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Geometric magnonics with chiral magnetic domain walls
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Spin wave, the collective excitation of magnetic order, is one of the fundamental angular momentum carriers in
magnetic systems. Understanding the spin wave propagation in magnetic textures lies in the heart of developing
pure magnetic information processing schemes. Here we show that the spin wave propagation across a chiral
domain wall follows simple geometric trajectories, similar to the geometric optics. And the geometric behaviors
are qualitatively different in normally magnetized film and tangentially magnetized film. We identify the lateral
shift, refraction, and total reflection of spin wave across a ferromagnetic domain wall. Moreover, these geometric
scattering phenomena become polarization dependent in antiferromagnets, indicating the emergence of spin
wave birefringence inside antiferromagnetic domain walls.
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I. INTRODUCTION

Spin wave, the propagating disturbance of ordered magne-
tization, is one of the basic excitations in magnetic systems.
As an alternative spin current carrier besides the spin-
polarized electrons [1], spin wave manipulation is not only
important for fundamental physics, but also attractive for
industrial applications [2,3]. Due to recent developments in
experimental techniques, including excitation in short wave-
length [4] and large amplitude [5], propagation in long
distance [4,6], as well as detection with high sensibility [7,8],
magnonics as a discipline devoted to manipulate spin wave is
receiving increasing interest [9,10].

Multiple approaches have been developed to control the
spin wave, such as applying external magnetic field [11-13],
electric or spin current [14,15], heat [16—18], and coupling
with microwave [19] and acoustic waves [20,21]. Restricted
by the external sources introduced in these approaches, spin
wave devices are typically difficult to miniaturize. An alter-
native approach is to utilize the magnetic textures, such as
the magnetic domain wall, magnetic vortex, and magnetic
skyrmion for the purpose of spin wave manipulation. Since
both magnetic texture and spin wave are of intrinsic magnetic
nature, they can coexist in single magnetic material, and in-
timately interact with each other. Using magnetic texture to
store information, and spin wave to process information, pure
magnetic computing schemes can be developed [5,22,23]. An
up-to-date review on the topic of magnonics based on textures
can be found in Ref. [10].

The influence of magnetic texture on spin waves is mostly
focused on the wave aspects of the spin wave, including its
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amplitude, phase, and polarization. The domain wall naturally
acts as the waveguide for spin wave [22,24-26], and magnetic
vortex functions as spin wave emitter [27]. A Mach-Zehnder
interferometer for spin wave can be constructed, by preparing
domain wall in one arm of a two-arm structure [28,29]. In the
presence of the Dzyaloshinskii-Moriya interaction (DMI), an
antiferromagnetic domain wall naturally serves as spin wave
polarizer and retarder [30]. However, the existing investiga-
tions on spin wave trajectory, dictating the particle aspect
of the spin wave, rely heavily on the wave-based equations
[31,32] or effects [33-36], with straightforward and quantita-
tive trajectory analysis missing.

In this work, we investigate the spin wave scattering by
magnetic domain walls in both normally magnetized film
and tangentially magnetized film. Based on the semiclassical
analysis and micromagnetic simulations, we identify various
geometric relations between incident and out-going spin wave
beams, including lateral shift, refraction, and the total re-
flection, similar to the classical geometric optics. And these
geometric magnonic phenomena become polarization depen-
dent when extending to an antiferromagnetic environment.
The geometric magnonics as demonstrated in this work, offers
us simple yet intuitive paradigms in constructing magnonic
devices of different functionalities.

This paper is organized as follows. In Sec. II, a semi-
classical scheme that describes the spin wave scattering by
chiral domain wall is established. Based on the semiclas-
sical trajectory analysis and the micromagnetic simulations,
various geometric magnonic phenomena in normally and
tangentially magnetized films are then demonstrated, and
further understanding by magnonic Snell’s law is pro-
vided. Section III is devoted to an extension of the above
geometric magnonic phenomena to an antiferromagnetic envi-
ronment. The spin wave constriction by chiral domain wall is
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(a) bulk case

(b) normally magnetized case

(c) tangentially magnetized case
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FIG. 1. Schematics of spin wave scattering across a chiral domain wall. (a) is in bulk material, and (b),(c) are in normally/tangentially
magnetized films, which are slice cuts of (a) in the x-y and x-z planes, respectively. (a) A magnetic domain wall along x direction, and
has translational invariance in the y-z plane. The black/green arrows denote domain wall magnetization m, and fictitious magnetic field b,
respectively, and the gray-scale background is for the scalar potential ¢. The blue/red slicing cut of the three-dimensional magnetic texture
corresponds to domain walls in a normally magnetized and tangentially magnetized two-dimensional magnetic film. The magenta arrow
denotes the incident spin wave beam, and the blue/red arrows denote the out-going beams in the x-y and x-z planes, respectively. In (b) and
(c) the gray arrow depicts the electric field, the green/orange colors encode the positive/negative magnetic field, and the blue/red lines are the
typical trajectories for normally incident spin wave on the domain wall. In the upper region, the magnetization distributions are depicted by
arrows, with the in-plane magnetizations highlighted in blue/red color.

presented in Sec. IV, and a short conclusion is drawn in
Sec. V.

II. BASIC MODEL
A. Spin wave dynamics in chiral domain wall

Consider a ferromagnetic system with its magnetization di-
rection denoted by unit vector m, then its magnetic dynamics
is governed by the Landau-Lifshitz-Gilbert (LLG) equation

ey

where m = 0m, y is the gyromagnetic ratio, and «
is the Gilbert damping constant. The effective magnetic
field h = —(1/uoM;)éu[m]/6m, where u[m] = (uoM;/2)
{K[1 — (m-&,)’] + A(Vm)?> + Dm - (V x m)} is the mag-
netic energy density with K the easy-axis anisotropy along
Z, A the exchange coupling constant, D the DMI constant,
o the vacuum permeability, and M; the saturation magneti-
zation. For exchange-type spin wave propagating in the thin
film of interest in this work, the dipolar interaction simply
renormalizes the easy-axis anisotropy K for out-of-plane mag-
netization, and thus is neglected in following investigations.

The total magnetization naturally divides into the static and
dynamical parts: m(r, t) = my(r) + dm(r, ), where mq(r)
represents the static magnetic texture, and dm(r,?) is the
dynamical spin wave excitation. In spherical coordinate with
e, = my(r) and the accompanying two transverse directions
€., the spin wave is expressed as Sm(r, ) = my(r, )& +
mgy(r, )€y, or equivalently as a complex field ¥ (r, ) =
mg(r, t) — imgy(r, t). We define up = u[my] as the energy den-
sity due to the static background my, and du = u[m] — i as
the energy density due to the spin wave excitation.

For a homogeneous domain with its static background
magnetization my(r) = £z, we have uyp=0. A domain
wall arises when two different domains meet, and has

m=—ym x h+ am x m,

finite energy uy > 0. Without loss of generality, we suppose
that the domain wall magnetization varies along the x axis,
i.e., my(x) rotates continuously from —Z to +Z along the x
axis with my(£o0) = +2, and is translational invariant along
the y/z axis. Due to the DMI, the magnetization inside the
domain wall is enforced to rotate counterclockwisely along
the advancing direction —2 — 4§ — +Z along the x axis, as
shown in Fig. 1(a). Upon this chiral domain wall, the spin
wave dynamics is governed by a Schrodinger-like equation
[22,37]

iy = y[A(=iV +a)’ + K — o1y, @
where the vector potential [38,39] a = Dm with D = D/2A,
and the scalar potential ¢ = 2uy/(uoMy) is caused by the
reduction of domain wall energy density uy due to spin
wave excitation, which reduces the local magnetization my —

my+/1 — ém - dm with the condition |m| = 1.

B. Semiclassical description

To investigate the spin wave scattering behavior by a chiral
domain wall, we construct a spin wave packet ¥4[r(¢)] with
central position r and central momentum q. When spin wave
wavelength is much shorter than the length scale of domain
wall (short wavelength condition), the constructed spin wave
packet can be simultaneously localized in real and momentum
space, thus is treated as a pointlike object. Following the time-
dependent variable principles [37,40,41] in the semiclassical
approach proposed by Sundaram ez al., the Lagrangian density
corresponding to Eq. (2) reads

L=k-T—a r—o,

3)

where w = y (Ak®> 4+ K — ¢) is the local spin wave frequency
with the canonical momentum k = q + a. Invoking the Euler-
Lagrangian rule on Eq. (3), the dynamics of the spin wave
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packet is then governed by
memE = go(—e — ¥ X b), 4)

where v =1 = dgw = 2y Ak is the spin wave velocity, and
mpm = K/v = hi/(2yA) is the effective mass for the spin
wave in ferromagnets, and ¢ is the elementary charge. Here
e=—(yh/qo)o¢X and b = (i/q9)V x a are the fictitious
electromagnetic fields induced by inhomogeneous magnetic
texture, i.e., the chiral domain wall here. The semiclassical
equation (4) is similar to the eikonal equations for the phase
of propagation wave, which has been widely used in studying
the trajectory of light and gravitational wave [42,43].

By denoting the domain wall profile in spherical coordi-
nate mo(r) = [0, sin Gy(x), cos Gy(x)] with 6y the polar angle
of magnetization my with respect to Z, it is straightforward
to find that the fictitious magnetic field b = (Fz/qO)D%(x)mo
always points opposite [because 6) < 0; see Fig. 1(a)] to the
magnetization my, and its strength is controlled by the mag-
netization gradient 6;(x). Apparently, the projection of the
magnetic field on the x-z (y-z) plane is (anti-)symmetric about
the domain wall center, i.e., b, is negative in the whole region
but b, is positive/negative in the left/right region, as depicted
in Fig. 1(a). In the meantime, the scalar potential ¢ inside the
domain wall is a potential well, as illustrated by the gray-scale
background centered at the domain wall in Fig. 1(a), which
gives rise to an electric field e, that is antisymmetric about the
domain wall.

With the above knowledge that the domain wall manifests
itself as fictitious fields e and b, we may treat the spin wave
scattering governed by Eq. (4) as a negatively charged particle
deflected by these fields. The electrostatic (Lorentz) force
flips as electric (magnetic) field reverses, thus the spin wave
deflection pattern depends on the symmetry of these ficti-
tious electromagnetic fields. Nevertheless, once the spin wave
packet moves away from the domain wall, it takes straight
trajectories, therefore simple geometric relations between in-
cident and out-going spin wave beams are expected.

For theoretical simplicity as well as experimental rele-
vance, here we focus on two scenarios: (i) the normally
magnetized thin film case with the easy-axis anisotropy per-
pendicular to the film, corresponding to the film plane being
x-y plane in Fig. 1(a); and (ii) the fangentially magnetized
thin film case with the easy-axis anisotropy lying in the
film, corresponding to the film plane being the y-z plane in
Fig. 1(a). More specifically, Figs. 1(b) and 1(c) show the slice
cut for these two scenarios. The perpendicular (to the film
plane) magnetic field in normally/tangentially magnetized
films are b, and —b,, respectively, which are antisymmetric
and symmetric, while the electric field e, for both cases are
antisymmetric.

For the special case of spin wave incidenting normally on
the domain wall [Figs. 1(b) and 1(c)], the spin wave experi-
ences two qualitatively distinct fates across the domain wall:
in the normally magnetized film, the spin wave is shifted
laterally [Fig. 1(b)], due to the opposite Lorentz forces in
the left/right domain wall region caused by the antisymmetric
magnetic field; while in the tangentially magnetized film, the
spin wave is bent upward [Fig. 1(c)], because of the symmetric
magnetic field.

C. Numerical results

To analyze the spin wave scattering problem more
systematically, we turn to the numerical calculations.
Here two types of numerical calculations are performed
in parallel: the full scale micromagnetic simulation (see
Appendix A) based on the original LLG equation (1)
and the trajectory simulation based on the semiclassical
equation (4).

We assume that the domain wall takes the Walker
profile with mg = [0, sech(x/W), tanh(x/W)] or 6y(x) =
2 arctan[exp(—x/W)], where W = /A/K is the characteris-
tic domain wall width [22,33]. The effect of DMI is only
to pin the domain wall as a Bloch type, and does not al-
ter the profile. Upon this magnetization profile, the scalar
potential is ¢(x) = 2K /qus)sechz(x/W), which is a po-
tential well since the magnetic energy density ug is larger
inside the domain wall. This scalar potential ¢(x) a spe-
cial Poschl-Teller type reflectionless potential [30,33,44,45],
which always passes spin wave perfectly. The field compo-
nents that can influence the spin wave trajectories are the
magnetic (electric) field lying in the out-of-plane (in-plane)
direction of the film plane, which are calculated for the nor-
mally magnetized and tangentially magnetized cases as in the
following:

4y hiK ) X X
= = =— sech”— tanh —, Sa
eNM = eTM = € oW W W (5a)
X X
bnv = b, = — h— tanh —, 5b
NM 8 oA sec W an W (5b)
X
by = —by = h?—, 5
™ ) 200AW sec W (5¢)

where the correspondence between bavrm and by, follow the
coordinate setting in Fig. 1.

With the fictitious electromagnetic fields exyyrm and
bnvyrv in Eq. (5), the spin wave trajectories calculated from
Eq. (4) with different incident angles are overlaid with the
micromagnetic simulation results, as shown in Fig. 2 for the
normally and tangentially magnetic film cases. As expected,
they agree well for all incident angles, and the out-going tra-
jectory develops a lateral shift Ar with respect to the incident
trajectory in normally magnetized film, but forms an angle
deflection AS in tangentially magnetized film. In addition, in
both normally magnetized and tangentially magnetized films,
when the incident angle exceeds a critical angle, the spin wave
packet is totally reflected by the domain wall. The reflection
only occurs when spin wave incidents along the upward direc-
tion, i.e., +¥ (+2) in normally/tangentially magnetized film,
highlighting the chiral nature of the underlying Lorentz force.
These trajectory shifting or bending behaviors can be mostly
understood from the magnetic field distributions. However,
the effective electric field also contributes in manipulating the
spin wave trajectory, which is shown as the difference between
the solid and dashed trajectories for including and excluding
the effect of the electric field in the main panels of Figs. 2(a)
and 2(b). For most incident angles, the electrostatic force is
dominated by the Lorentz force due to the large spin wave
velocity, but its contribution becomes non-negligible around
the total reflection situation. Nevertheless, due to the attractive
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(a) normally magnetized case (b) tangentially magnetized case
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FIG. 2. Numerical simulations of spin wave scattering by a chiral domain wall in (a) normally magnetized film and (b) tangentially
magnetized film. In the left panel, each line depicts a spin wave trajectory calculated from semiclassical equation (4) starting from the
same source point but with a specific incident angle, with solid/dashed lines denoting trajectories including/excluding the electric field. The
green/orange colors encode the positive/negative magnetic fields, and the arrows in the upper region denote the domain wall magnetizations.
In the right panels, three typical spin wave trajectories extracted from micromagnetic simulations are plotted in orange, and the semiclassical
trajectories are plotted in blue/red lines as in the left panel. The Gaussian spin wave beam is prepared in the gray antenna region with a
discrepancy between beam direction and antenna direction in (b) (see Appendix A), and the spin wave trajectories are extracted based on
spin wave flux (see Appendix B). The insets in (a) and (b) plot the lateral shift Ar and angle deflection AS as a function of incident angle
B, respectively, and the gray area denotes the total reflection range. In (a) inset, the gray/black dots are for the lateral shift with/without
electric field; and in (b) inset, the solid line is the theoretical angle deflection A = 180 — 28 for the total reflection case. The spin wave
leaking in the upper right in (a) is due to the subwave spreading in different angles for spin wave generated in the antenna. For all numerical
calculations and micromagnetic simulations, the spin wave frequency is f = 40 GHz, and the magnetic parameters are for yttrium iron garnet
Y;Fes0; (YIG) [22,30,33,45]: the exchange coupling constant A = 3.28 x 107" A m, the anisotropy K = 3.88 x 10°A/m, the DMI constant
D =3 x 107 A, and the damping constant & = 1 x 107%,

electrostatic force to the domain wall center, spin wave gains
a higher longitudinal velocity and less traveling time within
domain wall, and thus experiences less deflection.

The lateral shift Ar in normally magnetized film and the
angle deflection AB in tangentially magnetized film, as a
function of incident angle S, are summarized in the inset
of Figs. 2(a) and 2(b), respectively. Typically, as spin wave
deviates from the normal incident direction of the domain
wall, the velocity v, decreases and the passing time increases,
thus both the lateral shift Ar and angle deflection AS in-
crease. However, these two geometric quantities Ar and A
are both asymmetric with respect to the incident angle 8, since
the spin wave is subject to chiral Lorentz force inside the
domain wall. In Fig. 2(a) inset, the lateral shift Ar includ-
ing/excluding electric field shows a discrepancy, highlighting

D. Magnonic Snell’s law

For a straight domain wall under consideration in this
work, because of the translational invariance along the y/z
axes, the wave vector q,,, is conserved. Note that the canon-
ical wave vector k = q + a, the angle 8 formed between the
spin wave beam and the normal direction of the domain wall
obeys the following generalized magnonic Snell’s law:

normally magnetized: & sin 8 — Dm}, = const,  (6a)

tangentially magnetized: & sin 8 — Dm§ = const, ~ (6b)

where the in-plane magnetization component (mz/ ¢ for
normally/tangentially magnetized film) plays the role of gen-
eralized refraction index characterizing the magnetic medium.
The magnonic Snell’s law in Eq. (6) holds everywhere inside

the role of electrostatic force in developing the lateral shift.
And in Fig. 2(b) inset, the angle deflection A 8 maximizes for
a certain positive incident angle and starts to decrease linearly,
indicating the emergence of the total reflection of the spin
wave beam.

the continuum medium, thus is an extension of the previously
proposed Snell’s laws that only concerns two sides of an
interface [33,34,46,47].

The magnonic Snell’s law formulated in Eq. (6) is
schematically illustrated by the matching of corresponding

214407-4



GEOMETRIC MAGNONICS WITH CHIRAL MAGNETIC ...

PHYSICAL REVIEW B 103, 214407 (2021)

(a) normally magnetized

R ' bOOOOOO0

R
<

(b) tangentially magnetized

++++++;@®®i++++++

Y q: q:
D\
——— VY &\
N ~

FIG. 3. Schematics of magnonic Snell’s law across chiral domain
wall in (a) normally magnetized film and (b) tangentially magnetized
film. The isofrequency circles in the wave-vector space (g, g,,;) are
plotted at the left/right domains and the domain wall center, respec-
tively. The blue/red line plots the profile of in-plane magnetization
my/*, which acts as the generalized refraction index. The black arrow
denotes the local momentum vector k, which forms angle 8 with the
x axis, and the evolutions of angle B are connected by dashed lines.
The magenta arcs describe the modes with/without corresponding
propagation modes in other regions. The dotted arrow represents the
momentum k of spin wave generated in the other side of the antenna.
In upper region, the magnetization profile is depicted by arrows, with
the in-plane component highlighted by blue/red colors.

isofrequency circles, as depicted in Fig. 3. Three represen-
tative positions are the focus: the left/right domain with
my = FZ and the domain wall center my = +§. For each
isofrequency circle, the center is shiftedtoq = —a = —Dmy,
and the radius is k(x) = /(w/y) — K + ¢(x). Specifically
for the normally magnetized case in Fig. 3(a), the in-plane
magnetization m; maximizes at the domain wall center and
vanishes in left/right domains, therefore the domain wall
mimics a three-layer system with low/high/low refraction in-
dices. Consequently, the spin wave experiences a lateral shift,
similar to the lateral shift of light ray as passing through
an air/glass/air structure. As for the tangentially magnetized
cases in Fig. 3(b), the in-plane magnetization m{ monoton-
ically decreases along the x direction, therefore the domain
wall mimics a two-layer structure with low/high refraction
indices, giving rise to the spin wave refraction, similar to the
case of light refraction in an air/water interface. And since
there is an interface of effectively low/high refraction indices
for both normally and tangentially magnetized cases, the spin

wave total reflection arises due to the lack of a corresponding
propagation mode in the other regions.

III. SPIN WAVE DEFLECTIONS BY
ANTIFERROMAGNETIC DOMAIN WALL

The spin wave deflections in ferromagnetic environ-
ment discussed above naturally extend to antiferromagnets,
and their features are enriched by the additional polar-
ization degree of freedom. In antiferromagnets, due to
two sublattices with opposite magnetizations, there exists
both left/right circular polarization modes for spin wave
[8,30,48-50]. Since these two circular modes precess in op-
posite fashion, they experience opposite fictitious magnetic
fields induced by DMI, and thus are deflected in opposite
directions.

Here we denote the magnetization in two sublattices of
antiferromagnets as my ;; then the staggered magnetization is
n = (m; — mp)/|m; — my|, and the net magnetization ism =
m; + my. Under the approximation n - m = 0, the magnetic
dynamics in antiferromagnets is governed by an LLG-like
equation [45,51-54]

—n X i = —yn x h+on x n, @)

yJ
where h = AV?n + Kn,2 — DV x n is the effective field tak-
ing similar form as in Eq. (1), and J is the intersublattice
exchange coupling constant. And similarly, the total magneti-
zation n divides into the static background ny and the dynam-
ical antiferromagnetic spin wave excitation én: n = ny + én,
with 6n = ngéy + ny€4. The domain wall has the same mag-
netization profile as in the ferromagnetic case [45,54], and for
spin wave dynamics, Eq. (7) is reduced to a Klein-Gordon-like
equation [39,45]

U, = Y2 J[A(=iV +sa)’ + K — $1, 8)

where ; = ny — isng denotes the left/right circularly polar-
ized spin wave with s = F1 the chirality, and potentials ¢
and a follow definitions in Eq. (2). Following similar proce-
dures as in Eq. (4), the spin wave dynamics is recast from
Eq. (8) to

mapmIl = go(—e — I x sb), 9

where the right/left circular spin waves take analogy to
charged particles traveling in the same electric field e =
—(yh/qo)(yJ/20)V¢ and opposite magnetic fields Fb
with b = (fi/qo)V x a. The second scaling factor in the
electric field e is because the real potential in the Klein-
Gordon equation corresponds to a dispersion shift. We
should note that only the effective magnetic field changes
sign for the two polarizations; the effective electric field is
the same, therefore the two circular polarizations do not cor-
respond to the positive/negative charges. Here the spin wave
dispersion in homogeneous domains is w = y+/J(K + Ak?),
the group velocity is v = dyw = y2JAK/w, and the effective
mass is mapy = HK/V = hw/(y2JA).

The polarization-dependent trajectories calculated from the
semiclassical equation (9) and simulated based on micromag-
netics are depicted in Fig. 4, and they agree well with each
other as expected. In the normally magnetized case [Fig. 4(a)],
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(a) normally magnetized case

(b) tangentially magnetized case
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FIG. 4. Numerical simulations of spin wave scattering by an antiferromagnetic domain wall in (a) normally magnetized film and
(b) tangentially magnetized film. In each main panel, the green/orange/purple color plots the trajectory of left/right circular and linear spin wave
extracted from micromagnetic simulations, and the blue/red/black lines are corresponding trajectories calculated from semiclassical equation
(9). The lower two panels plot the trajectories of left/right circular spin wave separately. A linearly polarized oscillating magnetic field is exerted
in the antenna region (gray rectangle) at the domain wall center to generate spin wave. The spin wave trajectory with polarization information
is based on the extraction of spin wave flux (see Appendix B). In all numerical simulations, the spin wave frequency is f = 50 GHz, and the
magnetic parameters are as follows: the exchange coupling constant A = 3.28 x 107! A m, the anisotropy K = 3.88 x 10> A/m, the DMI
constant D = 2 x 1073 A, the interlayer coupling constant J = 1 x 10° A/m, and the damping constant @ = 1 x 10~*. The DMI constant D

here is slightly lower than in the FM case for better stability.

a linearly polarized spin wave beam is injected by the antenna.
For a large incident angle, the left/right circular modes beams
experience opposite lateral shift and split into two parallel
beams, causing a double refraction. For small incident angles,
one of the polarizations would bend so much that it is totally
reflected by the domain wall, while the other polarization still
experience a lateral shift and penetrates into the other domain.
In the tangentially magnetized case [Fig. 4(a)], the left/right
circular polarizations of the same frequency do not have the
same wave-vector direction, thus they split as soon as they
leave the antenna. As they hit the domain wall, they are bent
in opposite directions due to the opposite effective magnetic
fields in the domain wall region, and total reflection can also
happen for one of the polarizations if the incident angle is
smaller than a critical angle. All these polarization-dependent
scattering patterns shown in Fig. 4 can be straightforwardly
understood by the effective electromagnetic fields as in the
ferromagnetic case in Fig. 2, or by extending magnonic Snell’s
law to antiferromagnetic environment, by using :Fnﬁ/ * as the
the generalized refraction indices for left/right circular modes.

The spin wave birefringence phenomenon observed in
Fig. 4 refers to the polarization-dependent trajectories in
two-dimensional magnetic film, which is different from
the polarization-dependent phase demonstrated in one-
dimensional magnetic wire in previous reports [30,48,55].
Recently, the bireflection of spin wave induced by the hy-
bridization with elastic wave is also reported, where the film
boundary rather than a domain wall serves as the scattering
interface [56].

IV. SPIN WAVE CONSTRICTION BY DOMAIN WALL

We have seen that the normally magnetized case can be
considered as an analogy of air/glass/air for light (see Fig. 3),
where the domain wall serves as the middle high refraction
index “glass” layer. It is known that light can be confined in
the glass and travel along the glass layer without leaking into
the air because of the total internal reflection, as widely used
in optical fiber. In the normally magnetized film, a domain
wall can also be used to guide spin waves just as glass guiding
light. Figure 5 shows exactly this phenomena in normally
magnetized ferromagnetic and antiferromagnetic films. In the
ferromagnetic case, when the spin wave is excited within the
domain wall with a shallow incident angle, the downward-
going spin wave is constricted within the domain wall with a
snakelike trajectory, while the upward-going spin wave leaks
into the bulk domains. Therefore, this spin wave constriction
is unidirectional. This constriction is due to the opposite effect
Lorentz force due to the opposite effective magnetic fields
at the two sides of the domain wall [see the main figure in
Fig. 2(a)]. The AFM case is quite similar, but the constriction
depends on the spin wave polarization. This unidirectional
constriction can be also understood using the isofrequency
circle mismatching in Fig. 3(a).

This unidirectional constricted spin wave mode is different
from the spin wave bound state found within the domain wall
[22,24-27]. There are two major differences: (i) the spin wave
bound state previously discussed has frequency lower than
the bulk spin wave gap in the domains, while the constricted
spin wave mode discussed above has frequency above the
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(a)normally magnetized FM (b) normally magnetized AFM
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200 nm

] 200 nm
Z g-» X —

FIG. 5. Constriction of spin wave by a chiral domain wall in nor-
mally magnetized film in (a) ferromagnets and (b) antiferromagnets.
The green/orange color plots the trajectory of left/right circular and
linear spin wave extracted from micromagnetic simulations, and the
blue/red lines are corresponding trajectories calculated from semi-
classical equation (9), and all other settings follow Fig. 4. The spin
wave leaking in the upper right in (a) is due to the subwave spreading
in different angles for spin wave generated in the antenna, and similar
leaking also occurs in (b).

spin wave gap; (i) the spin wave bound state exists because
the scalar potential ¢ is a potential well (or the asymmetric
effective electric field) and regardless of the vector potential
or the effective magnetic field, while the constricted spin wave
mode here exists only because of the Lorentz force caused by
the asymmetric effective magnetic field.

In this work, the spin wave fiber is based on a single do-
main wall in normally magnetized film, thus is also different
from the previously reported spin wave fiber relying on two
parallel magnetic domain walls by present authors [33]. Xing
et al. [57] also reported the fiberlike spin wave propagation
behavior within a chiral domain wall, but their results are
based on single mode spin wave without demonstration of the
total internal reflection.

V. CONCLUSIONS

In conclusion, we demonstrate that the spin wave scatter-
ing by a chiral domain wall can be simplified to geometric
relations between incident and out-going beams. Underlying
these geometric scattering behaviors is the deflection of spin
wave by a fictitious electromagnetic field induced by domain
wall, where the deflection chirality is a collaboration of the
chirality of DMI, domain wall, and spin wave. The geometric
magnonics demonstrated in this work offers us new designing
principles in controlling spin wave propagation and separating
spin waves of opposite chiralities.
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APPENDIX A: MICROMAGNETIC SIMULATIONS

The micromagnetic simulations are performed in COMSOL
MULTIPHYSICS, where the LLG equation is transformed into a
weak form and then solved by the generalized-alpha method
[58]. In each simulation, a domain wall is placed at the mag-
netic film center, and a spin wave beam is prepared in the
rectangle antenna region and incident on the domain wall.
Near the film boundaries, the damping constant « is gradually
increased from 1 x 107 to 2 x 107! in 50 nm to absorb
undesired spin wave.

To generate spin wave beam, the excitation magnetic field
is set to take the Gaussian form [33,35,59]

212

oL X —x'||® ha Iy — .| (A)
— =X —X - =y - ,
2 ¢ G

where ©(x) is the Heaviside step function, &y and f are the
strength and frequency of the excitation magnetic field, and
A is the Gaussian distribution width. Here x" and y’ are the
positions along the width/height direction of the antenna, x,,
and y, are the central positions of the antenna, and w, and
h, are the width/height of the antenna. For micromagnetic
simulations in this work, the antenna size is set to w, =
250 nm, h, = 15 nm, and the Gaussian distribution width is
A = 60 nm.

We denote the velocity angle 8 as the angle between the
propagation direction of the spin wave beam and the x axis,
and antenna angle 8’ as the angle between the normal direc-
tion of antenna and the x axis. The velocity angle § is then
related to velocity v (or canonical momentum k), and the
antenna angle 8’ is related to the wave vector ¢, with

A
hex = hg cos(2m ft)exp <u>

vx / qx
B = arccos —, f' = arccos —.
X q

(A2)
Due to the vector potential a experienced by the spin wave
packet, or the relation k = q + a, the velocity angle 8 and
antenna angle B’ are not necessarily the same. More explicitly,
the vector potential a vanishes (maintains) in the uniformed
domains in normally/tangentially magnetized films, thus the
velocity angle S equals to (deviates from) the antenna angle
B, i.e., B = B’ in the normally magnetized case while 8 # B’
in the tangentially magnetized case.

The antiferromagnetic simulations are performed in a syn-
thetic antiferromagnetic film consisting of two ferromagnetic
layers that are coupled antiferromagnetically [45]. Denoting
m, ; as the magnetization in the upper/lower magnetic layer,
the magnetic dynamics is governed by coupled LLG equations

Ihi = —ym; X hi + am; X li'll', (A3)
where h; = AV?m; + Km{ — Jm;/2 is the effective fields
acting on m; with 1 =2,2 = 1. Defining staggered mag-
netization n = (m; —my)/|m; — my|, net magnetization
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m = (m; +my), and using the approximation n-m = 0,
Eq. (A3) is then recast to Eq. (7).

APPENDIX B: TRAJECTORY TRACKING
OF SPIN WAVE BEAM

To visualize the trajectory with polarization information of
the spin wave beam, we define the local spin wave flux

J@r 1) =mo(r) - [m(r, ) x m(r, )], (B1)

where my is the static magnetic background at t = 0, and m
is the total magnetization at the time ¢ under consideration.
The spin wave flux j is only nonzero when local magnetiza-
tion precesses, and its sign is directly determined by chirality
denoting the precession direction. For right circular spin wave

in ferromagnets, the corresponding flux j is always negative,
as shown in Figs. 2 and 5(a).

In antiferromagnets, the polarized spin waves generally
have both left/right circular polarization components, and
their mixture complicated the trajectory analysis. However, by
observing that the left/right circular spin wave mainly resides
at the upper/lower layer of the synthetic antiferromagnet, we
may define layer-resolved spin wave flux

Jie, ) = md(r) - [iy(r, t) x my(r, 1)], (B2)

where i = 1, 2 refers to the upper/lower layer. With flux ji
in the upper/lower layer, the total flux j = j; + j, and the po-
larized flux j* = (j; — j»)/2 are used to depict the spin wave
trajectory. The signal of total flux j maximizes for circular
spin wave, and the signal of j* maximizes for linear spin wave.
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