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Universal features of canonical phonon angular momentum without time-reversal symmetry

Hisayoshi Komiyama and Shuichi Murakami
Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

(Received 7 November 2020; revised 30 March 2021; accepted 25 May 2021; published 3 June 2021)

It is known that phonons have angular momentum, and when the time-reversal symmetry (TRS) is broken,
the total phonon angular momentum in the whole system becomes nonzero. In this paper, we propose that as an
angular momentum of phonons for a crystal without TRS, we need to consider the canonical angular momentum,
as opposed to the kinetic angular momentum in previous works. Next, we show that the angular momentum
of phonons without TRS exhibits universal behaviors near the � point. We focus on in-plane oscillations in
two-dimensional crystals as an example. By breaking the TRS, one of the acoustic phonon branches at the �

point acquires a gap. We show that the angular momentum of its acoustic phonon with a gap has a peak with the
height ±h̄ regardless of the details of the system. From this, we find that this peak height changes discontinuously
by changing the sign of the TRS-breaking parameter.
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I. INTRODUCTION

Phonons are quasiparticles which carry heat in solids.
Many studies on phonons have been conducted on sys-
tems with time-reversal symmetry (TRS). In recent years,
the phonon Hall effect (PHE) has been observed experi-
mentally [1]. The PHE is a phenomenon in which under a
magnetic field, a temperature gradient induces a heat flow in
a direction perpendicular to both the temperature gradient and
the magnetic field. From such experiments, phonons in sys-
tems with broken TRS have attracted attention in recent years.
Furthermore, the PHE has been studied theoretically [2–7]
and experimentally [1,8–10] from a topological point of view,
similar to the electron Hall effect.

On the other hand, one can introduce a phonon angular
momentum due to the vibration of the atoms inside the crys-
tal [11]. The phonon angular momentum vanishes in systems
with TRS in equilibrium. In a system with TRS but without
inversion symmetry, the phonon angular momentum becomes
zero in the entire system, but the phonon angular momentum
in each mode has a nonzero value. In particular, the phonon
angular momentum is nonzero at the valleys in the momen-
tum space. These phonons at the valleys are called chiral
phonons [12] and have been observed experimentally [13].
Furthermore, in a system without inversion symmetry, the
phonon angular momentum of the entire system can be gen-
erated by a temperature gradient [14]. On the other hand, in a
system without TRS, the entire system has a nonzero phonon
angular momentum [11]. One can break the TRS for phonons
by the Lorentz force [15,16], the Coriolis force [17], and spin-
phonon interaction [4,18,19]. When these effects break the
TRS and the phonon angular momentum of the entire system
acquires a nonzero value, it may contribute to the Einstein–
de Haas effect [11,20]. Furthermore, methods for generating
phonon angular momentum have been studied from various
perspectives [11,14,21,22]. In addition, various related sub-
jects such as spin relaxation [23–25], orbital magnetization

of phonons [26–28], and conversion between magnons and
phonons [29,30] have also been studied.

As explained above, the phonon angular momentum in
a system without TRS is important for understanding the
Einstein–de Haas effect. In this paper, we first formulate the
angular momentum of phonons for a crystal without TRS.
Here, we point out that one can define two angular momenta,
a canonical angular momentum and a kinetic angular mo-
mentum. We propose that we need to consider the canonical
one, as opposed to previous works, because the canonical one
is conserved. Next, we show that the angular momentum of
acoustic phonons in systems without TRS exhibits universal
behaviors near the � point. For this purpose, we consider
in-plane oscillations in a two-dimensional crystal. As an ex-
ample, we calculate the phonon band structure and the phonon
angular momentum of a kagome-lattice model without TRS
by applying a magnetic field and Lorentz force. By breaking
TRS, one of the acoustic phonon branches acquires a gap at
the � point, while the other remains gapless. In the kagome-
lattice model, the phonon angular momentum has a peak equal
to ±h̄ at the � point, and this peak changes discontinuously
between ±h̄ across the magnetic field h = 0. We show that
these behaviors of the angular momentum of the acoustic
phonon near the � point are universal properties that do not
depend on the details of the system.

This paper is organized as follows. In Sec. II, we review the
eigenequation of the TRS-breaking phonons. In Sec. III, we
formulate the canonical angular momentum of phonons for a
crystal without TRS and discuss its difference from the kinetic
angular momentum. In Sec. V, first, using a kagome-lattice
model as an example, we explain that the angular momentum
of the acoustic phonon with a gap has a peak with the height
±h̄ at the � point, and this peak changes discontinuously
between ±h̄ by changing the sign of the TRS-breaking param-
eter. Using an effective Hamiltonian, we explain the universal
property of acoustic phonons near the � point when the TRS-
breaking effect is small. In Sec. VI, we summarize this paper.
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II. TRS-BREAKING PHONONS

In this section, we review the eigenvalue problem for
phonons when the TRS is broken, following Refs. [2,7]. We
begin with a Lagrangian for phonons in a crystal in the har-
monic approximation:

L0 = 1

2

∑
l

u̇T
l u̇l − 1

2

∑
l,l ′

uT
l Kl,l ′ul ′ , (1)

where ul = (�ul,1, �ul,2, . . . , �ul,n)T, �ul,b is a displacement vector
of the bth atom in the lth unit cell multiplied by the square root
of the mass of the atom, n is the number of atoms in the unit
cell, and Kl,l ′ is a mass-weighted force constant matrix. From
this Lagrangian, we get the eigenequation of the phonon:
D(�k)ε�k,σ

= ω2
�k,σ

ε�k,σ
, where D(�k) = ∑

l ′ Kl,l ′ei( �Rl′ − �Rl )·�k is the
dynamical matrix, ω�k,σ

is the eigenfrequency, and ε�k,σ
is the

eigenstate of the eigenequation in the wave vector �k, specified
by the mode index σ = 1, 2, . . . , N . Here N is the dimen-
sion of the vector ul and is given by N = nd , where d is
the dimension of the atomic displacement considered. This
eigenequation of the phonon assumes TRS [31].

The TRS-breaking effect is treated by adding the term L′ =∑
l,l ′ u̇T

l Al,l ′ul ′ to the Lagrangian L0 [2]. According to Ref. [2],
L′ = ∑

l,l ′ u̇T
l Al,l ′ul ′ is the only harmonic term allowed when

breaking the TRS for L0, where Al,l ′ is a real matrix. Fur-
thermore, the symmetric part of L′ does not contribute to
the motion because it can be written as the time derivative
of 1

2

∑
l,l ′ uT

l AS
l,l ′ul ′ and contributes only a constant to the

action S = ∫
Ldt . Therefore, when breaking the TRS of L0,

we consider only L′ = ∑
l,l ′ u̇T

l Al,l ′ul ′ , where A is a real anti-
symmetric matrix. The physical origins of the TRS-breaking
term for lattice vibration are the Lorentz force of charged
ions [15], spin-phonon interaction in magnetic materials [4],
and the Coriolis force with rotation [16,17]. In this paper, we
consider that the Lorentz force breaks the TRS of charged ions
in a lattice. In this case, (Al,l )bα,bβ = qb

2mb

∑
γ εαβγ Bγ , and the

other elements are zero, where mb and qb are the mass and the
charge of the bth atom; εαβγ is the Levi-Civita symbol; α, β, γ

run over x, y, z; and Bγ is the magnetic field in the γ direction.
From the Lagrangian L = L0 + L′, the eigenequation without
TRS becomes D(�k)ε�k,σ

− 2iω�k,σ
Aε�k,σ

= ω2
�k,σ

ε�k,σ
, where A is

a real antisymmetric matrix. This equation is not a general-
ized eigenproblem. Therefore, we can make it a generalized
eigenproblem by rewriting it as

H(�k)ψ�k,σ
= ω�k,σ

ψ�k,σ
, (2)

H(�k) =
(

0 iD(�k)1/2

−iD(�k)1/2 −2iA

)
, (3)

ψ�k,σ
=

(
i√

2ω�k,σ

D(�k)1/2ε�k,σ

1√
2
ε�k,σ

)
. (4)

This equation is called the Schrödinger-like equation of
phonons because it is Hermitian. We call H(�k) the Hamilto-
nian in the following.

The dimension of H(�k) is double the dimension N of the
dynamical matrix D(�k). Since H(�k)∗ = −H(−�k), the eigen-

values ω�k,σ
and the eigenvectors ψ�k,σ

at the wave vector �k
can be labeled to satisfy ω�k,σ

= −ω−�k,−σ
and ψ∗

�k,σ
= ψ−�k,−σ

,
where σ is a band index σ = −N, . . . ,−2,−1, 1, 2, . . . , N .
Therefore, there is one-to-one correspondence between the
modes with negative frequencies and those with positive fre-
quencies. Because these two modes forming a pair represent
one physical mode, we need to consider only the modes with
positive frequencies in order to study their physical properties.
The normalization condition for the eigenstates is ε†

�k,σ
ε�k,σ

+
i

ω�k,σ

ε†
�k,σ

Aε�k,σ
= 1, which is rewritten as ψ†

�k,σ
ψ�k,σ

= 1.

III. PHONON ANGULAR MOMENTUM WITHOUT TRS

In this section, we first explain the angular momentum of
phonons [11]. Next, we formulate the angular momentum of
phonons without TRS. The angular momentum of atoms in a
crystal can be split into the mechanical angular momentum of
the crystal as a rigid body and the angular momentum of the
vibration of the atoms around their equilibrium position, and
the latter is called phonon angular momentum. We define the
angular momentum of the vibration of the atoms in the crystal
as

�J =
∑

lb

�ulb × �plb, (5)

where �plb is a canonical momentum of the bth atom in the lth
unit cell, divided by the square root of the mass of the atom.
The canonical momentum without TRS is pl = ∂L

∂ul
= u̇l +

Aul ′ , where pl = ( �pl,1, �pl,2, . . . , �pl,n)T. In Ref. [11], the angu-
lar momentum of phonons is defined by �Jkin = ∑

lb �ulb × �̇ulb,
and precisely speaking, this should be called kinetic angular
momentum when the TRS is broken. Because the canonical
angular momentum �J is conservative but the kinetic one �Jkin is
not, we consider the canonical one in this paper. We note that
the matrix A has a gauge degree of freedom, and the addition
of any constant symmetric matrix to A leaves the equation of
motion invariant. One may wonder if such a gauge degree of
freedom exists also in the canonical angular momentum. In
Appendix B, we discuss the gauge degree of freedom for a
free charged particle in constant magnetic field B along the
z axis. We show that the canonical angular momentum along
the z axis is conserved only for a symmetric gauge with the
vector potential �A = 1

2 (−By, Bx, 0) and is not conserved for
other gauges. Thus, in the discussion of the canonical angular
momentum, we should fix the gauge to be a symmetric gauge.
In the present paper, we also adopt the symmetric gauge,
which corresponds to the gauge with the matrix A being anti-
symmetric: (Al,l )bα,bβ = qb

2mb

∑
γ εαβγ Bγ .

For simplicity, we focus on an in-plane oscillation in a two-
dimensional crystal in the xy plane. As shown in Appendix A,
the canonical angular momentum of phonons without TRS of
the whole crystal in the z direction is expressed as

Jz =
∑
�k,σ>0

l�k,σ

[
f (ω�k,σ

) + 1

2

]
, (6)

l�k,σ
= h̄ε†

�k,σ

(
M + i

ωk
AM

)
ε�k,σ

, (7)
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where f (ω�k,σ
) = 1/(eh̄ω�k,σ

/kBT − 1) is the Bose distribution
function, T is the temperature, kB is Boltzmann’s constant, h̄ is
Planck’s constant, l�k,σ

is the angular momentum of a phonon

of branch σ at wave vector �k, ε�k,σ
is a normalized eigenvector

for the displacement vector, and

M = In×n ⊗
(

0 −i
i 0

)
.

In contrast to Eq. (7), in Ref. [11], the angular momen-
tum of a phonon is defined by lkin

�k,σ
= h̄ε†

�k,σ
Mε�k,σ

, which is
the kinetic angular momentum without TRS. Therefore, the
canonical angular momentum in Eq. (7) has an additional
term, ih̄

ωk
ε†

�k,σ
AMε�k,σ

, which makes the behavior of the angular
momentum of acoustic phonons very different from previous
studies when TRS is broken.

IV. MODEL CALCULATION

In this section, we calculate the phonon angular momentum
of the kagome-lattice model without TRS as an example,
and we discuss the temperature dependence of the phonon
angular momentum. To break the TRS, we calculate phonons
in a model where atoms with electric charges form a kagome
lattice and a magnetic field is applied in the out-of-plane direc-
tion. The model is the same as the one studied in Ref. [11], but
the change in the definition of the angular momentum leads to
different results from Ref. [11]. At each of the three sublat-
tices of the kagome-lattice model, we put atoms A, B, and C,
depending on the sublattice. Let the masses and the charges of
atoms be mi and qi (i = A, B,C), respectively. When the TRS
is broken by the Lorentz force under the magnetic field h in
the z direction, the Lagrangian acquires the term L′, with

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

− qA

2mA
h

qA

2mA
h

− qB

2mB
h

qB

2mB
h

− qC

2mC
h

qC

2mC
h

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(8)

We use the matrix A to calculate its dispersion relation
and angular momentum in a kagome lattice, and the result is
shown in Fig. 1. In the calculation, we use the following val-
ues of the parameters: the longitudinal spring constant KL =
0.144, the transverse one KT = KL/4, the lattice constant
a = 1, and the charge and mass of atoms A, B,C are mA =
mB = mC = 1, qA = qB = qC = −1. The magnetic field h in
the z direction is varied as h = −0.02, 0, 0.02.

V. PHONON ANGULAR MOMENTUM AT THE � POINT

In this section, we show that the angular momentum of the
acoustic phonon near the � point shows a universal behavior
that does not depend on the details of the system. First, as
an example, we calculate the phonon angular momentum of
the kagome-lattice model without TRS, and we show that the
angular momentum of the acoustic phonon shows a character-
istic behavior.

FIG. 1. (a-1)–(c-1) The dispersion relation and (a-2)–(c-2) the
angular momentum of the phonons in the kagome-lattice model when
the magnetic field h is varied. The magnetic field h is (a) h = 0.02,
(b) h = 0, and (c) h = −0.02. The colors of the curves represent
the modes, and the black curves in (a-2), (b-2), and (c-2) represent
the total angular momentum. The inset in (b-1) shows the schematic
pictures of the model, and that in (b-2) shows its Brillouin zone.

As can be seen from Fig. 1, by adding a magnetic field, one
of the two acoustic phonons with σ = 2 and �k = 0 acquires a
gap at the � point. In addition, the angular momentum of this
acoustic phonon is ±h̄. When the magnetic field h is changed
from negative to positive, this angular momentum l�,2 changes
discontinuously from −h̄ to h̄ across the magnetic field h = 0.
Such a discontinuous change in the angular momentum is
unexpected because an infinitesimal value of h leads to a jump
of the phonon angular momentum up to ±h̄. As shown in Ap-
pendix C, this behavior of the angular momentum of acoustic
phonons at the � point holds in various systems in addition
to the kagome-lattice model. We note that similar calculations
were performed for various modes in Ref. [11], and the jump
can be seen in Ref. [11]. Nevertheless, the universality of the
jump has not been noticed previously. From now on, we show
that this behavior is a universal property that does not depend
on the details of the system.

We consider the behavior of acoustic phonons near the
� point when a TRS-breaking term is added to the phonon
system. The Schrödinger-like equation of phonons with the
TRS is

H0ψσ = ωσψσ , (9)

H0 =
(

0 iD(�)1/2

−iD(�)1/2 0

)
. (10)

As mentioned above, for simplicity we focus on two-
dimensional systems, with only the in-plane displacements.
Such a system has two acoustic phonon modes. Accordingly,
this eigenequation has four eigenvectors with ωσ = 0. Their
eigenvectors φi(i = 1, 2, 3, 4) are independent of the details
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of the system and are given by

φ1 =
(

ε1

0

)
, φ2 =

(
ε2

0

)
, φ3 =

(
0
ε1

)
, φ4 =

(
0
ε2

)
,

(11)

ε1 = C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
m1

0√
m2

0
...√
mn

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ε2 = C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0√
m1

0√
m2
...

0√
mn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C = 1√∑
α mα

,

(12)

where mi is the mass of the atom (i = 1, . . . , n) in the unit
cell. The forms of the eigenvectors i are universal because
they are Goldstone modes. To consider the behavior of the
acoustic phonons near the � point when the TRS-breaking
effect is small, we consider an effective 4 × 4 matrix for the
Hamiltonian projected onto these four eigenvectors:

H̃(�k) =

⎛
⎜⎜⎜⎜⎜⎝

φ†
1H(�k)φ1 φ†

1H(�k)φ2 φ†
1H(�k)φ3 φ†

1H(�k)φ4

φ†
2H(�k)φ1 φ†

2H(�k)φ2 φ†
2H(�k)φ3 φ†

2H(�k)φ4

φ†
3H(�k)φ1 φ†

3H(�k)φ2 φ†
3H(�k)φ3 φ†

3H(�k)φ4

φ†
4H(�k)φ1 φ†

4H(�k)φ2 φ†
4H(�k)φ3 φ†

4H(�k)φ4

⎞
⎟⎟⎟⎟⎟⎠.

(13)

We introduce �k = k�n k = |�k| and λ = ε†
1A�0ε2, where λ rep-

resents the magnitude of the TRS breaking. To describe the
phonons near the � point when the TRS-breaking effect is
small, we expand Eq. (13) up to linear order terms with respect
to λ, k. We get

H̃(�k) �

⎛
⎜⎝

ia�n ic�n
ic�n ib�n

−ia�n −ic�n
−ic�n −ib�n

⎞
⎟⎠k

+

⎛
⎜⎝ −2i

2i

⎞
⎟⎠λ, (14)

where a�n, b�n, and c�n depend only on �n and not on k. One can
directly show that a�n, b�n are real because D(�k)1/2 is a Hermi-
tian matrix. Furthermore, as we show in Appendix E, c�n is also
real. We note that in the calculation of Eq. (14) in Appendix E,
the key step is how to calculate D(�k)1/2. Due to a singularity of
k = 0, we need to separate the �k dependence into k and �n, by
which we can safely take the square root of D(�k). In addition,
we define the eigenvalues of Eq. (14) as ω�k,2, ω�k,1, ω�k,−1, and
ω�k,−2, starting with the larger eigenvalue.

Assuming λ > 0, the eigenvector of the acoustic phonon
with positive frequency ω�,2 = 2λ is (0, 0, 1√

2
, i√

2
)T. There-

FIG. 2. Schematic picture of acoustic phonons when TRS is
broken. When TRS is broken, one phonon has a positive frequency
(ω�,2), two phonons have zero frequencies (ω�,1, ω�,−1), and one
phonon has a negative frequency (ω�,−2) at the � point.

fore, its eigenfunction is ψ
�,2 = 1√

2
φ3 + i√

2
φ4 = (

0
1√
2
ε�,2

), where

ε�,2 = C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
m1

(
1
i

)
√

m2

(
1
i

)
...

√
mn

(
1
i

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Thus, this state represents the circular motions of all the atoms
in the same phase [32]. The angular momentum l�,2 of this
eigenfunction ψ�,2 is calculated to be h̄. Similarly, if λ < 0,
the phonon mode ω�,2 = −2λ has the eigenfunction ψ

�,2 =
1√
2
φ3 − i√

2
φ4, and its angular momentum is l�,2 = −h̄. When

λ = 0, the acoustic phonons do not acquire a gap at the �

point. Therefore, the angular momentum l�,2 of the acoustic
phonon with a positive frequency at the � point is determined
by the sign of λ as

l�,2 �
⎧⎨
⎩

h̄ (λ > 0),
0 (λ = 0),
−h̄ (λ < 0).

(16)

This indicates that the angular momentum l�,2 changes dis-
continuously ±h̄ with respect to the parameter λ, which rep-
resents the magnitude of the TRS breaking. Then this value is
universal and independent of the details of the system. On the
other hand, the other two eigenvectors composed of φ1 and φ2
remain at ω = 0 even without TRS. This behavior of the fre-
quencies is schematically shown in Fig. 2. The schematic pic-
ture in Fig. 2 agrees with the model calculation in Fig. 1. Nor-
mally, one acoustic mode is gapped, while the other is gapless.

In the following, we physically interpret the value of the
canonical angular momentum l�,2 = h̄ for the gapped mode
at �k = 0 for the acoustic phonon with the positive frequency
for λ > 0. In the acoustic phonons at the � point, relative
positions of the atoms do not change. Therefore, the springs
between the atoms are not effective, and the motion is essen-
tially the same as that of a free charged particle in a magnetic
field. In the present case, it is the cyclotron motion of a
positive charge within the xy plane, which is a simple and
well-studied problem. As presented in detail in Appendix D,
in quantum mechanics, the motion is described in terms of
two kinds of bosons, the â boson, with a positive frequency ωC

(cyclotron frequency) and a canonical angular momentum +h̄,
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and the b̂ boson, with zero frequency and a canonical angular
momentum −h̄. These two bosons agree with the gapped
mode and gapless mode in our calculations, respectively. In-
deed, in agreement with the â boson, the gapped mode has a
canonical angular momentum h̄ for λ > 0, which corresponds
to the positively charged particle in Appendix C. On the other
hand, the gapless mode has a canonical angular momentum

− a2
�n+b2

�n+2c2
�n

2a�nb�n−2c2
�n

h̄, which is not equal to the one for the b̂ boson.

This difference may be attributed to hybridization between the
ω�k,1 and ω�k,−1 branches at the � point. We also remark on
the kinetic angular momentum. We can calculate the kinetic
angular momentum of phonons for the gapped and gapless
modes to be 2h̄ and 0, respectively. These values are again in
complete agreement with results for the cyclotron motion of a
free particle, as explained in Appendix D.

VI. CONCLUSION

In this paper, we introduced a definition for the angular
momentum of phonons without TRS modified from the one
in Ref. [11], and we showed that the angular momentum
of acoustic phonons near the � point without TRS shows
universal behaviors that do not depend on the details of the
system. First, we pointed out that in the absence of TRS, apart
from the kinetic angular momentum of phonons adopted in
Ref. [11], another angular momentum can be defined, called
the canonical angular momentum of phonons. Because the
latter is conservative but the former is not, we considered
the canonical angular momentum of phonons without TRS.
As an example, we calculated the band structure and angular
momentum of phonons in a model of the kagome lattice under
magnetic field, which breaks the TRS. From this calculation,
it was shown that the angular momentum of the acoustic
phonon without TRS has a peak with a height h̄ at the � point.
The peak height changes sign when the sign of the magnetic
field changes. From these calculations, we predicted that the
behavior of the angular momentum of the acoustic phonons
near the � point without TRS is universal, and we showed
that that is, indeed, the case.

In order to prove the prediction for a general system, we
introduced an effective Hamiltonian for phonons near the �

point with a small TRS-breaking effect. Using this effective
Hamiltonian, we showed that the acoustic phonon of the �

point with the breaking of TRS represents the circular motion
of all the atoms in the same phase and its angular momentum
is ±h̄. From this, we showed that this peak changes discontin-
uously by changing the sign of the TRS-breaking parameter.
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APPENDIX A: CALCULATION OF THE PHONON
ANGULAR MOMENTUM WITHOUT TRS

In this section, we derive Eqs. (6) and (7). In the case of
in-plane vibration of a two-dimensional system, the angular

momentum of phonons is

Jz =
∑

l

uT
l iM pl . (A1)

By using pl = u̇l + Aul ′ and the second quantization for ul ,

ul =
∑
�k,σ>0

√
h̄

2ω�k,σ
N

ε�k,σ
â�k,σ

ei(�k· �Rl −ω�k,σ
t ) + H.c., (A2)

we can obtain

Jz =
∑
�k,σ>0

h̄ε†
�k,σ

(
M + i

ω�k,σ

AM

)
ε�k,σ

(
f (ω�k,σ

) + 1

2

)
, (A3)

which is Eqs. (6) and (7) in the main text.

APPENDIX B: CANONICAL ANGULAR MOMENTUM OF
A FREE CHARGED PARTICLE

In this Appendix, we explain that the canonical angular
momentum of a free charged particle moving in the xy plane in
a static magnetic field in the z direction is conservative only in
a symmetric gauge. The Lagrangian of a free charged particle
is

L = m

2
�̇x2 + q

c
�̇x · �A(�x), (B1)

where �x = (x, y) is the position vector of the particle, m and
q are the mass and the charge of the particle, and �A(�x) is the
vector potential. Here the vector potential for the magnetic
field B in the z direction is given by

�A(�x) = 1

2

( −B + α

B + α

)(
x
y

)
, (B2)

where α is a real constant representing the gauge degree of
freedom.

By using Eq. (B1), the canonical momentum is �p = ∂L
∂ �̇x , and

the canonical angular momentum is J = �x × �p. It is written as
J = m(xẏ − yẋ) + q

2c [h(x2 + y2) + α(x2 − y2)]. By using the
equation of motion, m�̈x = q

c �̇x × B, the time derivative of the
canonical angular momentum J is

dJ

dt
= q

c
(xẋ − yẏ) · α. (B3)

Therefore, the canonical angular momentum in the static field
is conservative only in α = 0, that is, in a symmetric gauge.
Thus, while the vector potential �A(�x) allows a gauge degree of
freedom, the canonical angular momentum should be defined
in the symmetric gauge. As in the case of a single charge,
we define the canonical phonon angular momentum only in a
symmetric gauge.

APPENDIX C: MODEL CALCULATION OF THE PHONON
ANGULAR MOMENTUM

In this Appendix, as mentioned in Sec. V, we calcu-
late various systems to confirm that the angular momentum
of the acoustic phonon at the � point, which acquires
a gap through the TRS breaking, does not depend on
the details of the system. We calculate the band structure
and the angular momentum for a triangular-lattice model,
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FIG. 3. The dispersion relation and the angular momentum for (a) the triangle-lattice model, (b) the square-lattice model, and (c) The
honeycomb-lattice model. We set the parameters as h = 0.02, KL = 0.144, KT = KL/4, a = 1 m = 1, and q = −1. The insets in (a-1), (b-1),
and (c-1) show schematic pictures of the models, and those in (a-2), (b-2), and (c-2) show their Brillouin zones.

a square-lattice model, and a honeycomb-lattice model.
We note that a similar calculation was already performed
in Ref. [11]. The insets in Figs. 3(a-1)–3(c-1) show the
triangular-lattice, square-lattice, and honeycomb-lattice mod-
els, respectively. In these models, one atom is located
per each lattice site. Let the mass and the charge of all
atoms be m and q, respectively. We show the phonon fre-
quency and angular momentum under the magnetic field h
in the direction perpendicular to the plane in Figs. 3(a-1)
and 3(a-2) for the triangular-lattice model, Figs. 3(b-1) and
3(b-2) for the square-lattice model, and Figs. 3(c-1) and 3(c-2)
for the honeycomb-lattice model. The values of the param-
eters used in the calculation in Fig. 3 are the following: the
longitudinal spring constant KL = 0.144, the transverse one
KT = KL/4, the lattice constant is a = 1, the charge and mass
of all atoms are m = 1, q = −1, and the magnetic field h =
0.02. As can be seen from Fig. 3, the dispersion relation and
the angular momentum of the phonon differ depending on the
model, but the dispersion relation and the angular momentum
of the acoustic phonon at the � point show the same behavior
in all the models. In particular, the angular momentum of the
acoustic phonon at the � point that appears after breaking the
TRS has a peak with height h̄ in all the models.

APPENDIX D: FREE CHARGED PARTICLE
IN A MAGNETIC FIELD

In this Appendix, we explain the cyclotron motion of a free
charged particle in a uniform magnetic field. In particular, we
calculate its kinetic and canonical angular momenta in order

to see the correspondence to the phonon angular momentum
at the � point discussed in the main text. The Hamiltonian of
a free charged particle in magnetic field �B = (0, 0, B) is

H = 1

2m
��2, (D1)

�� = �p + q

c
�A(�x), (D2)

where m and q are the mass and the charge of the particle, �x
and �p are the position vector and the canonical momentum of
the particle, and �A(�x) = 1

2
�B × �x is a vector potential.

We first introduce (ξ, η) as

(ξ, η) = l2

h̄
(�y,−�x ), (D3)

l =
√

ch̄

eB
, (D4)

which corresponds to the motion relative to the center of
rotation. This correspondence follows from the velocity �v =
(i/h̄)[H, �x] = ��/m from the Heisenberg equation of motion,
together with the relation �v = ωC (−η, ξ ), where ωC = eB

mc
is the cyclotron frequency. We then introduce (X,Y ) ≡ (x −
ξ, y − η), corresponding to the center of the rotation.

Then, the commutation relations among ξ , η, X , and Y are

[ξ, η] = −il2, [X,Y ] = il2, (D5)

[ξ, X ] = [η,Y ] =[ξ, X ] = [η,Y ] = 0. (D6)
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From these relations we define two bosonic annihilation oper-
ators:

â = −1√
2l

(η + iξ ), (D7)

b̂ = 1√
2l

(X + iY ). (D8)

These two bosons commute: [â, b̂] = [â†, b̂] = 0. Therefore,
by using the vacuum state |0〉, eigenstates can be written as
|A, B〉 = (â†)A(b̂†)B |0〉 with nonnegative integers A and B.

Using these operators, we can define two number opera-
tors, N̂a and N̂b, for the two species of bosons:

N̂a = â†â = 1

2l2
(ξ 2 + η2) − 1

2
, (D9)

N̂b = b̂†b̂ = 1

2l2

(
X 2 + Y 2

) − 1

2
. (D10)

Then one can show

H = h̄ωC

(
N̂a + 1

2

)
, (D11)

X 2 + Y 2 = 2l2

(
N̂b + 1

2

)
. (D12)

Hence, the eigenstate |A, B〉 has an energy E = h̄ωC (A + 1
2 )

and is also an eigenstate of the operator X 2 + Y 2 with an
eigenvalue 2l2(B + 1

2 ).
By using the number operators, the canonical angular mo-

mentum can be written as

Lz = �x × �p = h̄(N̂a − N̂b). (D13)

Therefore, the eigenstate |A, B〉 is an eigenstate of the canon-
ical angular momentum with an eigenvalue h̄(A − B). On the
other hand, the kinetic angular momentum is defined as

Lkin
z = �x × ��. (D14)

Using the second quantized operators, we can express the
kinetic angular momentum as

Lkin
z = 2h̄

(
N̂a + 1

2

)
+ ih̄(b̂â − b̂†â†). (D15)

Therefore, an expectation value of the kinetic angular momen-
tum of the eigenstate |A, B〉 is 2h̄(A + 1

2 ).
Thus, to summarize, the â boson has energy h̄ωC , canonical

angular momentum h̄, and kinetic angular momentum 2h̄,
while the b̂ boson has zero energy, canonical angular momen-
tum 2h̄, and zero kinetic angular momentum. From this result,
we can interpret the behavior of the angular momentum of the
acoustic phonon at the � point. By breaking the TRS, one of
the acoustic phonons acquires a nonzero frequency, while the
other continues to have zero frequency at the � point. Thus,
these phonons correspond to the â boson and the b̂ boson,
respectively.

APPENDIX E: PROPERTIES OF THE EFFECTIVE
HAMILTONIAN (13)

In this Appendix, we explain properties of the effective
Hamiltonian of Eq. (13). First, we explain the properties of the

spring constant matrix Kl,l ′ and the definition of the dynamical
matrix D(�k). Next, using these, we show that a�n, b�n, and c�n in
Eq. (14) are real. Furthermore, we explain how to calculate a�n,
b�n, and c�n using the honeycomb-lattice model as an example.

1. Properties of D(�k)

In this section, we explain the properties of the dynamical
matrix D(�k), following Ref. [31]. When we expand the lattice
potential U in terms of the vector ul around the equilibrium
positions, which is the displacement multiplied by the square
root of the mass of each atom in the unit lattice l and extracted
up to the second term, it becomes

U � U0 + 1

2

∑
l,l ′

uT
l Kl,l ′ul ′ , (E1)

where the first-order term becomes zero and the coefficient in
the second-order term is defined as

(Kl,l ′ )bα,b′β := ∂2U

∂ul,bα∂ul ′,b′β

∣∣∣∣
u=0

. (E2)

Here ul,bα is the mass-weighted displacement of the α compo-
nent of atom b of the unit lattice l .

We explain the properties of (Kl,l ′ )bα,b′β . First, it naturally
follows from the definition that

(Kl,l ′ )bα,b′β = (Kl ′,l )b′β,bα. (E3)

Next, the periodicity of the lattice yields

(Kl,l ′ )bα,b′β = (K0,l ′−l )bα,b′β. (E4)

Furthermore, the α component of the equation of motion of
atom b in the unit cell l is given by

ml,bül,bα = −
∑
l ′,b′β

(Kl,l ′ )bα,b′βul ′,b′β. (E5)

Due to the translation symmetry, under uniform displacements
of all the atoms, the force applied to atom b in unit cell l
should be zero. Therefore, we obtain∑

l ′,b′
(Kl,l ′ )bα,b′β = 0. (E6)

By using Eq. (E6), we can rewrite the equation of motion,

ml,bül,bα =
∑

l ′,b′( 
=l,b)

∑
β

(Kl,l ′ )bα,b′β (ul,bβ − ul ′,b′α ). (E7)

Therefore, the force applied by atom b′ of the unit cell l ′ to
atom b of unit cell l is∑

β

(Kl,l ′ )bα,b′β (ul,bβ − ul ′,b′α ). (E8)

Similarly, the force applied by atom b of unit cell l to atom b′
of unit cell l ′ is ∑

β

(Kl ′,l )b′α,bβ (ul ′,b′β − ul,bα ). (E9)

Since these two forces are in an action-reaction relationship,
(Kl,l ′ )bα,b′β satisfies

(Kl,l ′ )bα,b′β = (Kl ′,l )b′α,bβ. (E10)
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By using these properties of (Kl,l ′ )bα,b′β , the dynamical
matrix D(�k) is defined as

[D(�k)]bα,b′β = 1√
mbmb′

∑
l ′

(Kl,l ′ )bα,b′βei�k·( �Rl′ − �Rl ). (E11)

2. Expansion D(�k)1/2 with respect to k = |�k|
Here we will show that a�n, b�n, and c�n in the top right block

in Eq. (14) are real. First, this top right block of the matrix in
Eq. (14) is written as(

ε†
1D(�k)1/2ε1 ε†

1D(�k)1/2ε2

ε†
2D(�k)1/2ε1 ε†

2D(�k)1/2ε2

)
�

(
a�n c�n
c∗

�n b�n

)
k (E12)

by extracting the terms up to linear order in k. Here, because
D(�k) is a positive-definite Hermitian matrix by definition,
D(�k)1/2 is also a positive-definite Hermitian matrix. There-
fore, a�n and b�n are real and positive. In the following, we show
that c�n is also real.

Since D(�k) is analytic by definition, we expand the dynam-
ical matrix D(�k) in terms of �k:

D(�k) � D0 +
∑

i

D(1)
i ki +

∑
i, j

D(2)
i j kik j, (E13)

where D(�k), D0, D(1)
i , and D(2)

i j are 2n × 2n matrices. Since

D(�k) is a Hermitian matrix and preserves TRS, D(�k)† =
D(�k) = D(−�k)∗ holds. Therefore, D0 and D(2)

i j are real sym-

metric matrices, and D(1)
i are purely imaginary Hermitian

matrices. Then, in order to take its square root, we rewrite
Eq. (E13) as

D(�k) � D0 + D(1)
�n k + D(2)

�n k2, (E14)

where �k = k�n. Then it follows that D(2)
�n is a real symmetric

matrix and D(1)
�n is a purely imaginary Hermitian matrix.

We consider U †D(�k)U using the real orthogonal matrix U
that diagonalizes the real symmetric matrix D0,

U †D(�k)U � �2 + (
U †D(1)

�n U
)
k + (

U †D(2)
�n U

)
k2, (E15)

where � is a diagonal matrix defined as

� =

⎛
⎜⎜⎝

ω1

ω2
. . .

ωn

⎞
⎟⎟⎠, (E16)

with ωi (i = 1, 2, . . . , 2n) being phonon frequencies at �k = 0.
It follows that ω1 = ω2 = 0 because they represent acoustic
phonons.

Since the first two column vectors of U are eigenvectors
ε1, ε2 of the acoustic phonons at the � point, the 2 × 2 block
on the top left of the left side of Eq. (E15) is ε†

αD(�k)εβ (α, β =
1, 2). Using Eqs. (E3), (E4), (E6), and (E10), we can calculate
the component ε†

αD(�k)εβ (α, β = 1, 2) as

ε†
αD(�k)εβ = −4∑

b mb

∑
bb′

∑
l>0

(K0,l )bα,b′β sin2

( �k · �Rl

2

)
.

(E17)

Therefore, in the 2 × 2 block on the top left of the left side of
Eq. (E15), the zeroth- and first-order terms of k vanish.

Here in Eq. (E15) the 2n × 2n matrices �2, U †D(1)
�n U , and

U †D(2)
�n U are rewritten as

U †D(�k)U �
(

�2
ac

�2
op

)
+

(
A1 C1

C†
1 B1

)
k

+
(

A2 C2

C†
2 B2

)
k2, (E18)

where �ac = 0; A1 and A2 are 2 × 2 matrices; B1, B2, and �2
op

are (n − 2) × (n − 2) matrices; and C1 and C2 are 2 × (n − 2)
matrices. Here �ac and �op are diagonal matrices with their
diagonal elements given by frequencies of acoustic and optical
branches at the � point, respectively. From Eq. (E17), we get
A1 = 0. Due to the properties of D(�k) mentioned in Eq. (E13)
together with reality of U , A2, B2, and C2 are real matrices and
B1 and C1 are purely imaginary matrices.

Based on this discussion, we can expand U †D(�k)1/2U up
to the first order with respect to k as follows:

U †D(�k)1/2U �
(

O
�op

)
+

(
X Z
Z† Y

)
k, (E19)

where O is a 2 × 2 zero matrix. We note that the top left 2 ×
2 block of this matrix, Xk, is equal to Eq. (E12). Here we
will show that X is a real matrix. By comparing both sides of
[U †D(�k)1/2U ]2 = U †D(�k)U we obtain

C1 = Z�op, (E20)

A2 = X 2 + ZZ†, (E21)

which yields

X = (
A2 − C1�

−2
op C†

1

)1/2
. (E22)

One can directly show that A2 − C1�
−2
op C†

1 is a real symmetric
matrix. In addition, X is a Hermitian matrix, meaning that its
eigenvalues are real. Therefore, the matrix A2 − C1�

−2
op C†

1 =
X 2 is a positive-semidefinite matrix, and it can be diagonal-
ized by a real orthogonal matrix with nonnegative eigenvalues.
Therefore, we conclude that X is a real symmetric matrix. By
comparing Eqs. (E12) and (E19) and noting that the first two
column vectors of U are ε1 and ε2, the matrix Xk is equal to
Eq. (E12), which leads to the conclusion that a�n, b�n and c�n are
real.

3. Calculation of a�n, b�n, and c�n in the honeycomb-lattice model

We show how to calculate a�n, b�n, and c�n for the
honeycomb-lattice model, as an example. With reference to
the Supplemental Material of Ref. [4], the dynamical matrix
D(�k) of the honeycomb-lattice model is

D(�k) =
(

K1 + K2 + K3 −K2

−K2 K1 + K2 + K3

)

+
(

O O
−K3 O

)
ei�k·�a1 +

(
O −K3

O O

)
e−i�k·�a1

+
(

O O
−K1 O

)
ei�k·�a2 +

(
O −K1

O O

)
e−i�k·�a2 , (E23)
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where a1 = (a, 0) and a2 = (a/2,
√

3a/2) are primitive vec-
tors; K1, K2, and K3 are defined using Kx = (KL

KT
) as

K1 = U (π/2)KxU (−π/2), K2 = U (π/6)KxU (−π/6), K3 =
U (−π/6)KxU (π/6); and U (θ ) = (cos θ − sin θ

sin θ cos θ ) is a rotation
matrix by an angle θ in two dimensions.

Next, we expand D(�k) with respect to k as

D(�k) �
(

K −K
−K K

)
+

(
O iK (1)

�n
−iK (1)

�n O

)
k

+
(

O K (2)
�n

K (2)
�n O

)
k2, (E24)

where

K = K1 + K2 + K3 = 3

2

(
KL + KT 0

0 KL + KT

)
,

K (1)
�n = (�a1 · �n)K3 + (�a2 · �n)K1, and K (2)

�n = (�a1·�n)2

2 K3 +
(�a2·�n)2

2 K1. Since K is a diagonal matrix, the orthogonal
matrix U that diagonalizes the first term in Eq. (E24), i.e., the
matrix D0 in Eq. (E13), is

U = 1√
2

(
I I
I −I

)
, (E25)

where I is the 2 × 2 identity matrix. Therefore, we obtain

U †D(�k)U �
(

O O
O 2K

)
+

(
O −iK (1)

�n
iK (1)

�n O

)
k

+
(

K (2)
�n O
O −K (2)

�n

)
k2. (E26)

Using Eq. (E22), a�n, b�n, c�n can be calculated as(
a�n c�n
c�n b�n

)
=

(
K (2)

�n − 1

2
K (1)

�n K−1K (1)
�n

)1/2

, (E27)

where the matrix K (2)
�n − 1

2 K (1)
�n K−1K (1)

�n is a real symmetric
matrix. We can actually express

K (2)
�n − 1

2
K (1)

�n K−1K (1)
�n =

(
α�n γ�n
γ�n β�n

)

as

α�n = 3K2
L x2 + K2

T (x − 2y)2 + 12KLKT (x2 − xy + y2)

24(KL + KT )
,

(E28)

β�n = 3K2
T x2 + K2

L (x − 2y)2 + 12KLKT (x2 − xy + y2)

24(KL + KT )
,

(E29)

γ�n = (KT − KL )x(x − 2y)

8
√

3
, (E30)

where x = �a1 · �n and y = �a2 · �n. Here the eigenvalues of the

matrix K (2)
�n − 1

2 K (1)
�n K−1K (1)

�n are K2
L +3KLKT

8KT +8KL
a2 and K2

T +3KLKT

8KT +8KL
a2,

which are both positive. Therefore, the matrix K (2)
�n −

1
2 K (1)

�n K−1K (1)
�n is a positive-definite matrix.

Hence, we can calculate a�n, b�n, and c�n using α�n, β�n, and γ�n
as

(
a�n c�n
c�n b�n

)
= 1√

α�n + β�n + 2
√

δ�n

(
α�n + √

δ�n γ�n
γ�n β�n + √

δ�n

)
,

(E31)

where δ�n = α�nβ�n − γ 2
�n > 0. Therefore, a�n, b�n, and c�n are real.
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