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Electromagnetic, piezoelectric, and magnetoelastic characteristics of a quantum spin chain system
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Electric, piezoelectric, and elastic characteristics of the quantum spin-1/2 chain system are calculated. Using
the exact analytical solution we show that electric permittivity, piezoelectric and elastic modules, and magnetic
characteristics can manifest strong dependencies on the values of the external magnetic, electric field, external
strain, and temperature.
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I. INTRODUCTION

Magnetoelectric, piezoelectric, and magnetoelastic effects
are the manifestation of the coupling between the electric,
magnetic, and elastic subsystems of the studied compounds.
Possible uses of those effects in micro- and nanoelectronics,
e.g., spintronics [1,2], as switching devices, or as writing
and reading devices for memory storage, which can be gov-
erned by external fields and strains attract the attention of
researchers. On the other hand, such attention to those effects
is caused by the interesting physics behind them. The best
known subjects for such a purpose are so-called multiferroics,
i.e., substances which have both magnetic and ferroelectric
properties (see, e.g., [3–9]). As such, most of the studies
were performed on magnetically ordered systems, like ferro-
and antiferromagnets (like ferroborates; for the recent studies
see [10–13]). However, it is clear from general grounds that
similar effects can exist in spin systems without magnetic
ordering.

Recently we have studied magnetoelectric, piezoelectric,
electromagnetic and magnetoacoustic effects in the quantum
paramagnet (a single spin) [14,15], where the quadrupole spin
moment, the key subject for such systems, has a single-ion
nature. It is also interesting to study the quantum many-body
spin insulating system, in which similar effects can take place;
however, the quadrupole spin moment is of interspin nature.
Quantum spin chain compounds can serve as a very good
testing ground for consideration of the interaction between
electric, magnetic, and elastic subsystems. Here the reduced
dimensionality preserves the system against magnetic order-
ing at nonzero temperatures [16]. On the other hand, those
systems manifest quantum many-body effects. Last but not
least, for spin-1/2 chains there exist many exact theoretical
results [17], which give the opportunity to check them in com-
parison with the data of experiments in spin chain compounds.

The goal of the present study is to find the effects of the
renormalization of the magnetic, electric, and elastic charac-
teristics of an insulating spin chain system due to the coupling
between the electric, magnetic, and elastic subsystems of
the crystal. The ligands surrounding magnetic ions determine
the crystalline electric field, which acts on magnetic ions

and, together with the spin-orbit interaction and the exchange
one, defines the magnetic anisotropy of the effective (indirect
superexchange in nature) interaction between spins in the
considered spin model. Then the interaction between the spin,
charge, and elastic subsystems of the crystal can yield mag-
netoelectric, piezoelectric, and magnetoelastic effects in such
a quantum many-body spin system. Below we calculate how
such an interaction can be observed in the temperature, mag-
netic field, electric field, and external strain dependencies of
the characteristics of such a crystal, like the magnetic moment,
magnetic susceptibility, electric permittivity, and piezoelectric
and elastic modules.

II. CONSIDERED SYSTEM

The Hamiltonian of the considered model can be written as
[11,18]
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where Sx,y,z
n are the operators of spin projections of the spins

1/2 situated at the site n, g is the effective g factor for the
magnetic field H (supposed to be directed along the z axis), μB

is the Bohr magneton, I = (Jx + Jy)/2 and J = (Jx − Jy)/2,
Jx,y,z are the parameters of the magnetically anisotropic ex-
change interaction (we consider the case with −|I| � Jz �
|I|; the most interesting effects are related to the antiferro-
magnetic spin-spin interactions), E ≡ Ex is the electric field
directed along the x axis, ε is the electric permittivity, e is
the piezoelectric modulus (do not confuse with the charge
of the electron), C is the elastic modulus, u is the strain
(u ≡ uxx − uyy, and u0 is the static strain), and a and b are
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the coefficients of the magnetoelectric and magnetoelastic
couplings, respectively (all issues are connected with the co-
ordinate x).

The form of the electromagnetic and strain-spin and
piezoelectric coupling is the particular case of the general
interactions between spin, electric, and elastic degrees of
freedom

∑
m,n

∑
ipq aipqEiS

p
n Sq

m,
∑

m,n

∑
i j pq bi j pqui jSpSq, and∑

ipq eipqEiupq, where n, m numerate the lattice sites, and
i, j, p, q = x, y, z [18] with a, b, and e being the components
of the tensors aipq, bi j pq, and eipq. Here we use the form of
magnetoelectric and magnetoelastic couplings similar to [11]
where the studied effects were observed in the magnetically
ordered multiferroic. Generally speaking, according to the
above, the considered effect does not depend on the orien-
tation of the spin chain directly. It is rather related to the
orientation of the axes of the magnetic anisotropy of the spin-
spin interaction in the chain. The latter is determined mostly
(if not taking into account rather weak magnetic dipole-dipole
interaction) by the distribution of nonmagnetic ligands, sur-
rounding magnetic ions, through which the indirect exchange
between spins of magnetic ions is realized. The spin-orbit
interaction together with the orientation of orbitals of ligands
and magnetic ions affects the anisotropy of the interspin in-
teractions in the chain, the key issue of the present study.
However, e.g., the effect of the electric field will be maximal
for the orientation of the chain perpendicular to the direction
of the electric field (x axis). On the other hand, the strain must
be in the xy plane of the crystal; i.e., in that case, we deal
with the strains of ligands in the plane, perpendicular to the
direction of the chain.

III. GENERAL APPROACH

Using the standard formulas of the elasticity theory [19]

σ = ∂F

∂u
= Cu + eE + bQ, (2)

where F is the free energy of the system, σ is the elastic
deformation, Q = (1/N )〈∑n(Sx

nSx
n+1 − Sy

nSy
n+1)〉 (the brack-

ets denote the averaging with the density matrix, and N is the
length of the chain) is the average value of the operator of the
component of the quadrupolar spin moment of the chain [20],
and the definition

e = dσ
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, (3)

for the effective piezoelectric modulus [18], we get

eeff = e + b
∂Q
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. (4)

Then using the equation for the electric induction D,

D = −4π
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, (5)

and the definition of the electric permittivity,
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, (6)

we find the effective permittivity

εeff = ε − 4πa
∂Q

∂E
. (7)

Finally, according to the elasticity theory [19] we have

ρ
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, (8)

where ρ is the density of the crystal. Calculating the right-
hand side of that equation we get
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Then using the equation of the electric neutrality (we use here
only the necessary component of the electric induction)
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we obtain
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The right-hand side of the latter can be presented via the
effective elastic modulus Ceff . Let us denote Jeff = J −
aE − b(u − u0). We obtain Q = −∂F/∂Jeff , and ∂Q/∂E =
−a(∂Q/∂Jeff ) and ∂Q/∂u = −b(∂Q/∂Jeff ). Then we can take
into account that ∂Q/∂Jeff = χQ is the component of the
tensor of the quadrupolar susceptibility. It yields

eeff = e − abχQ,

εeff = ε + 4πa2χQ, (12)

and

Ceff = C − b2χQ + 4π
e2

eff

εeff

= C + 4πe2 − b(8πae + bε)χQ

ε + 4πa2χQ
. (13)

Taking into account that the component of the quadrupolar
susceptibility is positive, we see that the change of the electri-
cal permittivity εeff − ε is positive. The change of the elastic
modulus Ceff − C exists even for a = 0, i.e., for the absent
magnetoelectric coupling (in that case, however, the piezo-
electric coupling produces the constant term). The change
obviously consists of two contributions (see the first line of
the above formula). The first contribution (the magnetoelastic
contribution) is negative; it manifests the softening of the
elastic modulus due to the magnetoelasticity. The second term
is positive; it manifests the hardening of the elastic modulus,
caused by the piezoelectricity. Hence, the softening or the
hardening of the elastic modulus (the sign of the change) of
the considered system depends on whether the quadrupole
susceptibility is larger or smaller than 4πe2/b(8πae − bε)
(see the second line). Finally, the sign of the change of
the piezoelectric modulus eeff − e depends on the sign
of (−ab).

For convenience one can introduce the relative changes
of the electric permittivity �ε = εeff − ε, the piezoelec-
tric modulus �e = eeff − e, and the elastic modulus �C =
Ceff − C (the latter is connected with the relative change
of the sound velocity �v/v ≈ �C/2C for high symmetric
lattices).
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On the other hand, we can see that the magnetic moment of
the system depends on the value of the external electric field
E and on the static and the internal strains u0 and u (i.e., on
the characteristics of the elastic subsystem).

IV. SPIN CHAIN FEATURES

Below we consider the cases which permit analytical solu-
tions. For example, let us consider the case Jz = 0, for which
we can use the well-known exact solution for the spin-1/2 XY
chain (see, e.g., [17]). Here we have

χQ = −∂2F

∂J2
, (14)

and the z projection of the average magnetic moment M =
(gμB/N )

∑
n〈Sz

n〉 can be written as

M = − ∂F

∂H
, (15)

with the magnetic susceptibility χ = ∂M/∂H , where the free
energy of the system can be written as
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where T is the temperature, kB is the Boltzmann constant, and

εk = [(gμBH − I cos(k))2 + [J − aE − b(u − u0)]2 sin2 k]1/2.

(17)
Namely, the projection of the magnetic moment is

M = gμB

2N

∑
k

(gμBH − I cos k)

εk
tanh(εk/2kBT ). (18)

It is also easy to show that the component of the magnetic
susceptibility χ depends on the values of the external electric
field and the static and internal strains too.

The effect of the z-z spin-spin interaction can be analyti-
cally taken into account, e.g., utilizing the well-known exact
result [21] for H = T = 0. The energy of the ground state of
the system with the Hamiltonian Hchain,
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j, (19)

can be exactly obtained at H = 0 by using the known Baxter
solution [21]. Two exchange constants can be expressed via
the third one as Jz = cn(2ζ , k)Jx and Jy = dn(2ζ , k)Jx so that
the parameter ζ is determined by the anisotropy of spin-spin
interactions. Here cn(ζ , k), dn(ζ , k) [and sn(ζ , k), see below]
are Jacobi elliptic functions of the argument ζ with the mod-
ulus k. The latter determine the magnetic anisotropy of the
system. The modulus k is equal to

k =
[

J2
x − J2

y

J2
x − J2

z

]1/2

. (20)

The ground-state energy can be written as [21]

Egs = Jx

8
+ πJx

2K ′
k

sn(2ζ , k)
∞∑

n=1

X, (21)

where
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with τ = πKk/K ′
k , λ = πζ/K ′

k (0 < λ < τ ), and Kk and K ′
k

being the complete elliptic integrals of the first kind with the
modulus k and k′ = √

1 − k2, respectively. Then, by differ-
entiating twice the ground-state energy Egs with respect to
J = (Jx − Jy)/2 (see also [20]), we get the value of the neces-
sary component of the ground-state quadrupolar susceptibility
χQ of the XYZ spin-1/2 chain. However, such an approach
permits to obtain the analytic (however, exact) result, only
for H = 0, in the ground state and for low temperatures (see
[20,22]). It is also possible (and for practical purposes more
convenient) to use the Hartree-Fock-like approximation to
take into account the nonzero Jz coupling constant. The result
can be obtained using the consideration of the Hamiltonian
Hchain in the Hartree-Fock-like approximation as the XY part
of the spin-1/2 Hamiltonian of the one-dimensional spin-1/2
chain with the renormalized parameters. After the well-known
Jordan-Wigner transformation [23] and the Fourier transfor-
mation the total Hamiltonian of the interacting spin-1/2 chain,
Hchain, can be written as

Hchain = −N[Jz + 2gμBH]
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where the fermion operators ak (a†
k) are destruction (creation)

operators, and N is the length of the chain. Let us introduce
the parameters [24]
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which satisfy the self-consistency equations
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For the biaxial spin-1/2 chain we can write in the Hartree-
Fock-like approximation as

Ãk = gμBH + 2sJz − (I − rJz ) cos(k),

B̃k = −i(J + qJz ) sin(k), (26)

ε̃k =
√

Ã2
k + |B̃k|2,

where brackets denote the Gibbs distribution with the Hamil-
tonian Hchain ≈ ∑

k ε̃kc†
kck + C, the fermion operators ck (c†

k )
are destruction (creation) operators in which Hchain is diagonal
in the Hartree-Fock-like approximation, and C is the operator-
independent value. In the general case of nonzero Jx,y,z we
can solve Eqs. (25) analytically, e.g., for high temperatures
kBT 
 max(ε̃k ). The solution is

s = gμBH

4kBT − 2Jz
,
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B̃k ≈ −iJ sin(k)

(
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)
,

(27)

where Jz � kBT . The low-temperature regime is more inter-
esting. There correlations of the one-dimensional spin system
can manifest themselves. Unfortunately, even in the ground
state the analytical solution of Eqs. (25) is complicated (it can
be presented as the combination of elliptic integrals, which is
clear, taking into account the above presented exact solution
[21]). However, the simple solution, as we show below, re-
veals some main features of exact results for spin-1/2 chains,
at least in the ground state. We can consider the case H = 0
(with s = 0), in which the following relation holds:

J + qJz = ±(I − rJz ). (28)

These relations mean that (r + q)Jz = Jy for the plus sign,
and (r − q)Jz = −Jx for the minus sign. The self-consistency
equations are simplified to

r = ±q = 1

2
tanh

(
I ∓ rJz

kBT

)
,

s = 0, (29)

with q = r for the plus sign, and q = −r for the minus sign.
The transcendental equations (29) can be solved graphically,
and the solution exists for any temperature range. It is easy
to show that solution leads to the onset of a critical tem-
perature, below which the magnetic ordering can take place.
It is, of course, the artifact of the mean-field nature of the
Hartree-Fock-like consideration. The critical nonzero tem-
perature must not exist for a one-dimensional spin system

FIG. 1. Magnetic moment of the spin-1/2 chain for I = a = 1
with J = Jz = 0 for T = 0.01 as a function of the external magnetic
field H for the external electric field E = 0 (red solid line); E = 1
(blue dashed line) and E = 3 (black dashed-dotted line).

with the nearest-neighbor interactions with gapless excita-
tions [16]. For Jx = Jy = Jz, on the other hand, excitations
are gapped. There are no exact results for gapped spin chain
models with nearest-neighbor interactions which manifest
spontaneous magnetic ordering at nonzero temperatures. We
know that the Ising chain and the XY chain reveal ordering in
the ground state [25,26]. For T = 0 the simple solution of the
self-consistency equation (29) corresponds to r = q = 1/2, or
r = −q = 1/2. The solution manifests the spin ordering for x
(y), components of spins at T = 0, expected [26] for Jy = Jx.
Such an ordering is similar to the ones of the Ising or XY
chains [25,26]. Notice, however, that mean-field features of
the used approximation imply mean-field values of correlation
exponents. The renormalization of those exponents can be
taken into account, e.g., in the bosonization approach [27].
The main features of the above shown results will be kept,
though.

Summarizing, the spin-spin interaction with Jz = 0 in the
Hartree-Fock-like approximation yields the dependence of
the magnetic moment, and the magnetic and the quadrupolar
susceptibility of the XY spin-1/2 chain, on Jz.

V. RESULTS

Now let us present some results, to illustrate the features
of the electromagnetic, piezoelectric, and magnetoacoustic
characteristics of the spin chain system.

First, let us consider the electromagnetic effect; i.e., let us
see how the external electric field can change the magnetic
field behavior of the magnetic characteristics of the spin chain
(first without the effect of the elastic subsystem; see below).
In what follows we use the units in which gμB = kB = 1
with Jz = 0, and I = 1 for simplicity. Figures 1 and 2 show
the magnetic field behavior of the magnetic moment and the
magnetic susceptibility for the case J = 0 at T = 0.01 and
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FIG. 2. Magnetic susceptibility for the spin-1/2 chain as a func-
tion of the external magnetic field H and various values of the
external electric field E . The parameters and notations are the same
as in Fig. 1.

for several values of the electric field E . We see that the
external electric field can drastically change the behavior of
magnetic characteristics. For example, for E = 0 the magnetic
moment in the ground state shows the saturation behavior
for gμBH > gμBHc = I . At the critical field the ground-state
magnetic susceptibility manifests the square-root divergence.
On the other hand, for E = 0 for H > Hc the magnetic mo-
ment is not saturated at T = 0, and the magnetic susceptibility
is finite there. At H = Hc the magnetic susceptibility shows
the weaker logarithmic feature in the ground state. For higher
temperatures the effect becomes less strong.

Naturally, similar behavior is kept for J = 0. There is a crit-
ical value of the external electric field Ec = J/a, at which the
system becomes effectively uniaxial (there is no anisotropy in
the “easy” spin plane). However, for any other value of the
external electric field the system is biaxial. That is manifested
in the different behavior of magnetic characteristics of the spin
chain for various values of the external field.

Consider now other effects, the magnetoelectric, magne-
toelastic, and the piezoelectric ones in the spin chain. Figure 3
shows the magnetic field behavior of the mentioned com-
ponent of the quadrupolar susceptibility for various values
of the external magnetic field at T = 0.01 (the values of
the parameters of the spin chain are the same as in Figs. 1
and 2).

Figure 4 shows the magnetic field behavior of the
quadrupolar susceptibility of the spin chain as a function of
the magnetic field for the external field E = 1 for several
values of the temperature.

Now let us consider the magnetoelectric effect, namely,
the dependence of the electric permittivity of the spin chain
with the coefficient of the magnetoelectric coupling a = 1 on
the external electric and magnetic fields. We see from Fig. 5
that the application of the magnetic field reduces the effective
electric permittivity of the spin chain.

FIG. 3. The component of the quadrupolar susceptibility for the
spin-1/2 chain as a function of the external magnetic field H and
various values of the external electric field E . The parameters and
notations are the same as in Fig. 1.

Figure 6 shows the change of the piezoelectric modulus
of the spin chain with I = 1, J = 0.5, and the coefficients
of the magnetoelectric and magnetoelastic couplings a = 0.5,
b = −0.5, respectively, as a function of the applied external
electric field for several values of the external magnetic field.
The magnetic field reduces the change of the piezoelectric
modulus. Figure 7 shows the piezoelectric modulus as a func-
tion of the electric field for H = 0 for several values of the

FIG. 4. The component of the quadrupolar susceptibility for the
spin-1/2 chain as a function of the external magnetic field H and
various values of temperature (T = 0.01, solid red line; T = 0.1,
dashed blue line; and T = 0.5, dash-dotted black line) for the
external electric field E = 1. The parameters are the same as in
Fig. 3.
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FIG. 5. The change of the electric permittivity for the spin-1/2
chain as a function of the external electric field E at T = 0.01 for
a = 1 and various values of the external magnetic field (H = 0, solid
red line; H = 1.01, dashed blue line; and H = 1.5, dash-dotted black
line). Other parameters are the same as in previous figures.

temperature. At Ec = J/a the piezoelectric modulus manifests
the second-order quantum phase transition at T = 0.

Finally, let us consider the change of the elastic modulus of
the spin chain. Figure 8 shows the temperature dependence of
the elastic modulus for zero electric field for several values of
the external magnetic field for the initial values of the electric
permittivity ε = 20 and of the elastic modulus e = 2. We see
that the application of the magnetic field shifts the position

FIG. 6. The change of the piezoelectric modulus for the spin-1/2
chain as a function of the external electric field E at T = 0.01 for
a = 1 and various values of the external magnetic field (H = 0, solid
red line; H = 1.01, dashed blue line; and H = 1.5, dash-dotted black
line).

FIG. 7. The change of the piezoelectric modulus for the spin-1/2
chain as a function of E and H = 0 for different values of the
temperature (T = 0.01, solid red line; T = 0.1, dashed blue line; and
T = 0.5, dash-dotted black line).

and the value of the minimum in the temperature dependence
of �C. Figure 9 shows the temperature dependence of the
change of the elastic modulus at H = 0 for several values of
the external electric field E .

Then Figs. 10 and 11 show the magnetic field dependence
of the change of the elastic modulus of the spin chain.

We can see that with the growth of the temperature the
minimum in the magnetic field dependence of the change of
the elastic modulus is shifted to lower values of H . On the

FIG. 8. The change of the elastic modulus for the spin-1/2 chain
as a function of the temperature at E = 0 and various values of the
external magnetic field (H = 1.5, solid red line; H = 1.01, dashed
blue line; and H = 0, dash-dotted black line). Other parameters are
the same as in Fig. 6.
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FIG. 9. The change of the elastic modulus for the spin-1/2 chain
as a function of the temperature at H = 0 and various values of the
external electric field (E = 1.01, solid red line; E = 0, dashed blue
line; and E = −3, dash-dotted black line). Other parameters are the
same as in Fig. 8.

other hand, at the critical value of the external field E = Ec

the magnetic field dependence manifests the deeper minimum
at low values of the field H (see Fig. 11).

Our Hartree-Fock-like analysis shows that for nonzero val-
ues of −I � Jz � I the magnetoelectric, piezoelectric, and
magnetoelastic effects in the spin chain manifest qualitatively
similarly to the case Jz = 0 behavior.

FIG. 10. The change of the elastic modulus for the spin-1/2
chain as a function of the external magnetic field H at E = 0 for
various values of the external magnetic field (T = 0.01, solid red
line; T = 0.1, dashed blue line; and T = 0.5, dash-dotted black line).
Other parameters are the same as in Figs. 8 and 9.

FIG. 11. The change of the elastic modulus for the spin-1/2
chain as a function of the external magnetic field H at T = 0.01 for
various values of the external electric field (E = 0, solid red line;
E = 1.01, dashed blue line; and E = −3, dash-dotted black line).

Now, let us turn to the external strain behavior of magnetic,
acoustic, and electric characteristics of the spin chain. Look-
ing at Hamiltonian (1) we see that the external strain u0 plays
a role similar to the external electric field E : It renormalizes
the effective parameter of the in-plane anisotropy of spin-spin
interaction J . Then, the effect of the external strain is similar
to the effect of the external electric field. As for the internal
strain, the following relation holds:

∂2u

∂t2
−

[
C − be

a

]
∂u

∂x
=

[
e + bε

4πa

]
∂E

∂x
, (30)

i.e., the dynamics of the internal strain in the system depends
on the spatial changes of the external electric field. Notice,
however, that the realistic values of the external electric field
can be much larger than the one for the external strain, caused
by the external pressure. This is why it is possible that for
realistic values of the external pressure one cannot reach the
values of u0 at which the crossover to the uniaxial behavior
can take place.

VI. SUMMARY

In summary, we have studied the magnetoelectric, electro-
magnetic, piezoelectric, piezomagnetic, and magnetoelastic
effects in the insulating spin chain system. We have shown
that electric, magnetic, and elastic characteristics of the con-
sidered system manifest interesting behavior, especially in the
low-temperature region. Important features of that behavior
are determined by two quantum critical points, Hc and Ec,
which govern the low-energy sector of the considered model.
The critical value of the magnetic field for the antiferromag-
netic chain is related to the phase transition to the (almost)
spin-polarized phase, where no magnetic ordering exists in
the ground state. It can be approximately determined by the
value (Jx + Jy)/2 + Jz; i.e., it is large enough (of order of
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the exchange coupling). Unfortunately, no exact results are
known for the XYZ spin chain in the magnetic field; hence
the critical value is defined only by approximate methods
or numerically. Nonetheless, that value is known exactly for
the cases of Jx = Jy, where gμBHc = I + Jz, or for Jz = 0,
where gμBHc = I . On the other hand, the critical value of the
external electric field is related to the value of the external
electric field, at which the effective magnetic xy anisotropy
is vanished. It is determined by the value of the anisotropy
of the spin-spin interaction, Jx − Jy, and by the value of the
electromagnetic coupling coefficient a (supposed to be small
enough). For the case Jz = 0 we have Ec = J/a (or uc

0 =
−J/b). All that results in the difference between the values
of those critical fields (strains). Such a behavior is different
from the one of multiferroics, in which one or more order pa-
rameters exist at low temperatures [3,4,7], and in the ordered
phases quantum effects are suppressed (one has classical vec-
tors of magnetic moments instead of spins with spin waves,

small deviations from the classical equilibrium). On the other
hand, the behavior differs from the one which takes place in a
(single-ion) paramagnet with the interaction between electric,
spin, and elastic subsystems, where many-body effects are
absent [14,15]. Some of the effects theoretically considered
here qualitatively agree with the ones observed in rare-earth
(paramagnetic) alumoborates [28], for example, the temper-
ature behavior of the electric permittivity, the piezoelectric
modulus, and the elastic modulus, and the general suppres-
sion of the features by the external magnetic field. It implies
the generic nature of the considered effects for systems in
which magnetic, electric, and elastic subsystems are strongly
coupled. On the other hand, the manifestation of quantum
phase transitions in the behavior of calculated characteristics
of the spin chain are related to the low-dimensional nature of
the considered many-body quantum spin system. The effects
predicted in this study can be useful for the application in
some devices of modern microelectronics.
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