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Excitation of a bound state in the continuum via spontaneous symmetry breaking
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Bound states in the continuum (BICs) are nonradiating solutions of the wave equation with a spectrum
embedded in the continuum of propagating waves of the surrounding space. The complete decoupling of
BICs from the radiation continuum makes their excitation impossible from the far-field. Here, we develop a
general theory of parametric excitation of BICs in nonlinear systems with Kerr-type nonlinearity via spontaneous
symmetry breaking, which results in a coupling of a BIC and a bright mode of the system. Using the temporal
coupled-mode theory and perturbation analysis, we find the threshold intensity for excitation of a BIC and study
the possible stable and unstable solutions depending on the pump intensity and frequency detuning between the
pump and BIC. We reveal that at some parameters of the pump beam, there are no stable solutions and the BIC
can be used for frequency comb generation. Our findings can be very promising for use in nonlinear photonic
devices and all-optical networks.
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I. INTRODUCTION

The bound state in the continuum (BIC) is a nonradiating
solution with an energy embedded in the continuum spectrum
of propagating modes of the surrounding space. It was first
revealed in quantum mechanics in 1929 by von Neumann and
Wigner [1]. Despite that the proposed idea has been never
implemented in practice for quantum-mechanical systems, it
affects the development of atomic physics [2,3], acoustics
[4–6], and hydrodynamics [7–9]. In recent years, BICs have
attracted more and more attention in nanophotonics [10–13]
providing great enhancement of the electromagnetic field and
its localization at the nanoscale. The advantages of BICs were
demonstrated for lasing [14–17], sensing [18,19], filtering
[20,21], enhancement of light-matter interaction [22,23], non-
linear photonics [24–33], and vortex generation [34,35].

BICs are formed due to the complete decoupling of leaky
modes (resonant states) from the radiating waves. The decou-
pling can happen, for example, in the system with separable
potentials or due to parameter tuning (Friedrich-Wintgen
scenario) [36]. More specific mechanisms are discussed in
Ref. [10]. Periodic structures with a rotational symmetry can
naturally host so-called symmetry-protected BICs when the
coupling between the radiation continuum and BICs is for-
bidden in virtue of the symmetry reasons [37–40]. Such states
are robust to the presence of a substrate and fabrication inac-
curacies preserving the symmetry of the sample.

The high-Q states are very beneficial, for ex-
ample, for sensing as they manifest themselves in
transmission/reflection spectra as narrow Fano-type
resonances whose spectral shift due the presence of an analyte
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can be precisely measured [41–43]. However, the efficient
excitation of high-Q states and strong field enhancement
inside the resonator require the fulfillment of the critical
coupling condition when the intrinsic losses �int of the res-
onator are equal to the radiative ones �rad [44,45]. Therefore,
the efficient excitation of a genuine BIC with �rad = 0 from
the far-field is a challenging problem that can substantially
extend its applicability in nanophotonics and metadevices.

BICs can be excited by near-fields of quantum light sources
such as quantum wells, quantum dots, nitrogen vacancy cen-
ters, and dye molecules [15,17,46–48]. Another way is to
provide a finite but tiny coupling between the radiation con-
tinuum and BIC. In this case, the BIC turns into a quasi-BIC.
The precise control of radiation losses of the quasi-BIC in
periodic structures or single resonators can be achieved via
the symmetry breaking of the unit cell or the shape of the res-
onator [49,50]. This method is a powerful tool for on-demand
engineering of high-Q states. The structures supporting quasi-
BICs have proven themselves well for nonlinear photonics
and sensing [51–56]. Nonlinear polarization induced by the
external field can be also used for the excitation of a gen-
uine BIC. Thus, it was shown theoretically that a BIC can
be excited because of Kerr nonlinearity or second-harmonic
generation [57–61].

In this work, we develop a general theory of parametric
excitation of BICs in systems with Kerr-type nonlinearity
via spontaneous symmetry breaking resulting in a coupling
between the BIC and the bright mode. Figure 1(a) illustrates
the main idea of the paper. The BIC at frequency ωD has van-
ishing radiative loss (�D = 0). The bright mode at frequency
ωB has a finite radiative loss (�B �= 0). The bright mode and
BIC usually appear in pairs as symmetric and antisymmetric
solutions of the wave equation (see, e.g., Ref. [62]). The pump
at frequency ω excites only the bright mode in the linear
regime. However, in the nonlinear regime, when the pump
intensity is high enough, the division of the solutions into the
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FIG. 1. (a) Schematic picture of the considered system consisting
of two modes with a nonlinear coupling. One of them is a leaky or
bright mode, directly coupled to the radiation continuum, and another
one is a genuine BIC with no radiative loss. (b) Schematic picture of
the relations between eigenfrequencies of the modes ωB,D and the
pump frequency ω.

symmetric (bright) and antisymmetric (BIC) solutions is not
applicable as these solutions are no longer robust: the sponta-
neous symmetry breaking occurs [63–65]. It can be interpreted
as the nonlinear coupling between the BIC and bright mode
resulting in a parametric excitation of the BIC. Therefore, at
some pump intensity, the stationary solution corresponding to
the BIC in the linear case becomes a hybrid (without certain
parity) and it can be represented as a combination of the bright
mode and BIC.

The rest of the paper is organized as follows. In Sec. II
we describe the physical models and introduce the master
equations. Then, in Sec. III we discuss excitation of the BIC
in terms of stability of the stationary solutions. After that in
Sec. IV we describe stationary hybrid states, which occur due
to nonlinearity, and finally, in Sec. V we consider dynamics
of a nonlinear system and possible operating regimes. Sec-
tion VI summarizes the obtained results and concludes the
paper. The main text is supported by Appendices. In Appendix
A, we provide a detailed description of the stability analysis.
Appendix B contains the example of trajectories in phase
space and a graphical representation of the frequency comb
generation. Additionally, Supplemental Material [75] contains
the derivation of coupled-mode equations for RLC circuits,
which may be used as an experimental model for the verifica-
tion of the obtained results.

II. MODEL

The following analysis is done in the framework of the
coupled-mode theory, which is applicable for a wide range

of systems, including atomic systems and resonance photonic
and acoustic structures [66–70]. One of the simplest mecha-
nisms of BIC formation is based on the coupling between two
identical resonances with frequency ω0 and a finite radiation
rate γr. The coupling mixes the resonances, leading to the ap-
pearance of two normal modes of different parity (symmetric
and asymmetric). When the coupled leaky resonances inter-
fere constructively, they form a symmetric superradiant state
with radiation rate 2γr—an analog of the Dicke superradiant
state for two emitters [71,72]. The destructive interference
cancels out the far-field and, thus, the radiative losses vanish
and a symmetry-protected BIC appears. It is worth mention-
ing that a symmetry-protected BIC appears exclusively due
to the symmetry of the system and the interaction potential
allowing the division of the normal modes into symmetric and
antisymmetric modes.

We consider the system with a conservative cubic nonlin-
earity and denote the frequencies of the BIC and bright mode
as ωD and ωB, respectively, and their complex amplitudes as
D and B. The amplitude and the frequency of the pump we
denote as p and ω, respectively (see Supplemental Material
[75] for details). The evolution of B and D can be described
by the coupled-mode equations written for the slowly varying
complex amplitudes of the modes, as in Refs. [73,74] or the
Supplemental Material [75], for instance:

Ḋ = −iδDD − �DD + iαD(|D|2 + 2|B|2) + iαB2D∗,

Ḃ = −iδBB − �BB + iαB(|B|2 + 2|D|2) + iαD2B∗ + p.
(1)

All the parameters and variables in this system are dimension-
less and their normalization is discussed in the Supplemental
Material [75]. Here δD, δB are the detunings of the BIC and
the bright mode from the pump frequency ω [see Fig. 1(b)].
Note that in these equations we assume that the time de-
pendence is eiωt . The coefficient of nonlinear coupling α is
responsible for the possible symmetry breaking and coupling
between the BIC and bright mode. In the general case both
equations for D and B have the decay coefficients �B and �D,
respectively. The coefficient �D accounts for the nonradiative
loss of BIC, which is almost unavoidable in practice, and �B

contains both the radiative and nonradiative loss of the bright
mode (see Supplemental Material [75] for details), and for
quasi-BICs �B � �D.

As we mentioned above, such a system of equations is quite
generic and, thus, the further results are applicable for a broad
range of systems. However, to have an illustrative practical
example, we suggest in the Supplemental Material [75] a
particular system of coupled RLC circuits exactly described
by Eqs. (1). The choice of the system is based on the fact that
electrical circuits proved themselves to be a good platform
for observation of BICs [76]. The absence of a pump term in
the equation for the BIC clearly indicates that it is decoupled
from the far-field. However, the nonlinear term iαB2D∗ can be
considered as an effective parametric amplification (driving
force) for the BIC. The excitation is possible only at specific
values of the pump amplitude p and frequency detuning δD,
for which the solution D = 0 becomes unstable and, thus, any
fluctuation in D results in the development of instability—the
parametric excitation of the BIC.
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FIG. 2. (a) and (b): Stationary solutions of Eq. (2), when D = 0.
Thick dots correspond to stable solutions for which Re λB < 0 and
thin dots correspond to unstable solutions for which Re λB � 0. Plot
of Re λD vs p is shown in panels (c) and (d). Plot of Re λD vs p is
shown in panels (e) and (f). Shadowed areas indicate the pump ranges
at which the BIC is excited, i.e., where Re λD > 0. The dependencies
are plotted for the following parameters: �D = 0.1, �B = 0.35, δB =
δD + 0.25, and α = 1. Detuning δD is equal to 0.25 for (a), (c), and
(e) and 0.5 for (b), (d), and (f).

III. CONDITIONS OF BIC EXCITATION

To find the parameters at which the excitation of the BIC
is possible we need to analyze the stability of the solution
D(τ ) = 0 of Eqs. (1). This system for the coupled modes
reduces to the single equation if we put D = 0:

Ḃ = −iδBB − �BB + iαB|B|2 + p. (2)

The stationary solutions of this equations can be easily found
setting Ḃ = 0. The amplitude |B| as a function of the pump p
for various detuning parameters δD is shown in Figs. 2(a) and
2(b). All the parameters are listed in the caption. One can see
that the increase of the detuning δB results in the appearance
of S-shaped dependence characteristic for nonlinear systems.

To analyze the stability of the found stationary solutions
corresponding to the BIC and bright mode we will fol-
low the standard procedure adding fluctuations to them (see

Appendix A for details):

δB(τ ) = (m1eλBτ + n1eλ∗
Bτ )eiδDτ ,

δD(τ ) = (m2eλDτ + n2eλ∗
Dτ )eiδDτ . (3)

Here m1,2 and n1,2 are small arbitrary functions. The system of
Eqs. (1) can be linearized with respect to these small functions
and reduced to the homogeneous form. The complex param-
eters λD and λB are found from the condition of solvability
of the linearized homogeneous system. The exact expressions
for λB and λD can be written as (see Appendix A)

λi = −�i ±
√

−δ2
i + 4αδi|B|2 − 3α2|B|4. (4)

Here i = B, D. The stability of the solutions B(τ ) and D(τ ) is
defined by the sign of the real part of λB and λD, respectively.
If it is positive then the corresponding solution is unstable
and vice versa. Therefore, there are four possible scenarios
depending on the detuning δB, loss �B, and pump p. All of
the them are illustrated in Fig. 2. The left columns [panels (a),
(c), and (e)] correspond to the case when Re λB < 0 for all
considered values of the pump. Nevertheless, there is a range
of p (shaded region), where BIC is excited.

The right column of Fig. 2 [panels (b), (d), and (f)] cor-
responds to the case when the bright mode demonstrates a
bistable behavior. The middle part of the S-shaped curve in
Fig. 2(b) plotted with a thin solid line is unstable. One can see
that the BIC can be excited for both cases, when Re λB > 0
or Re λB < 0. It worth mentioning that �i directly affects the
stability of the corresponding mode and there are no unstable
solutions in a system with high losses.

Equation (4) allows us to find the range of amplitudes |B|
and frequency detunings δB,D for which the BIC is excited and
the bright mode is unstable. These ranges are defined by the
following inequalities:

2δi −
√

δ2
i − 3�2

i

3α
< |B|2 <

2δi +
√

δ2
i − 3�2

i

3α
. (5)

Here i = B, D. The graphical representation of these inequal-
ities is shown in Fig. 3(a). In the shaded areas, also known
as Arnold tongues, the solutions are unstable. These graphs
explicitly demonstrate that excitation of the BIC at high am-
plitudes of the bright mode requires high detunings δD, since
the frequency of the BIC shifts with the increase of |B|. In
the case of the negative Kerr shift, such a detuning would be
negative. The inequality (5) allows us to find the maximal loss
�B,D as a function δB,D at which the parametric excitation of
the BIC and the instability of the bright mode are possible:

�B,D � δB,D/
√

3. (6)

Importantly, if �D = 0, the tip of the Arnold tongue touches
the point |B| = 0 and δD = 0 [see Eq. (5)]. Therefore, the
parametric excitation of the BIC is thresholdless; i.e., it is
possible at any arbitrary small values of the pump amplitude
p. On the other hand, δB > δD according to the chosen def-
inition [see Fig. 1(b)], so it is always nonzero, since δD � 0
according to the structure of Eqs. (1). Therefore, the bright
mode becomes unstable only if the pump amplitude exceeds
some threshold value.
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FIG. 3. (a) Arnold tongues (shaded areas) indicate the regions
where the bright mode is unstable and the parametric excitation of
the BIC is possible. These regions are defined by the inequalities
(5). Inside the blue shaded area the solution D = 0 is unstable, i.e.,
Re λD > 0, and the BIC can be excited. Similarly, the shaded orange
area indicates the instability of the bright mode. Panel (b) shows
possible regimes of the bright mode stability and BIC excitation.
Numerical xyz code has the following meaning: x stands for the total
number of the bright mode solutions, y shows how many of them
are unstable (i.e., Re λB > 0), and z indicates the number of bright
solutions for which excitation of the BIC is possible (i.e., Re λD > 0).
For example, 312 means that there are 3 bright solutions, 1 of them
is unstable, and 2 of them lead to excitation of the BIC. Each graph
in this figure was plotted for �D = 0.1, �B = 0.35, δB = δD + 0.25,
and α = 1.

The diagram in Fig. 3(b) summarizes possible stability
regimes of the bright mode and the BIC solutions assuming
variation of the pump amplitude p and the detuning δD. These
regimes are labeled by a numerical xyz code, where x is the
total number of solutions, y shows how many of these solu-
tions are unstable, and z stands for the number of solutions for
which excitation of the BIC is possible, i.e., when Re λD > 0.
For example, the region labeled as 100 in Fig. 3(b) indicates
that Eqs. (1) have only one solution for B which is stable and
the BIC is not excited. Similarly, the region labeled as 312 in

the same diagram corresponds to the case when Eqs. (1) have
three solutions for B: one of them is unstable (bistability), and
the parametric excitation of the BIC takes place for two of the
solutions.

Thus, we have analyzed the conditions necessary for the
excitation of the BIC. The next question that we are going to
answer is, Are there any stable states after BIC excitation?

IV. HYBRID STATES

In Sec. III we analyzed the solutions of Eqs. (1) for which
D(τ ) = 0. However, these are not all stationary solutions.
When the symmetry breaks, the division of the solutions
into the symmetric and antisymmetric solutions is no longer
applicable and stationary hybrid states can appear. For the
hybrid states, both B and D are not zero. To find all possible
stationary hybrid solution we need to set all time derivatives
in Eqs. (1) without the assumption that D(τ ) = 0.

Figures 4(a)–4(d) show the dependence of the amplitudes
|B| and |D| on the pump p for the stationary solutions of
Eqs. (1) accounting for the hybrid states. The dependencies in
panels (a), (c) and (b), (d) are plotted for the same parameters
as in Figs. 2(a) and 2(b), respectively. One can see that for
some solutions both amplitudes B and D are not zero and,
thus, the states are hybrid. The stable solutions are plotted
with thick lines and the unstable solutions are plotted with
thin lines.

One can see that Eqs. (1) have a simple form but their
solutions are very manifold. The diagram in Fig. 4(e) sum-
marizes possible stability regimes of the considered system
depending on the pump amplitude p and the detuning δD.
Each region is labeled by a numerical xy code, where x is
the total number of solutions and y shows how many of them
are stable. For example, in the region labeled as 32 there are
three solutions and two of them are stable. Note that hybrid
states are doubly degenerate; thus, they are counted twice
in the number of solutions. This degeneracy arises from the
symmetry of a structure as the coupled oscillators are identical
in the considered case. When the oscillators are not identical
(for example, in photonics this corresponds to the case of an
asymmetric unit cell [49]), these states may have different
energies and the degeneracy lifts off. In particular, for the
RLC circuits considered in the Supplemental Material [75]
this means that elements of the coupled circuits have different
parameters.

The stability analysis of the hybrid solutions does not
reveal the process of their formation. To gain deeper insight
into this problem we consider the time dynamics of the BIC
excitation and multistability of the bright mode.

V. TIME DYNAMICS

A. Excitation of BIC

As we mentioned above, the parametric excitation of the
BIC is possible due to the spontaneous symmetry breaking
when the amplitude B of the bright mode reaches a threshold
value at which the division of the solutions into symmetric and
antisymmetric is not energetically favorable. To demonstrate
this effect numerically we should add a weak perturbation
to the initial condition D(τ ) = 0. Equations (1) are solved
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FIG. 4. Stationary solutions represented as the dependence of |B|
and |D| amplitudes on the amplitude of pump p. Thick dots repre-
sents the stable solutions and thin dots are for unstable solutions.
Detuning is δD = 0.25 for (a) and (c), and δD = 0.5 for (b) and (d).
The diagram (e) shows possible stability regimes of the stationary
solutions. Numerical xy code has the following meaning: x stands
for the total number of solutions and y shows how many of these
solutions are stable. Solutions D �= 0 are doubly degenerate, which
is accounted for by the number of solutions. The dependencies are
plotted for the following parameters: �D = 0.1, �B = 0.35, α = 1,
and δB = δD + 0.25.

numerically by a standard method implemented in Python
using the SciPy library. For the cross-check, the same solu-
tions were obtained with the help of the standard ODE solver
implemented in MATLAB.

As an example, we took the following parameters: p = 0.2,
δD = 0.25, δB = 0.5, �D = 0.1, �B = 0.35, α = 1. According
to the analysis from Sec. IV, these parameters correspond to
the region labeled as 32 in Fig. 4(e), i.e., when three solutions
exist: one unstable pure bright solution and one stable doubly
degenerate hybrid solution [see the red points in Figs. 4(a) and
4(c) labeled as 32].

FIG. 5. (a) Stable hybrid solution, which exists in the sys-
tem constantly pumped with amplitude p = 0.2. Here �D = 0.1.
(b) Corresponding values of |pB,D| show that the effective driving
force acting on the modes actually may change with time due to
the nonlinear coupling even if the pump amplitude is constant.
(c) Demonstration of the energy locking. The system initially is in
a stable hybrid state, constantly pumped with amplitude p = 0.2
(shaded area). Then at time τ = 0.25 the pump is switched off, so
the bright mode amplitude quickly decreases to zero. The BIC can
remain in the system for a longer period of time, defined by the
decay rate �D, which accounts for nonradiative losses. All graphs
in this figure were obtained for �B = 0.35, α = 1, δD = 0.25, and
δB = 0.5.

The time dynamics of B and D are shown in Fig. 5(a).
Initially, the system is in a state when |D| = 0 and |B| is a con-
stant but this state is unstable and the introduced fluctuation
in D develops: the BIC is excited. We can see that the system
tends to another stationary stable solution, which is a hybrid.
Thus, we can conclude that the hybrid solution is an attractor.
Indeed, the phase portrait demonstrated in Appendix B [see
Fig. 7(a)] reveals the presence of a focus point, associated with
the stable hybrid solution.

The energy exchange between the BIC and bright mode can
be interpreted in terms of the nonlinear driving forces, which
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can be written as

pD = iαB2D∗, (7)

pB = iαD2B∗ + p. (8)

Figure 5(b) demonstrates that the change in amplitudes B and
D is induced by these corresponding driving forces pB and pD.
The amplitude D of the BIC starts to grow with the increase
of pD caused by the coupling with the bright mode.

B. Trapping of energy by BIC

In open linear systems, the coupling matrix is symmetric
[77]. This means that the coupling and decoupling rates are
equal to each other. In particular, an infinite radiative lifetime
of a photon in a resonator implies a complete decoupling
of the resonator’s mode from the radiative continuum that
makes it impossible to excite the mode from the far-field.
However, in nonlinear systems, this issue can be overcome
as the coupling of the mode with the radiative continuum
depends on the pump intensity. In our case, the coupling of
the BIC to the continuum is governed by the amplitude of

the bright mode B [see Eqs. (1)]. This allows not only the
excitation of the BIC but also the trapping of energy inside
the system for a long time [58]. Indeed, let us imagine that the
BIC is excited and the system is in a hybrid stationary state
supported by an external pump. After the pump is switched
off, the amplitude B decreases fast due to the radiation of the
bright mode. It results in vanishing coupling of BIC to the
radiation continuum as it is proportional to the coupling term
in Eqs. (1) proportional to B2. Therefore, the energy initially
pumped to the BIC is trapped.

Figure 5(c) clearly demonstrates the behavior of the BIC
and the bright mode in this scenario. The system is set into
a stationary hybrid state supported by a permanent external
pump with amplitude p = 0.2. One can see that after switch-
off of the pump at τ = 0.25, the amplitude of the bright
mode B decays rapidly but the amplitude of the BIC becomes
constant in the absence of nonradiative loss (�D = 0); thus,
the energy is locked in the BIC. In the lossy case, the storage
time is completely defined by �D [see dashed and dot-dashed
lines in Fig. 5(c)]. This effect may be used for the realization
of optical memory [58,78].

FIG. 6. (a) Time dynamics of the self-oscillatory regime occurring in a system pumped with constant amplitude p = 0.29, and (c), (e)
corresponding graphs for the driving forces. (b) Single-pulse excitation of the BIC. Amplitude of the pump remains constant, p = 0.31. Panels
(d) and (f) show corresponding dynamics of the driving forces pB,D. Each graph in this figure was obtained for �D = 0.1, �B = 0.35, α = 1,
δD = 0.5, and δB = δD + 0.25.
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C. Regime of self-oscillations

It is interesting to note that the instability of the bright state
can lead to the dynamical regime of self-sustained oscilla-
tions. This happens when the system has no stable states at
all. An example of such a region is labeled as 30 in Fig. 4(e).
Indeed, one can also see from Fig. 4(b) that the black vertical
line p = 0.29 does not cross the thick orange curve; thus, there
are no unstable solutions for such a pump amplitude. Similar
behavior was also discussed in Ref. [74].

The time dynamics of |B| and |D| for this case are shown
in Fig. 6(a). The parameters of the system are listed in the
caption. The system is initially in an unstable bright state.
Then the instability is developed and the amplitude of the
BIC grows reaching some maximal value. However, after that
the system returns back to the state close to the initial bright
solution, since the effective driving force pD decreases to zero.
Then the process repeats, so the system oscillates as Fig. 6(a)
shows. This behavior of the system also can be traced with
the phase portrait presented in Fig. 7(b) in Appendix B. The
initial point corresponding to D ≈ 0 is actually a saddle point.
In this case the system is stable with respect to fluctuations in
B, but unstable with respect to fluctuations in D. Therefore, the
trajectory near this point is hyperbolic. Moreover, the system
follows the closed path since the effective driven forces pB

and pD also demonstrate a periodic behavior [see Figs. 6(c)
and 6(e)]. Each period of such self-oscillations is associated
with the presence of a large number of equidistant harmonics
[see Fig. 7(d) in Appendix B], which is a manifestation of
a frequency comb generation. The idea to use the BIC in
systems with Kerr nonlinearity for frequency comb generation
is also discussed in Ref. [79].

Let us also remark that the transition from the unstable pure
bright state to the stable pure bright state can be accompanied
by the excitation of the BIC. The time dynamics of |B| and
|D| for this case are shown in Fig. 6(b). The instability results
in growth of D but the rise of the bright mode amplitude B
decreases the effective gain for the BIC [see Figs. 6(d) and
6(f)]. As a result, the system switches from the unstable to the
stable bright state and during this transition the BIC is excited.
This is the case labeled as 31 in Fig. 4. The phase portrait
in this case represents the movement of the system from an
unstable node to a stable node, as Fig. 7(c) in Appendix B
demonstrates.

VI. CONCLUSION

To conclude, we have developed a theory describing the
parametric excitation of symmetry-protected BICs in nonlin-
ear systems with Kerr-type nonlinearity due to spontaneous
symmetry breaking resulting in a coupling of the BIC to the
bright mode of the system. The proposed theory is very gen-
eral. It is based on the two coupled oscillators model that can
be applied to a variety of physical systems in optics, acous-
tics, hydrodynamics, quantum mechanics, etc. The obtained
results are especially important for photonics as they provide
useful guidelines for the excitation of BICs from the far-field.
We also provided a detailed analysis of possible stable and
unstable solutions accounting for hybrid states that appear as
a result of coupling between the BIC and bright mode. We

revealed several interesting regimes of the nonlinear system
supporting the BIC. In particular, we have shown that the
energy from the far-field can be trapped by the BIC for a long
time, which is limited only by nonradiative losses of the BIC.
We also have found regimes when there are no stable solutions
at all. The numerical analysis of the time dynamics shows that
such regimes can be potentially used for the frequency combs
or supercontinuum generation. We believe that our findings
can help to extend the practical applicability of the BIC in
different systems. Especially, the obtained results can be very
promising for nonlinear photonics and all-optical networks.
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APPENDIX A: STABILITY ANALYSIS OF STATIONARY
SOLUTIONS OF COUPLED-MODE EQUATIONS

In this section, we provide details on the procedure of
stability analysis of stationary solutions of Eqs. (1) and (2).
We actually use a conventional method based on the determi-
nation of eigenvalues [80]. For that, coupled-mode equations
for the bright mode and BIC can be linearized with

B = (B + m1eλτ + n1eλ∗τ )eiδDτ ,

D = (D + m2eλτ + n2eλ∗τ )eiδDτ , (A1)

where m1,2 and n1,2 are some small arbitrary functions. There-
fore, the coupled-mode equations transform to

λm2 = KDm2 + Qn∗
2 + Rm1 + Sn∗

1,

λ∗n2 = KDn2 + Qm∗
2 + Rn1 + Sm∗

1,

λm1 = KBm1 + Qn∗
1 + Rm2 + Sn∗

2,

λ∗n1 = KBn1 + Qm∗
1 + Rn2 + Sm∗

2. (A2)

In combination with the conjugated versions of these equa-
tions, the matrix form can be written as

⎛
⎜⎝

KB − λ R Q S
R KD − λ S Q

Q∗ S∗ K∗
B − λ R∗

S∗ Q∗ R∗ K∗
D − λ

⎞
⎟⎠

⎛
⎜⎜⎝

m1

m2

n∗
1

n∗
2

⎞
⎟⎟⎠ = 0,

(A3)
where the following notation is used:

S = 2iαBD, Q = iα(B2 + D2),

R = 2iα(BD∗ + DB∗),

KB = −iδB − �B + 2iα(|B|2 + |D|2),

KD = −iδD − �D + 2iα(|B|2 + |D|2). (A4)

Calculation of the determinant gives the fourth-order equation
for eigenvalues λ. A solution is considered to be unstable if at
least one Re λ has a positive real part.
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In the case of the purely bright mode, when D = 0, the
procedure is the same, but the bright mode and BIC can
be considered independently. We start from the bright mode
solution introducing similar linearization,

B(τ ) = (B + meλBτ + neλ∗
Bτ )eiδDτ , (A5)

leading to the following system of equations:(
K − λB Q

Q∗ K∗ − λB

)(
m
n∗

)
= 0, (A6)

where the following notation is used:

Q = iαB2, K = −iδB − �B + 2iα|B|2. (A7)

The above system has solutions when the matrix determinant
is equal to zero. This condition allows us to obtain the equa-
tion for λB, which is simply the quadratic equation with a
solution

λB = −�B ±
√

−δ2
B + 4αδB|B|2 − 3α2|B|4. (A8)

The same analysis can be done for the trivial dark mode
solution. In this case we use

D(τ ) = (meλDτ + neλ∗
Dτ )eiδDτ . (A9)

The obtained system of equations for λD will be fully equiv-
alent to the system for λB; hence the result differs only in
parameters:

λD = −�D ±
√

−δ2
D + 4αδD|B|2 − 3α2|B|4. (A10)

APPENDIX B: PHASE PORTRAITS AND FREQUENCY
COMB GENERATION

Here, we consider phase portraits of dynamical regimes
considered in Sec. V. Excitation of the stable hybrid solution
is associated with a stable focus point and a corresponding
spiral trajectory. An example of the phase portrait for this
case is demonstrated in Fig. 7(a). On the other hand, the self-
oscillatory regime is associated with a closed-loop trajectory,
as Fig. 7(b) shows. The solution corresponding to D = 0 is

FIG. 7. Phase portraits of dynamical regimes considered in Sec. V. (a) Stable focus corresponding to excitation of stable hybrid solution
[Fig. 5(a)], (b) closed-loop trajectory corresponding to self-oscillations [Fig. 6(a)], and (c) stable node corresponding to a pulse excitation of
the BIC [Fig. 6(b)]. System trajectories are depicted by red arrows and red dots indicate fixed points of different types. (d) Frequency comb
generation: coefficients of a Fourier series for a single period of self-oscillations [Fig. 6(a)]. The coefficients are normalized on a maximal
value.
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stable and therefore this point should be stable for the pure
bright state. However, the presence of fluctuations in D results
in excitation of the BIC and the system moves away from this
point. Hence, trajectories in horizontal directions point to a
stable point corresponding to the case when D = 0, but at
the same time trajectories in vertical direction point out this
point because of the instability of the D amplitude. Therefore,
this point is a saddle and trajectories near it are hyperbolic.
When the amplitude D reaches its maximal value the effective
driven force pD decreases and the system tends to return to the
initial point. But in the vicinity of the saddle, fluctuations in
D start to grow again, so the system repeats the path in phase
space. The single period of such self-oscillations is associated
with generation of a large number of harmonics, as Fig. 7(d)
demonstrates, where

|An| =
√

a2
n + b2

n, n = 0, 1, . . . , (B1)

such that an and bn are coefficients of the corresponding
Fourier series:

am = 2

T

∫ T

0
F (t ) sin

(
2πmt

T

)
dt, a0 = 1

T

∫ T

0
F (t )dt,

bm = 2

T

∫ T

0
F (t ) cos

(
2πmt

T

)
dt, b0 = 0, (B2)

where m = 1, 2, . . .. Therefore, the function in the time do-
main can be represented as

F (t ) = a0 +
∞∑

m=1

[
am sin

(
2πmt

T

)
+ bm cos

(
2πmt

T

)]
.

(B3)
Each coefficient An is associated with the corresponding fre-
quency n f , such that f = 1/T , where T is the period of
self-oscillations [see the inset of Fig. 7(d)]. Importantly, the
harmonics are equidistant and hence it can be stated that
self-oscillations of the system result in the formation of a
frequency comb. Finally, single-pulse excitation of the BIC
corresponds to switching from one pure bright state to another
pure bright state, and hence the phase portrait in this case
represents a movement from an unstable node to a stable one,
as Fig. 7(c) shows.
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