other interactions by many orders of magnitude. It is
worth noting, however, that for a sufficiently large system the
random energy landscape created by the RA and the ferromag-
netic exchange would have all energy scales, including that of
h. This, in principle, may inject nonlinearity into the problem
for any small amplitude of the ac field.

The dynamics of the system is given by the Landau-
Lifshitz equation,

h̄ṡi = si × heff,i − αsi × (si × heff,i ), heff,i ≡ −∂H
∂si

,

(3)

that describes precession of the spins about the direction of the
local effective field and relaxation towards it. Here, α � 1 is
the phenomenological damping constant. However, as will be
discussed later, a random magnet has a continuous distribution
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of resonances (normal modes) that makes the power absorp-
tion insensitive to the small damping. Using the equation of
motion above (see the Appendix), one obtains the relation,

Ḣ(t ) = −ḣ(t ) ·
∑

i

si(t ) − α

h̄

∑
i

[si(t ) × heff,i]
2 (4)

for the rate of change in the energy of the magnetic system.
It equals the work of the ac field per unit time (absorbed
power) minus the dissipated power. We define the change in
the energy of the spin system and the absorbed energy of the
ac field as time integrals,

�E =
∫

dt Ḣ(t ), Eabs = −
∫

dt ḣ(t ) ·
∑

i

si(t ), (5)

respectively. For a conservative system (α = 0) these two
quantities coincide. They represent the two ways of calculat-
ing the absorbed power numerically, which is important for
checking the self-consistency and accuracy of computations.
In the presence of dissipation (α > 0), these two quantities are
different.

When the phenomenological damping is included, the en-
ergy of the spin system and, thus, �E saturate in a stationary
state in which the power absorption is balanced by dissipation.
On the contrary, the work Eabs performed by the ac-field
continues to increase period after period of the ac field. In this
case the rate of change in Eabs becomes the single measure of
the absorbed power.

If the damping was due to the emission of electromagnetic
waves by spins, then at long times the energy would saturate
due to the detailed balance between absorption and emission
of photons. However, in real systems the damping would
be dominated by the interaction of spins with electrons and
phonons, making reemission of microwaves irrelevant. For
a large system, a long computing time is needed to reach
saturation, especially when the damping is small. Fortunately,
in most cases the absorbed power can be already obtained with
good accuracy from a short computation on a conservative
system, typically using five periods of the ac field.

One other complication arises from the necessity to keep
the amplitude of the ac field as small as possible in relation
to the exchange and anisotropy to reflect situations of prac-
tical interest. In this case, one can expect normal modes to
respond to the ac field independently. However, decreasing the
amplitude of the ac field below a certain threshold increases
computational errors. Large amplitude of the ac field causes
resonant group of the normal modes to oscillate at higher
amplitudes, which triggers nonlinear processes of the energy
conversion.

We use the following procedure. At the first stage, the
magnetic state in the zero field is prepared by the energy
minimization starting from random orientation of spins. This
reflects the process of manufacturing of an amorphous fer-
romagnet by a rapid freezing from the paramagnetic state
in the melt. The numerical method [34] combines sequential
rotations of spins si towards the direction of the local effective
field Heff,i with the probability η and the energy-conserving
spin flips (overrelaxation) si → 2(si · Heff,i )Heff,i/H2

eff,i − si

with the probability 1 − η. We used η = 0.03 that ensures
the fastest relaxation. At the end of this stage, a disordered

magnetic state with the ferromagnetic correlation length R f is
obtained (see Fig. 1).

At the second stage, the ac field is turned on, and Eq. (3)
is solved with the help of the classical fourth-order Runge-
Kutta method. We also have tried the fifth-order Runge-Kutta
method by Butcher [35] that makes six function evaluations
per time step. This method can be faster as it allows a
longer time step for the same accuracy. However, for the
RA model it shows instability and has been discarded. The
frequency dependence of the absorbed power was computed
in a parallelized cycle over frequencies. For each frequency,
the dynamical evolution was run up to five periods of the ac
field. For the lowest frequencies, the computation was rather
long. Wolfram Mathematica with compilation on a 20-core
Dell Precision Workstation was used. In the computations, we
set s = h̄ = J = 1, which corresponds to energy in the units
of J and time in the units of h̄/J . In most cases the integration
step was �t = 0.1 or 0.05. We computed the absorbed power
in 1D, 2D, and 3D systems with a number of spins N up to
400 000 in 3D.

In three dimensions, the ferromagnetic correlation length at
small DR is very large and can easily become longer than the
system size. In this case, the magnetization per spin m = |m|,
where m ≡ (1/N )

∑
i si is the average spin polarization, may

be far from zero at the energy minimum. For the sake of
uniformity, the ac field was always applied in the direction
perpendicular to m for which the power absorption is stronger
than in the direction parallel to m. The absorbed power Pabs

was obtained by numerically integrating the left or right side
of Eq. (4) during NT periods of the ac field and dividing
the result by NT T with T = 1/ f = 2π/ω. In most cases we
used NT = 5. All time-dependent results are represented for
the times equal to the multiples of the half-period of the ac
pumping for which sin(ωt ) = 0 and, thus, the Zeeman term
due to the ac field does not add up to the energy of the
magnetic system. It was numerically confirmed that Pabs ∝ h2

0,
so, in the plots, we show Pabs/h2

0 per spin.

III. NUMERICAL RESULTS

To test our short-time method of computing the absorbed
power, we performed longer computations and plotted the
absorbed energy vs time for the integer number of periods
of the ac-field t = nT, n = 0, 1, 2, . . .. For the undamped
model α = 0, both methods of computing the absorbed energy
discussed in the previous section give the same result, which
proves sufficient computational accuracy. For the damped
model, the energy of the system saturates at long times
whereas the magnetic work (the absorbed energy) continues
to increase linearly.

An example of these tests is shown in Fig. 2 for a 2D
system of 300 × 300 spins with DR/J = 1, h̄ω/J = 0.2, the
ac-field amplitude h0/J = 0.01, and different values of the
damping constant α. For the unrealistically high damping
α = 0.1 the absorbed energy line goes higher than the other
dependencies. For α = 10−2, 10−3, and 10−4, the magnetic
work is practically the same. This confirms our conjecture
about a continuous distribution of resonances for which the
absorption does not depend of the resonance linewidths, see
the next section. In the undamped case α = 0, the absorbed
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FIG. 2. Upper panel: Absorbed energy of the ac field vs time for
a 2D system of 300 × 300 spins for different values of the damping
constant. The energy increase ΔE of the magnetic system caused
by the ac power absorption, that saturates at long times due to
dissipation, is shown at α = 10−4. The short-time dependence of the
absorbed power is the same in all cases except for that of the largest
damping. Lower panel: The short-time dependence of the absorbed
energy shows that the slope that determines the power absorption is
nearly constant and can be established with good accuracy after five
periods of the ac field.

energy goes lower at long times which indicates saturation of
resonances at a given amplitude of the ac field.

An important finding of these numerical experiments is that
the absorbed energy increases nearly linearly in time, that is,
the absorbed power is practically time independent. This al-
lows one to use a small number of periods NT = 5 or 10 in the
computation of the absorbed power at different frequencies
for different system dimensionalities. Still, computations for
large systems and low frequencies are rather long.

Short time intervals lead to the broadening: �ω ∼
1/t = 1/(NT T ) = ω/(2πNT ). For NT = 5 one obtains �ω ∼
0.03ω, a rather small broadening given that the absorption
spectrum is broad and the computations are performed over
many decades of frequency ω of the ac field. Computa-
tions with NT = 10 produced essentially the same results as

FIG. 3. Absorbed power vs ω for different values of the random
anisotropy DR in 1D.

computations with NT = 5. As an illustration, one can con-
sider a pumped harmonic oscillator with the energy (m/2)
(ẋ2 + ω2

0x2) − x f0 sin(ωt ), described by the equation of
motion ẍ + 2	ẋ + ω2

0x = ( f0/m) sin(ωt ) with low damping
	 � ω0. At short times 	t � 1, the absorbed power (rate of
energy change) is given by

Pabs = f 2
0 t

2m

1 − cos[(ω − ω0)t]

[(ω − ω0)t]2
. (6)

The width of the peak in the absorption decreases with the
measurement time as �ω ∼ 1/t , whereas its height grows lin-
early with t so that its integral intensity is independent of time.
For a broad distribution of the oscillators’ frequencies ω0, this
function can be replaced by Pabs ≈ [ f 2

0 /(2m)]πδ(ω − ω0).
This is the limit in which computations reported here have
been performed.

Given the weak dependence of the absorption on the damp-
ing at small α the bulk of our results were obtained for α = 0.
The choice of the amplitude of the ac field is important for
numerical work. Large h0 reduces numerical noise whereas
leading to the flattening of the absorption maxima due to a
partial saturation. Small h0 increases computational errors.
We have chosen the values h0/J = 0.0001 in 1D (where nu-
merical errors are the smallest), h0/J = 0.0003 in 2D, and
h0/J = 0.003 in 3D.

The frequency dependence of the absorbed power for in
a 1D RA ferromagnet is shown in Fig. 3. This is the easiest
case computationally. One can use a long chain of spins (here
N = 30 000) that is much longer than the magnetic correla-
tion radius R f in 1D. Thus, after the energy minimization
the system remains well disordered m � 1. Figure 3 shows
broad absorption maxima shifting to lower frequencies with
decreasing DR. The heights of the maxima are approximately
the same. At large frequencies, there is a cutoff at the highest
spin-wave frequency ωmax = 4dJ ⇒ 4J in 1D.

Frequency dependence of the absorbed power for the 2D
model is shown in Fig. 4. Qualitatively, the results are the
same as in 1D, only we used a larger system of N = 340 ×
300 = 102 000 spins. Here, we were able to go down to the
RA only as small as DR/J = 0.2 as compared to 0.1 in 1D
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FIG. 4. Absorbed power vs ω for different values of the random
anisotropy DR in 2D.

because the absorption maximum is shifting to very low fre-
quencies on decreasing RA.

Frequency dependence of the absorbed power for the 3D
model is shown in Fig. 5. In the range of DR/J that is reliably
accessible numerically, the absorption curves are similar to
1D and 2D. However, the 3D model is the hardest to crack
numerically because the ferromagnetic correlation length R f ,
given by Eq. (2) with d = 3, becomes very long at small
DR. We had to use 3D systems of a much greater number
of spins, 68 × 74 × 80 = 402 560 but of smaller lateral di-
mensions than 1D and 2D systems that we have studied.
The lowest RA for which we could observe the absorp-
tion maximum in 3D was DR/J = 2. For lower DR, the
absorption maxima shift to very low frequencies for which
computation becomes impractically long and inhibited by the
accumulation of numerical errors.

Frequency dependence of the power on the right side of the
absorption maximum allows scaling shown in Fig. 6. We have

FIG. 5. Absorbed power vs ω for different values of the random
anisotropy DR in 3D.

FIG. 6. Scaling representation of the absorbed power at high
frequencies for d = 1–3.

found that P(ω) in this region follows the power law:

Pabs ∝ D2
R

J2

( J

h̄ω

)(4−d )/2

, (7)

up to the high-frequency cutoff determined by the strength
of the exchange interaction. Away from the maximum the
absorption in this high-frequency region is lower in higher
dimensions. However, the heights of the absorption maxima
are comparable in all dimensions, see Figs. 3–5. The maxi-
mum absorption has weak dependence on the strength of the
RA and the strength of the exchange interaction. By order of
magnitude it is given by Pmax ∼ h2

0N/h̄.

IV. INTERPRETATION OF THE RESULTS

A. Independence of the phenomenological damping

One noticeable feature of the ac power absorption by the
RA magnet is its independence of the damping within a broad
range of the damping constant α � 1, see Fig. 2. It can be un-
derstood along the lines of the qualitative argument presented
below.

The absorption power by a conventional ferromagnet near
the FMR frequency ω ≈ ω0 has a general form [15]

P(ω,ω0, α) ∝ h2
0ω

2
0

αω2
0G(

ω2 − ω2
0

)2 + (
αω2

0G
)2 , (8)

with G being a geometrical factor depending on the po-
larization of the ac field and the structure of the magnetic
anisotropy. In the amorphous magnet, parameters ω0 and G
are broadly distributed due to the distribution of the magni-
tude and the direction of the effective RA. At α → 0 Eq. (8)
becomes

P(ω,ω0) ∝ h2
0ω

2
0δ

(
ω2 − ω2

0

) ∝ h2ω0δ(ω − ω0). (9)

Assuming the distribution function f (ω0) for the resonances,
satisfying ∫

dω0 f (ω0) = 1, (10)

214414-6



ABSORPTION OF MICROWAVES BY RANDOM-ANISOTROPY … PHYSICAL REVIEW B 103, 214414 (2021)

one obtains for the power absorption at a frequency ω,

P(ω) ∝
∫

dω0 f (ω0)h2
0ω0δ(ω − ω0) = h2

0ω f (ω), (11)

which is independent of α.
In fact, Eq. (8) is valid at the times longer than the re-

laxation time so that the stationary state of the system is
achieved. In this paper, to the contrary, short times are used
for which the relaxation can be neglected and absorption in
the magnetic system is described by a formula similar to
Eq. (6) for the undamped harmonic oscillator. Nevertheless,
for a broad distribution of ω0, both formulas can be replaced
by the same frequency δ-function ∝δ(ω − ω0) so that one
obtains the same result.

The function f (ω0) for the RA magnet is unknown. It
is related to a more general poorly understood problem of
excitation spectrum of systems characterized by a random
potential landscape that we are not attempting to solve here.
Based upon our numerical results, an argument can be made,
however, that sheds light on the physics of the absorption by
the RA magnet, see below.

B. Estimation of the maximum-absorption frequency

The spin field in the RA ferromagnet, see Fig. 1, resem-
bles to a some degree a domain structure or magnetization
of a sintered magnet composed of densely packed single-
domain magnetic particles. The essential difference is the
absence of boundaries between IM domains. They are more
of a reflection of the disordering on the scale R f than the
actual domains. If one, nevertheless, thinks of the IM do-
mains as independent ferromagnetically ordered regions of
size R f , their FMR frequencies, in the absence of the ex-
ternal field, would be dominated by the effective magnetic
anisotropy Deff due to statistical fluctuations in the distribution
of the RA axes. In this case the most probable resonance
frequency that determines the maximum of P(ω) must be
given by

ωmax ∼ Deff ∼ DR(a/R f )d/2. (12)

Substituting here R f /a ∼ k(d )(J/DR)2/(4−d ) with the factor
k(d ) increasing [14] progressively with d , we obtain

ωmax

J
= 1

kd/2

(DR

J

)4/(4−d )

. (13)

It suggests that ωmax/J must scale as (DR/J )4/3 in one dimen-
sion, as (DR/J )2 in two dimensions, and as (DR/J )4 in three
dimensions. For typical parameters of RA magnets [17], ωmax

falls in the microwave range.
The dependence of ωmax/J on DR/J for d = 1–3 derived

from Figs. 3–5 is shown in Fig. 7. In 2D and 3D there is a
full agreement with the above argument. In 1D the best fit
seems to be the 3/2 power of DR/J instead of the expected 4/3
power. Given the qualitative nature of the argument presented
above and good fit for d = 2, 3 the agreement is nevertheless
quite good. The small factor in front of the power of DR/J ,
that becomes progressively smaller as one goes from d = 1
to d = 3, correlates with the established fact [14,36] that k(d )
increases with d .

FIG. 7. Peak absorption frequency vs strength of the RA. Points:
numerical experiment. Lines: Power-law fits. In 1D, the expected
power-law 4/3 is shown by the dashed line whereas the best fit 3/2
is shown by a solid line.

C. Visualization of the local dynamical modes

Further evidence of the validity of our picture that the
power absorption occurs inside resonant IM domains comes
from the analysis of the spatial dependence of local spin devi-
ations from the initial state s(0)

i , defined as �s2
i = (si − s(0)

i )2.
They are related to local spin oscillations induced by the
ac field and are illustrated in Fig. 8 for a 1D RA ferro-
magnet with DR/J = 0.1 at the frequency ω/J = 0.015 that
corresponds to the absorption maximum (see Fig. 3). No-
ticeable spin deviations occur at multiple discrete locations.
Their amplitude is apparently determined by how well the
frequency of the ac field matches the resonant frequency of
the IM domain at that location. The oscillating domains ap-
pear to be well separated in space. Their positions depend on
frequency in a random manner because for each frequency
there is a different resonant domain and there is no clear

FIG. 8. Spatial dependence of spin deviations in a 1D RA ferro-
magnet after NT = 10 periods of ac pumping.
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FIG. 9. Spatial dependence of spin deviations in one areas of
resonant absorption at different moments in time: NT = 2.5, 5, 10
periods of ac pumping. Upper panel: The highest peak at n = 6074 in
Fig. 8 zoomed in; lower panel: The second-highest peak at n = 2499
zoomed in.

correlation between positions of domains corresponding to
close frequencies.

Two regions of maximal spin deviations of Fig. 8 are
zoomed at in Fig. 9. It shows that the amplitude of resonant
spin oscillations steadily grows with time. Spin deviations
rapidly disappear away from the maximum. For the frequency
ω/DR = 0.015, the widths of these regions is on the order
of 10a which roughly agrees with the 1D ferromagnetic cor-
relation length computed in Ref. [36]. Up to the unknown
factor of order unity it is also in agreement with the expected
relation (12) between R f and the resonant frequency. Time
dependence of the spin deviations at these two spatial maxima
is plotted in Fig. 10.

Figure 11 shows oscillating regions in a 2D RA ferromag-
net. Here again the spin regions that absorb the ac power are
well separated in space. This is in line with our picture of res-
onant IM domains in which the effective magnetic anisotropy
due to statistical fluctuations of easy-axis directions matches
the frequency of the ac field. The peaks in Figs. 8, 9, and 11
grow in time as the energy is absorbed.

FIG. 10. Time dependence of the heights of the largest and
second-largest absorption peaks in the preceding figures.

At present we do not have the full theory of the fre-
quency dependence of the absorbed power. Apparently, it is
related to the size distribution of ferromagnetically correlated
regions (Imry-Ma domains), which remains a challenging
unsolved problem of statistical mechanics. Our numerical
findings, however, may shed some partial light on this
problem.

Indeed, we have found that at large frequencies the power
absorption follows Eq. (7): P ∝ ω(d/2)−2. If it is related to the
precession of IM domains of size R, then according to Eq. (12)
the frequency of this precession scales as ω ∝ R−d/2. Since
this is a high-frequency regime, it must correspond to small
R. According to Eq. (11) P ∝ ω f (ω). Combined with Eq. (7)
it gives f (ω) ∝ ω(d/2)−3 at large ω. If distribution of IM do-
mains is given by F (R) satisfying

∫
dR F (R)= ∫

dω f (ω)=1,
then, using the above formulas, we obtain

F (R) = f (ω)
dω

dR
∝ R−[(d/2)−1]2

. (14)

FIG. 11. Spatial dependence of spin deviations in a 2D RA fer-
romagnet after NT = 5 periods of ac pumping.
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This suggests R−1/4 distribution of small-size IM domains in
1D and 3D and independence of R (up to a logarithmic factor)
in 2D.

The qualitative argument leading to Eq. (14) is based upon
the picture of independently oscillating IM domains. In reality
there are no boundaries between ferromagnetically correlated
regions. Our derivation suggests a large fraction of compact
correlated regions of size that is small compared to the fer-
romagnetic correlation length R f . It is supported by Fig. 1
but is different from the prediction of the exponentially small
number of such regions in the random-field xy model made
within the variational approach [37].

V. DISCUSSION

We have studied the power absorption by the random-
anisotropy ferromagnet in a microwave field in one, two, and
three dimensions. The one-dimensional problem describes
a thin wire of diameter smaller than the 1D ferromagnetic
correlation length R f and of length greater than R f . The two-
dimensional problem corresponds to a film of thickness that
is small compared to the 2D ferromagnetic correlation length
and of lateral dimension large compared to R f . The three-
dimensional problem corresponds to a particle of amorphous
ferromagnet of a size large compared to the 3D ferromagnetic
correlation length.

Our main finding agrees with the statements made by ex-
perimentalists [9]. It elucidates the physics of the microwave
absorption by an RA ferromagnet. The absorption is localized
inside well-separated regions. Scaling of the peak absorp-
tion frequency with the strength of the RA points towards
the mechanism of the absorption in which oscillations of
spins are dominated by isolated ferromagnetically correlated
regions (Imry-Ma domains) that are in resonance with the
microwave field.

Broad distribution of sizes of ferromagnetically correlated
regions results in the broad distribution of resonance fre-
quencies. It makes the absorption broadband. In 1D and 2D
systems the linewidth at half-height is close to the frequency
ωmax that provides the absorption maximum. The linewidth is
greater than ωmax in a 3D system. Another consequence of the
broad distribution of resonance frequencies is independence
of the absorption on the damping of spin oscillations within a
few orders of magnitude of the damping constant.

A remarkable observation is that the maximum of the ab-
sorbed power in a random magnet has a weak dependence
on basically all parameters of the system, such as dimen-
sionality, damping, the strength of the RA, and the strength
of the exchange interaction. By the order of magnitude it
is determined solely by the total number of spins absorbing
the microwave energy and the amplitude of the microwave
field. This again is a consequence of the broad distribution of
sizes of ferromagnetically correlated regions, causing broad
distribution of the effective magnetic anisotropy and effective
exchange interaction.

A practical question is whether the RA (amorphous)
magnets have a good prospect as microwave absorbers. Fre-
quencies that provide the maximum of the absorption depend
on the strength of the RA. The latter can be varied by, at least,
two orders of magnitude by choosing soft or hard magnetic

materials in the process of manufacturing an amorphous mag-
net. It must allow the peak absorption in the range from a few
gigahertz to tens of gigahertz.

Rigorous computation of the fraction of the incoming
microwave power absorbed by the system depends on its
composition and boundary conditions but an order of mag-
nitude estimate can be made based upon the following simple
argument. One of our findings is that the power absorption
at frequencies near the absorption maximum depends weakly
on the parameters of the RA ferromagnet, see Figs. 3–5. By
order of magnitude it equals Pmax ∼ 4(1 + χ )μ2

Bs2B2
0n0Ad/h̄

in terms of the length of the dimensionless spin s and the
dimensional amplitude B0 of the microwave field with χ being
the magnetic susceptibility and μB being the Bohr magneton.
Here we introduced concentration of spins n0, the area A, and
the thickness d of the absorbing layer. Since the incoming
microwave delivers to the layer the power Pm = (cB2

0/2μ0)A
with μ0 being the permeability of free space [38], we obtain
Pmax/Pm ∼ 8s2(1 + χ )μ0μ

2
Bn0d/(h̄c). This ratio is assumed

to be smaller than one. When it reaches unity on increasing
d this means that the microwave power would be totally
absorbed by a thicker layer. Given large susceptibilities ex-
hibited by the RA magnets [17], this regime may, in principle,
be achieved in a dielectric layer of a few millimeter thickness
densely packed with coated microscopic amorphous wires,
foils, and particles.
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APPENDIX: ABSORPTION OF THE AC FIELD
BY A MAGNETIC SYSTEM

The energy of the classical-spin system under the action of
the ac field can be written as

H(t ) = −h(t ) ·
∑

i

si(t ) + H0(t ), (A1)

where h(t ) is the ac field and H0(t ) is the rest of the energy
of the magnetic system. Due to the action of the ac field (as
well as other factors), orientation of spins depends on time.
The time derivative of the energy is

Ḣ(t ) = − ḣ(t ) ·
∑

i

si(t ) − h(t ) ·
∑

i

ṡi(t ) + Ḣ0(t )

= − ḣ(t ) ·
∑

i

si(t ) − h(t ) ·
∑

i

ṡi(t ) −
∑

i

Heff,i · ṡi(t )

= − ḣ(t ) ·
∑

i

si(t ) −
∑

i

heff,i(t ) · ṡi(t ), (A2)

where

Heff,i ≡ −∂H0

∂si
, heff,i ≡ h + Heff,i = −∂H

∂si
. (A3)

The time derivative of the spin vector is given by the equation
of motion (3) or, equivalently, by

h̄ṡi(t ) = si(t ) × heff,i − α
{
si(t )[si(t ) · heff,i] − heff,is

2
}
.

(A4)
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This gives

Ḣ(t ) = − ḣ(t ) ·
∑

i

si(t ) − α

h̄

∑
i

{
s2h2

eff,i − [
si(t ) · heff,i

]2}
, (A5)

or, finally,

Ḣ(t ) = −ḣ(t ) ·
∑

i

si(t ) − α

h̄

∑
i

[si(t ) × heff,i]
2. (A6)
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