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We study phase transitions in the two-dimensional Heisenberg model with Dzyaloshinskii-Moriya interaction,
Ising anisotropy η, and dipolar interaction under zero and finite magnetic fields H . For three typical strengths
(zero, weak, and strong) of the dipolar interaction, we present the H -η phase diagrams by estimating order
parameters for skyrmion-lattice and helical phases and in-plane magnetization using a Monte Carlo method with
an O(N ) algorithm. We find in the phase diagrams three types of skyrmion-lattice phases, i.e., two square lattices
and a triangular lattice, helical phases with diagonal and vertical (or horizontal) stripes, a canted ferromagnetic
phase, and a polarized ferromagnetic phase. The effect of the dipolar interaction varies the types of the skyrmion
and helical phases in a complex manner. The dipolar interaction also expands the regions of the ordered phases
accompanying shifts of the phase boundaries to the positive H and η directions and causes an increase of the
density of skyrmions and shortening of the pitch length (stripe width) of helical structures. We discuss the details
of the features of the phase transitions.
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I. INTRODUCTION

Ultrathin magnetic films have attracted much attention for
applications in magnetic recording, and their unique magnetic
properties have drawn scientific interest [1,2]. The compe-
tition between magnetic anisotropies, short-range exchange,
and long-range dipolar interactions causes complex magnetic
orderings such as spin-reorientation transitions between in-
plane and out-of-plane magnetic phases and a variety of stripe
patterns [3–7].

The theoretical aspects of these phenomena have often
been investigated using the two-dimensional (2D) dipolar
Ising [8–22] or Heisenberg [23–37] model with magnetic
anisotropy, and phase diagrams with multiple stripe-ordered
phases have been shown in several parameter regions. Reen-
trant transitions associated with planar ferromagnetic, stripe,
and paramagnetic phases have also been presented [22,37].

Dzyaloshinskii-Moriya (DM) interaction plays an impor-
tant role in systems whose spatial reversal symmetry is
broken, and it causes weak ferromagnetism or helimagnetism.
Recently, a topologically protected magnetic structure called
a (magnetic) skyrmion was observed experimentally [38–45],
and because of its potential applications in spintronics de-
vices, the physical properties of skyrmions have drawn much
attention. For skyrmion-lattice phases, the competition be-
tween DM and exchange interactions is important.
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Skyrmion-lattice phases are more stabilized in 2D sys-
tems (thin films) than in three-dimensional ones [39]. In 2D
systems, the phase diagrams associated with skyrmion-lattice
phases have been actively investigated by theoretical and com-
putational methods with the use of the Heisenberg model with
DM interaction and with and without several anisotropies,
and their phase diagrams in specific parameter regions have
been shown [46–52]. However, studies on the effect of dipolar
interaction on the models [47,52] have hardly been performed
and have not been well understood because of the numerical
difficulty of treating long-range interactions.

In the present paper, we study the 2D classical Heisenberg
model with DM interaction, Ising anisotropy, and dipolar in-
teraction under zero and finite fields. We show the field vs
Ising anisotropy (H-η) phase diagrams for three typical cases
of the strength of the dipolar interaction, i.e., zero, weak, and
strong interactions.

We perform a direct simulation of order parameters in
the model using a Monte Carlo method. The most serious
difficulty in numerical computation is O(N2) (N is the total
number of spins) computational time originating from the
fully connected O(N2) long-range interactions, and we adopt
the stochastic cutoff (SCO) O(N ) method [53] to reduce the
computational cost.

The H-η phase diagram in the ground state without dipo-
lar interaction was studied using variational approaches for
equivalent continuum models. It was shown that in the case
of small DM interaction, for small |η|, triangular skyrmion-
lattice and helical phases exist at high and low (including zero)
fields, respectively, which are located between the canted
ferromagnetic (in-plane magnetic) phase at small η and the
polarized ferromagnetic phase at large η [47,48].
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Afterward, Lin et al. demonstrated that a square skyrmion-
lattice phase can exist at finite fields and in a specific small
region of η [49]. This phase is located at higher fields than the
helical phase and between the canted ferromagnetic phase at
smaller η and the triangular skyrmion-lattice phase at larger
η.

In the present paper, we report the following findings.
Without the dipolar interaction, when the DM interaction
is the same order as the exchange interaction, the square
skyrmion-lattice phase exists in a wider region of the phase
diagram, including zero field. The dipolar interaction expands
the regions of the ordered states whose boundaries shift to
the positive H and η directions, increases the density of
skyrmions, and shortens the pitch length (stripe width) of heli-
cal structures. The dipolar interaction induces another type of
square skyrmion-lattice phase with a different alignment, and
in the weak strength, a reentrance of a vertical (or horizontal)
helical phase through a diagonal helical phase takes place with
increasing η. These complex situations cause five kinds of
triple points in the phase diagrams.

The outline of the present paper is organized as follows.
The model and method are explained in Sec. II. In Sec. III,
the order parameters and magnetic structures are analyzed,
and the phase diagrams are presented. After an overview in
Sec. III A, discussions of the characteristics of the model
with no, weak, and strong dipolar interactions are given in
Secs. III B, III C, and III D, respectively. A variational analysis
is performed in Sec. III E to understand the mechanism of the
reentrant transition of the helical phase. The summary is given
in Sec. IV.

II. MODEL AND METHOD

In this study, we consider the system on a square lattice in
the xy plane composed of classical Heisenberg spins Si with
|Si| = 1 at position ri represented by the following Hamilto-
nian:

H = −J
∑
〈i, j〉

Si · S j

+ D
∑

i

{ex · (Si × Si+x̂ ) + ey · (Si × Si+ŷ)}

+ D′ ∑
i< j

{
Si · S j

r3
i j

− 3(Si · ri j )(S j · ri j )

r5
i j

}

− η
∑

i

(
Sz

i

)2 − H
∑

i

Sz
i , (1)

with the coupling constants J for the nearest-neighbor ferro-
magnetic interaction, D for the DM one, D′ for the dipolar
one, η for the Ising anisotropy, and H for the magnetic field
along the z axis. Vector ri j is defined as ri j ≡ r j − ri, ex and ey

are unit vectors in the x and y directions, respectively, and site
i + x̂ (i + ŷ) is the nearest-neighbor one of site i in the positive
x (y) direction. We consider both positive and negative (XY
anisotropy) values for η. Here we fix the coupling constants
of short-range interactions as J = D = 1.

A previous study of the model for J = D = 1 and
η = 0 without dipolar interaction by Nishikawa et al. [51]

FIG. 1. Definition of θ jk in Eq. (3). Blue circles denote the cen-
ters of skyrmions.

showed that a triangular skyrmion-lattice phase exists and the
skyrmion lattice does not have long-range positional order
but has long-range orientational order. In the present study, to
identify the triangular and square skyrmion-lattice phases, we
introduce an orientational order parameter which detects the
nth rotational symmetry Cn as follows. First, we detect a do-
main in which Sz

i < Sth � 0 for H � 0 are fulfilled and regard
this domain as one skyrmion. Then, we define its position as
the mean value of the positions of the spins inside the domain:

xk =
∑

ri∈Sk
ri∑

ri∈Sk
1

, (2)

where Sk is the kth domain. For weak fields, down-spin
regions are accidentally generated by thermal fluctuations be-
tween skyrmions. These down spins connect the skyrmions
momentarily. To detect skyrmions precisely, we tune the cut-
off value Sth depending on H . We take smaller Sth for weak
fields as Sth = −0.5 for H � 0.2, while Sth = 0 for H > 0.2.

The orientational order parameter is given as

�n ≡ 1

Ns

∑
j

∑
k∈∂ j einθ jk∑

k∈∂ j 1
, (3)

where Ns denotes the number of skyrmions, θ jk is the angle
between vector xk − x j and the x axis, and ∂ j is the set of
skyrmions adjacent to the jth one (Fig. 1). For the trian-
gular and square skyrmion lattices, n = 6 and 8 are taken,
respectively. We give below the reason why we take n = 8
instead of n = 4 to detect the square lattice.

We judge the adjacent skyrmions by Delaunay triangu-
lation [54]. When the lattice is slightly distorted from the
perfect square lattice, about half of the pairs of the next-
nearest-neighbor skyrmions are regarded as adjacent ones,
and this contribution to �4 partially cancels that from the
pairs of nearest-neighbor skyrmions. On the other hand, when
�8 is considered, the two contributions above have the same
sign, and such cancellation does not take place. We con-
firmed that �8 works as the order parameter of the square
skyrmion-lattice phase. For skyrmion-lattice phases, we also
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apply the local chirality [46] commonly used to detect them:

χ = 1

8π

∑
i

Si · (Si+x̂ × Si+ŷ + Si−x̂ × Si−ŷ). (4)

In model (1), χ takes a negative value for skyrmion-lattice
phases. It should be noted that χ = 0 by definition for the
configuration with skyrmion and antiskyrmion pairs at H = 0.
Furthermore, χ detects skyrmions without orientational order,
i.e., a liquid state. Therefore, we use χ to estimate the upper
limit of skyrmion-lattice phases at high fields.

In the helical phase, a stripe pattern of up and down spins is
formed. To detect the helical phase, we measure another type
of orientational order parameter [31], defined as

Ohv =
∣∣∣∣nh − nv

nh + nv

∣∣∣∣, Od =
∣∣∣∣nd1 − nd2

nd1 + nd2

∣∣∣∣, (5)

with

nh =
∑

i

(1 − Si · Si+x̂ ), (6)

nv =
∑

i

(1 − Si · Si+ŷ), (7)

nd1 =
∑

i

(1 − Si · Si+x̂+ŷ), (8)

nd2 =
∑

i

(1 − Si · Si+x̂−ŷ). (9)

Both of these order parameters correspond to the breaking
of the symmetry under π

2 rotation. The value of Ohv is the
maximum when the [1,0] or [0,1] helical structure is formed,
whereas that of Od is the maximum when the [1,1] or [1,−1]
helical structure is formed.

We also measure the uniform in-plane magnetization

Mxy = 1

N

√√√√(∑
i

Sx
i

)2

+
(∑

i

Sy
i

)2

(10)

with the total number of spins N , and it has a nonzero value in
the low-temperature phase when η is sufficiently small.

In Monte Carlo (MC) simulations of the present study,
we use the SCO O(N ) method [53], which reduces the com-
putational cost for dipolar systems. Each Monte Carlo run
for a set of H and η starts from a uniformly random state
at high temperature. For η � 3.0, the system is cooled from
T = 0.34 to T = 0.16 at intervals of T = 0.02 and further
cooled to T = 0.1, and for η < 3.0, it is cooled from T = 0.6
to T = 0.1 at intervals of T = 0.05. At each temperature,
400 000 MC steps are used for the measurement after 100 000
MC steps for the equilibration. The order parameters are es-
timated by averaging over four independent simulations for
system size L = 84 (N = L2), and the error bar is estimated
by ±σ/

√
4, where σ is the sample standard deviation.

We show a benchmark to compare the SCO method and
a naive MC method in Fig. 2. The computational time for
100 000 MCS is plotted as a function of N for the parameters
D′ = 0.6, H = 1.5, and η = 2.0. For D′ = 0.6 and L = 36 at
T = 0.1, we present a comparison between the two methods
of η dependence of �8, �6, and Mxy for H = 1.5 in Table I
and that of Ohv and Mxy for H = 0 in Table II. We confirm
that the SCO method costs O(N ) computational time and is

101
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104

102 103 104

tim
e

[s
]

N

SCO
naive

~N
~N2

FIG. 2. Computational time [s] as a function of N from the SCO
and naive MC methods. Red dotted and blue dash-dotted lines are a
guide for the eyes for the O(N ) and O(N2) dependences, respectively.

more efficient than the naive MC method, which costs O(N2)
computational time.

III. RESULTS

A. Overview of magnetic structures

The main results in the present paper are summarized in the
H-η phase diagrams at T = 0.1 for no (D′ = 0.0), weak (D′ =
0.3), and strong (D′ = 0.6) dipolar interactions in Figs. 3(a),
3(b), and 3(c), respectively. Snapshots of representative pat-
terns of spin configurations in the H-η space in a region of
36 × 36 spins obtained for L = 84 are displayed in Figs. 4(a)–
4(c) for D′ = 0.0, D′ = 0.3, and D′ = 0.6, respectively. Some
enlarged snapshots for typical magnetic orderings are also
shown in Fig. 5. Around the boundary of two phases, there is a
region in which the two order parameters have the same order.
The error bar of the phase boundary is defined to include this
region. The phase boundary is defined as the middle point of
the error bars.

At zero and low H for D′ = 0, the helical phase exists
at small |η|. The strength of D′ changes the direction of the
stripe structure of the helical phase. For zero and small D′,

TABLE I. Comparison of η dependences of �8, �6, and Mxy for
D′ = 0.6 and H = 1.5 between the SCO and naive MC methods at
T = 0.1 for L = 36.

η �8 (SCO) �8(naive)

1.0 0.00006 ± 0.00002 0.00005 ± 0.00002
2.0 0.840 ± 0.006 0.852 ± 0.004
3.0 0.23 ± 0.03 0.25 ± 0.05

η �6 (SCO) �6(naive)

1.0 0.00007 ± 0.00003 0.000049 ± 0.000009
2.0 0.0455 ± 0.0002 0.0457 ± 0.0005
3.0 0.7 ± 0.1 0.7 ± 0.1

η Mxy (SCO) Mxy (naive)

1.0 0.93371 ± 0.00008 0.9336 ± 0.0001
2.0 0.0123 ± 0.0001 0.01240 ± 0.00009
3.0 0.00898 ± 0.00006 0.00887 ± 0.00005
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TABLE II. Comparison of η dependences of Ohv and Mxy for
D′ = 0.6 and H = 0 between the SCO and naive MC methods at
T = 0.1 for L = 36.

η Ohv(SCO) Ohv(naive)

1.0 0.1644 ± 0.0002 0.1650 ± 0.0003
2.0 0.8649 ± 0.0001 0.86507 ± 0.00006
3.0 0.83 ± 0.01 0.843 ± 0.009

η Mxy(SCO) Mxy(naive)

1.0 0.9632 ± 0.0002 0.9632 ± 0.0002
2.0 0.0131 ± 0.0001 0.0131 ± 0.0002
3.0 0.0087 ± 0.0001 0.0088 ± 0.0001

the [1,1] or [1,−1] helical structure is formed, while for large
D′, the [1,0] or [0,1] helical one is formed. We call the former
and latter phases the diagonal helical phase and the vertical
helical phase (vertical and horizontal phases are equivalent),
respectively. For intermediate D′, a complex situation takes
place; that is, the type of the helical structure depends on η.

Skyrmion-lattice phases exist regardless of the value of
D′. However, the types of the lattice vary depending on D′.
We find a triangular skyrmion-lattice phase [Fig. 5(a)] and
two kinds of square skyrmion-lattice phases, in which the
nearest-neighbor skyrmion aligns in the [1,1] or [1, -1] di-
rection (called the diagonal square skyrmion-lattice phase), as
shown in Fig. 5(b), or the [1,0] or [0,1] direction (called the
upright square skyrmion-lattice phase), as shown in Fig. 5(c).

The diagonal and upright square lattices are not discerned
by the orientational order parameter �8 and are distinguished
by the snapshots. The dotted lines stand for the vanishing lines
of the local chirality [55]. As explained above, there may exist
a skyrmion liquid phase where skyrmions are stable but do not
form lattices, and these lines can be regarded as the upper limit
of the skyrmion-lattice phases.

The short-range part of the dipolar interaction has been
studied as a local anisotropy term [56], which acts as an
easy-plane term (η < 0). The shift of the canted ferromagnetic
phase to the positive η direction by the dipolar interaction is
qualitatively explained by this contribution, but the dipolar
interaction qualitatively changes skyrmion-lattice and helical
phases, owing to the nonlocal effect.

B. The system without dipolar interaction

We investigate the model without dipolar interaction, D′ =
0. The η dependences of the order parameters at H = 0 and
H = 0.5 are displayed in Figs. 6(a) and 6(b), respectively [see
also Fig. 3(a)]. The H dependences of the order parameters
at η = 0 and η = −1.2 are presented in Figs. 7(a) and 7(b),
respectively. As pointed out in the Introduction, we find that
χ = 0 at H = 0, while �8 > 0 indicates the diagonal square
skyrmion-lattice phase.

At η = 0, with increasing H from zero, the diagonal he-
lical phase changes to the triangular skyrmion-lattice one at
H = 0.25 ± 0.05, as shown in Fig. 3(a), which is close to the
transition point H ∼ 0.28 at T = 0.1 estimated by eye in the
H-T phase diagram in Ref. [51] for the model with D′ = 0
and η = 0 in a 2D square lattice system.

We find a characteristic structure in the phase diagram.
At low fields (0 � H � 0.25), the diagonal square skyrmion-
lattice phase appears between the canted ferromagnetic phase
at smaller η, and the diagonal helical phase appears at larger
η. At high fields, the diagonal helical phase disappears. In-
stead, the diagonal square skyrmion-lattice phase is expanded,
and the triangular skyrmion-lattice phase appears at larger η

than the diagonal square skyrmion-lattice phase. This suggests
the existence of a triple point (called point I) at (η, H ) 	
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FIG. 3. Phase diagrams for (a) D′ = 0, (b) D′ = 0.3, and (c)
D′ = 0.6 at T = 0.1. The phase boundaries were estimated by the
data for L = 84. There exist three kinds of skyrmion phases, i.e.,
triangular (Sk-Tr), diagonal square (Sk-DSq), and upright square
(Sk-USq) phases, and two kinds of helical phases, i.e., diagonal
(H-D) and vertical (H-V) helical phases. The canted ferromagnetic
(CF) phase exists at smaller η. The polarized ferromagnetic (PF)
phase exists at larger η. Triple points I–VII are indicated by open
squares. Dash-dotted lines stand for tentative boundaries between
the square and triangular skyrmion-lattice phases at high fields, at
which the boundaries are difficult to determine precisely because of
the small values of the order parameters �8 and �6.
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FIG. 4. Snapshots of spin structures (red-and-blue contour plot
of the Sz element) for representative sets of (H, η) at T = 0.1 for (a)
D′ = 0, (b) D′ = 0.3, and (c) D′ = 0.6.

(−0.65, 0.23), marked with an open square in Fig. 3(a), at
which the diagonal square skyrmion-lattice phase, the trian-
gular skyrmion-lattice phase, and the diagonal helical phase
coexist.

Kwon et al. studied the phase diagram for J/D = 3.3
at T = 0 using a variational approximation method and
showed that at zero and low fields, with increasing η, the
canted ferromagnetic phase directly changes to the triangu-
lar skyrmion-lattice phase (no square skyrmion-lattice phase)
[47]. Banerjee et al. also showed a phase diagram similar to
their phase diagram [48] for small D. We calculated the order
parameters and spin configurations for J/D = 3.3 at T = 0.1
and found that �8 and �6 are very small at H = 0, and at high
fields �6 appears, which is consistent with their results. We
also notice that the shape of the region of the diagonal helical

(a)(a) (b)(b) (c)(c)

(d)(d) (e)(e)

FIG. 5. Typical snapshots of the ordered phases at T = 0.1.
(a) The triangular skyrmion-lattice phase at D′ = 0, H = 0.5, and
η = 0. (b) The diagonal square skyrmion-lattice phase at D′ = 0,
H = 0, and η = −1.2. (c) The upright square skyrmion-lattice phase
at D′ = 0.6, H = 1.5, and η = 2. (d) The diagonal helical phase at
D′ = 0, H = 0, and η = 0. (e) The vertical helical phase at D′ = 0.6,
H = 0, and η = 2. In each snapshot, the directions of the vectors in-
dicate (Sx, Sy ) for each spin, and the colors represent the signs of Sz.
Namely, red and blue vectors denote Sz > 0 and Sz < 0, respectively.
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FIG. 6. η dependences of the order parameters at (a) H = 0
and (b) H = 0.5 without the dipolar interaction D′ = 0 at T = 0.1
for L = 84. Ohv, Od, Mxy, �8, and �6 are order parameters for
the vertical helical phase, the diagonal helical phase, the in-plane
magnetization, the square skyrmion-lattice phase, and the triangular
skyrmion-lattice phase, respectively. The local chirality |χ | signals
the existence of skyrmions and can be regarded as a kind of order
parameter.
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FIG. 7. H dependences of the order parameters at (a) η = 0 and
(b) η = −1.2 without the dipolar interaction D′ = 0 at T = 0.1 for
L = 84.

phase in the H-η phase diagram is much more symmetric than
the shape in the phase diagram by Kwon et al. or by Banerjee
et al., in which the region is wider at smaller η. The cause of
this difference is not clear, but it may be attributed to the dif-
ference in computational methods. Namely, Fig. 3 is a result
of the MC method, while their results are based on variational
methods. Lin et al. [49] presented a square skyrmion-lattice
phase (we call it the diagonal square skyrmion-lattice phase)
in a narrow region between the canted ferromagnetic phase
and the triangular skyrmion-lattice phase in a semiquantita-
tive phase diagram for the equivalent continuum spin model.
However, in their phase diagram skyrmion-lattice phases do
not appear at zero and low fields.

We point out that when the value of D is close to that of J ,
the diagonal square skyrmion-lattice phase is more stabilized
and can exist at zero and low fields, and its region is not small,
especially for large fields.

C. The system with weak dipolar interaction

We study the model with weak dipolar interaction. The η

dependences of the order parameters for D′ = 0.3 at H = 0
and H = 1 are displayed in Figs. 8(a) and 8(b), respectively
[see also Fig. 3(b)]. The H dependences of the order pa-
rameters for D′ = 0.3 at η = 0.4 and η = 1.5 are shown in
Figs. 9(a) and 9(b), respectively.

With the dipolar interaction, the region of the canted fer-
romagnetic phase expands to the positive η direction, and the
regions of the stripe and skyrmion-lattice phases are shifted
in this direction. Furthermore, the dipolar interaction expands
the region of the stripe and skyrmion-lattice phases in both the
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FIG. 8. η dependences of the order parameters at (a) H = 0 and
(b) H = 1 with the weak dipolar interaction D′ = 0.3 at T = 0.1 for
L = 84.
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FIG. 9. H dependences of the order parameters at (a) η = 0.4
and (b) η = 1.5 with the weak dipolar interaction D′ = 0.3 at T =
0.1 for L = 84.
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η and H directions. Namely, the dipolar interaction stabilizes
the ordered states.

It should be noted that unlike the case without dipolar
interaction, the diagonal square skyrmion-lattice phase does
not appear, and instead, the upright square skyrmion-lattice
phase appears between the canted ferromagnetic and trian-
gular skyrmion-lattice phases, and skyrmion phases do not
appear at zero and low fields.

With increasing η at low fields, the canted ferromagnetic
phase changes to the vertical helical phase, to the diagonal
helical phase, and to the vertical helical phase again. Namely,
the direction of the stripe changes twice. We analyze the
cause of this change in the stripe direction in Sec. III E.
These findings lead to four other types of triple points,
II–V, at (η, H ) 	 (0.3, 0.2), (η, H ) 	 (0.7, 0.38), (η, H ) 	
(1.1, 0.42), (η, H ) 	 (2.9, 0.35), respectively, which are
marked with open squares in Fig. 3(b). Triple point II is that of
the canted ferromagnetic, upright square skyrmion-lattice, and
vertical helical phases; triple point III is that of upright square
skyrmion-lattice, triangular skyrmion-lattice, and vertical he-
lical phases; and triple points IV and V are those of triangular
skyrmion-lattice, vertical helical, and diagonal helical phases.

At large η, the spins are Ising-like, and the anisotropy term
is more important than the DM term (the vector product of
spins approaches zero). The vertical helical phase shows an
Ising-like stripe pattern and is stabilized again for η � 3.0.
Vertical stripe patterns are a characteristic of the dipolar Ising
model [8–22].

D. The system with strong dipolar interaction

We investigate the effect of strong dipolar interaction. The
η dependences of the order parameters for D′ = 0.6 at H = 0
and H = 1.5 are displayed in Figs. 10(a) and 10(b), respec-
tively [see also Fig. 3(c)]. The H dependences of the order
parameters for D′ = 0.6 at η = 2 and η = 3 are given in
Figs. 11(a) and 11(b), respectively.

Due to the strong dipolar interaction, the canted ferro-
magnetic phase further expands to the positive η direction.
The upright square skyrmion and triangular skyrmion-lattice
phases appear in the same manner as D′ = 0.3, but their re-
gions expand to the positive η and H directions.

We find that unlike D′ = 0 and D′ = 0.3, only a verti-
cal stripe appears in the helical phase, which is stabilized
in a wider region in the H-η space. In this case, there ex-
ist two triple points, VI and VII, at (η, H ) 	 (1.45, 0.74)
and (η, H ) 	 (2.7, 1.02), respectively, which are marked with
open squares in Fig. 3(c). These are the same types as points
II and III, respectively.

We also find that the peak value of |χ | becomes larger
for larger D′. Since |χ | is proportional to the number of
skyrmions, the peak value of the density of skyrmions in-
creases for stronger dipolar interaction. Indeed, we observe
that the size of skyrmions is smaller and the density is higher
for larger D′ in the snapshots of the skyrmion-lattice phases
in Fig. 4 and Figs. 5(a), 5(b), and 5(c). We also observe that
the stripe width (pitch length) in the helical ordered phase
reduces for larger D′, which is similar to the shortening of the
stripe width in the stripe-ordered phase in the 2D Ising dipolar
model [35].
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FIG. 10. η dependences of the order parameters at (a) H = 0 and
(b) H = 1.5 with the strong dipolar interaction D′ = 0.6 at T = 0.1
for L = 84.

E. The ground state energies in the helical phases

For D′ = 0.3, we observed that the stripe direction in the
helical phases depends on η. Here we clarify the origin of this
behavior. We evaluate the ground state energies of the two
helical phases at H = 0 using variational functions for spins.

The variational function is defined as

S = S0

|S0| . (11)

In the vertical helical phase, S0 is expressed as

Sx
0,(ix,iy ) = 0, (12)

Sy
0,(ix,iy ) = sin {k(ix + φ0)}, (13)

Sz
0,(ix,iy ) = α cos {k(ix + φ0)}, (14)

and in the diagonal helical phase, S0 is described by

Sx
0,(ix,iy ) = − sin {k(ix + iy + φ0)}, (15)

Sy
0,(ix,iy ) = sin {k(ix + iy + φ0)}, (16)

Sz
0,(ix,iy ) = α cos {k(ix + iy + φ0)}, (17)

where k, φ0, and α are the variational parameters. Variational
functions based on the sinusoidal functions were used in order
to evaluate the energy in the helical phases in isotropic sys-
tems [47]. In the present study, we take the Ising anisotropy
η into account in the model, and to include this effect, the
parameter α is introduced. We calculate the ground state en-
ergies of the two helical phases Ediagonal and Evertical and plot
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FIG. 11. H dependences of the order parameters at (a) η = 2 and
(b) η = 3 with the strong dipolar interaction D′ = 0.6 at T = 0.1 for
L = 84.

their difference per spin,

δε ≡ 1

N
(Ediagonal − Evertical ), (18)

as a function of η in Fig. 12. We exclude the points at which
the energy of the phase with uniform in-plane magnetization
Euniform satisfies Euniform < Ediagonal and Euniform < Evertical. For
the calculation of Euniform, we use the condition that all the
spins have the same direction. The optimized values of the
variational parameters are listed in the Supplemental Material
[57].

For D′ = 0.0, the diagonal helical phase is stable (δε < 0)
[Fig. 12(a)], while for D′ = 0.6 the vertical helical phase is
stable (δε > 0) [Fig. 12(c)]. For D′ = 0.3, the diagonal helical
phase is stable for 1.0 � η � 2.0, and the vertical one is stable
for η � 1.0 or 2.0 � η [Fig. 12(b)]. Namely, the stability of
the helical phase changes between the diagonal and vertical
structures depending on η, which explains qualitatively the
observation in Sec. III C, i.e., with increasing η, the vertical
helical phase changes to the diagonal helical phase and to the
vertical helical phase again.

For the skyrmion-lattice phases, we find that more varia-
tional parameters are necessary, and it is difficult to analyze
the stability using this approach.

IV. SUMMARY

We investigated the two-dimensional classical Heisen-
berg model with ferromagnetic exchange J , Dzyaloshinskii-
Moriya (D) and dipolar (D′) interactions, and Ising anisotropy
η with J = D = 1. We estimated the order parameters for
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FIG. 12. η dependences of δε [Eq. (18)] for (a) D′ = 0, (b) D′ =
0.3, and (c) D′ = 0.6. The vertical and diagonal helical phases are
stable for δε > 0 and δε < 0, respectively.

square and triangular skyrmion-lattice phases, diagonal and
vertical helical phases, and in-plane magnetization with the
stochastic cutoff O(N ) Monte Carlo method. We presented the
field H vs η phase diagrams at a low temperature, T = 0.1, for
three typical values of the dipolar interaction, D′ = 0.0, 0.3,
and 0.6, in Fig. 3.

When there is no dipolar interaction (D′ = 0), for small
D compared to J , skyrmion-lattice phases do not exist at
zero and low fields, and the triangular skyrmion-lattice phase
appears at high fields. However, for D close to J (D = J = 1
in the present study), the diagonal square skyrmion-lattice
phase exists at zero and low fields between the canted ferro-
magnetic phase at smaller η and the diagonal helical phases at
larger η. At high fields the triangular skyrmion-lattice phase
appears at larger η than the diagonal square skyrmion-lattice
phase. There exists a triple point at which the diagonal square
skyrmion-lattice, triangular skyrmion-lattice, and diagonal he-
lical phases coexist.
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The dipolar interaction leads to other types of skyrmion
lattice and helical phases, which yield four other types of triple
points. The effect of the dipolar interaction shifts the phase
boundaries to the positive η and H directions and stabilizes
the ordered phases, whose regions in the H-η phase diagram
are expanded. The dipolar interaction also increases the
skyrmion density and reduces the skyrmion size in the
skyrmion-lattice phase and the pitch length (stripe width) in
the helical phase.

In cases of both weak (D′ = 0.3) and strong (D′ = 0.6)
dipolar interactions, skyrmion-lattice phases do not exist at
zero and low fields, which is different from the case with-
out dipolar interaction (D′ = 0). For weak dipolar interaction
(D′ = 0.3) at high fields, instead of the diagonal square
skyrmion-lattice phase, the upright square skyrmion-lattice
phase appears between the canted ferromagnetic phase at
smaller η and the triangular skyrmion-lattice phase at larger
η. With increasing η at zero and low fields, the canted fer-
romagnetic phase changes to the vertical helical phase, to
the diagonal helical phase, and to the vertical helical phase
again. This reentrant transition is qualitatively explained by
the energy analysis using the variational functions for spins.
For strong dipolar interaction (D′ = 0.6), at zero and low
fields, only the vertical helical structure exists at larger η than
the canted ferromagnetic phase.

In the present paper, we focused on the model for materi-
als with noncentrosymmetric lattice structures, in which the
DM interaction plays an important role. A square skyrmion-
lattice phase was observed in a hexagonal monolayer Fe on
Ir(111), in which the DM and four-spin interactions are signif-
icant [58]. Very recently, a square skyrmion-lattice phase was
discovered in GdRu2Si2 [59], which has a centrosymmetric
structure. There the DM interaction is not essential, and four-
spin interactions are important. The present paper shows a
possible scenario of square skyrmion-lattice phases driven by
DM interaction with or without dipolar interaction, in which
four-spin interactions are absent.
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