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Phonon Hall effect with first-principles calculations
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Phonon Hall effect (PHE) has attracted a lot of attention in recent years with many theoretical and experimental
explorations published. While experiments work on complicated materials, theoretical studies are still hovering
around the phenomenon-based models. Moreover, previous microscopic theory was found unable to explain
large thermal Hall conductivity obtained by experiments in strontium titanate (STO). Therefore, in an attempt
to bridge this gap, we implement first-principles calculations to explore the PHE in real materials. Our work
provides a benchmark of the PHE in sodium chloride (NaCl) under a large external magnetic field. Moreover, we
demonstrate our results in barium titanate (BTO) and discuss the results in STO in detail about their deviation
from experiments. As a possible future direction, we further propose that the inner electronic Berry curvature
and cubic potential plays important roles in the PHE in STO.
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I. INTRODUCTION

PHE, as a phonon analog to the quantum Hall effect of
electrons, has been a rather intriguing area since its obser-
vation in 2005 [1]. In the past decade, several theoretical
explanations and mechanisms have been proposed [2–9]. Cur-
rently, the most successful microscopic theory was developed
by Qin et al., in which the PHE is related to the topological
properties of the phononic structure [6]. However, with more
experiments published, it is evident that we have not reached
the end of the story yet. In 2020, an experimental group found
a large PHE in STO, and they thought it could be explained
by Qin’s theory [10]. However, subsequently, a theoretical
group pointed out that Qin’s theory cannot explain the large
value in experiments and they used Boltzmann transport the-
ory to successfully predict the ratio between the longitudinal
thermal conductivity and the phonon Hall conductivity [11].
Furthermore, another experimental work found that if the 16O
in STO is replaced with its isotope 18O, the phonon Hall
conductivity will become two orders of magnitude smaller
[12]. This is very bizarre behavior challenging all current
theories. The authors concluded that the PHE in STO with
16O is more like an enhancement compared with SrTi18O3,
and therefore they attributed the most likely reason to the
behavior of the transverse optical phonon modes in STO at
low temperature. All these recent experiments are performed
on complex materials, therefore, it is difficult to understand
them with simplified models, and more accurate and persua-
sive first-principles calculations are needed.

Usually, harmonic assumption is made in first-principles
calculations for phonon properties like phonon dispersion.
However, in some highly anharmonic materials, harmonic
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terms alone will produce imaginary phonon frequencies and
they cannot explain those phenomena such as the thermal ex-
pansion, temperature-dependent phonon dispersion, and some
phase transitions. Therefore, beyond harmonicity is a natural
requirement to explore the PHE in complex materials like
STO, and it was argued in a similar perovskite, BTO, that the
anharmonic soft phonon modes will result in a large dielectric
constant [13] which could act as a magnifier of the PHE [11].
Based on this understanding, anharmonicity should play an
important role in the PHE in real materials. In recent years,
many packages based on first-principles calculations have
been developed to calculate anharmonic properties in solids
such as SCAILD, ALAMODE, and TDEP [14–16]. With the
help of these packages, it is feasible for us to study the PHE in
real materials, which could deepen our understanding in this
area.

The paper is organized as follows. In Sec. II, we de-
scribe the self-consistent phonon calculation, which is the first
step to calculate the PHE. In Sec. III, we introduce the general
PHE theory and discuss how to apply it to real materials
utilizing the results obtained by the self-consistent phonon
calculation. In Sec. IV, we present our results for NaCl and
BTO, and discuss the situation in STO. In Sec. V, we draw
conclusions of our work and propose that there is still a lot
of future work required to fully understand the PHE. We also
provide an Appendix with some key details.

II. ANHARMONIC SELF-CONSISTENT PHONON
CALCULATION FOR SOFT PHONON MODES

There are currently three approaches to handle the an-
harmonicity: density functional perturbation theory [17,18],
ab initio molecular dynamics (AIMD) [16,19], and self-
consistent phonon (SCPH) theory [14,15,20,21]. Perturbation
theory is only valid for weak anharmonicity, while AIMD is a
nonperturbative approach. However, since AIMD is based on
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the time-dependent Schrödinger equation for all particles ap-
proximately [22], it cannot include zero-point vibration which
is significant at low temperature. SCPH provides another
choice to address anharmonicity nonperturbatively consider-
ing the quantum effect. Therefore, in this paper, we focus on
the SCPH approach and borrow the ALAMODE package de-
veloped by Tadano and Shinji [15]. In this section, we briefly
introduce the SCPH theory.

A general Hamiltonian with the third- and the fourth-order
Taylor expansion of the potential can be described as follows:

Ĥ = 1

2

∑
i

p2
i + 1

2
uT Ku

+ 1

3

∑
i jk

�i jkuiu juk + 1

4

∑
i jkl

Ti jkl uiu jukul , (1)

where ui ≡ √
Mixi, Mi and xi are mass and displacement of

the ith degree of freedom, respectively. Although the third-
order term has an important contribution for most anharmonic
behaviors like thermal expansion and phonon lifetime, the
fourth-order term is also important, especially for the soft
phonon modes. Moreover, the fourth order is simpler than the
third if we apply a mean-field approximation by replacing u4

with 〈u2〉u2. With this approximation, the problem goes back
to a quadratic one with the effective force constants being
determined self-consistently. Therefore, in this paper, we only
focus on the fourth-order correction. By an equation of motion
method [23], the nonequilibrium Green’s function satisfies

G(1, 2) = G0(1, 2)

+
∫

d1′d2′d3d4G0(1, 1′)T (1′, 2′, 3, 4)G(2′, 3, 4, 2),

(2)

where G(1, 2)=− i
h̄ 〈T̂ u(1)u(2)〉, G(1, 2, 3, 4)=− i

h̄ 〈T̂ u(1)u(2)
u(3)u(4)〉, T̂ is the contour order operator, G0(1, 2) is the
noninteracting version of G(1, 2), and numbers represent the
combination of ( jt ). To close this equation, we need to apply
a mean-field approximation:

G(1, 2, 3, 4) ≈ ih̄[G(1, 2)G(3, 4) + G(1, 3)G(2, 4)

+ G(1, 4)G(2, 3)]. (3)

Then we can work out the effective force constant matrix,

Ke = K + �, (4)

where we define

�i j = 3
∑

kl

Ti jkl〈ukul〉. (5)

The ingredient we need in the PHE is the dynamic matrix, and
therefore we need to transform the equation into mode space,
which is

Dnn′ (q)=ωn(q)2δnn′ +3
∑

mm′q′
Tnn′mm′ (q, q′)〈Qm(q′)Qm′ (q′)∗〉,

(6)

where Q represents normal modes, n and m are indices
for normal modes, q and q′ are lattice momentum, and ωn

is the eigenfrequency. This equation should be solved self-
consistently. In 2015, Tadano and Shinji already discussed
details within their ALAMODE package [15]. Therefore, we
utilize their package to calculate the dynamic matrix for real
materials.

III. PHONON HALL EFFECT THEORY

Currently, the widely accepted general theory for the PHE
was proposed by Qin etal. in 2012 [6]. This theory introduces
an effective vector potential to explain the PHE. We de-
scribe a harmonic phonon system in the reciprocal space with
a Hamiltonian Ĥ = 1

2

∑
q y†

qH (q)yq, where Hq = diag{Dq, I}
with Dq being the dynamic matrix, yq = (uq, vq)T , uq is the
displacement vector multiplied by the associated mass, and
vq = u̇q is the corresponding velocity vector. The yq satisfies
the commutation relation

[yq, y†
q′ ] = ih̄J (q)δqq′ , J (q) =

(
0 I

−I −2Aq

)
, (7)

where Aq is an anti-Hermitian matrix. Assuming yq =
ψqe−iωqt , we obtain the following eigenequation [9]:

ωqiψqi =
(

0 iI

−iDq −i2Aq

)
ψqi ≡ H̃qψqi. (8)

Comparing to the standard Kubo’s theory [5], the key ingredi-
ent of Qin’s theory is an energy magnetization term:

κxy = κKubo
xy + 2Mz

E

TV
. (9)

Here we take the phonon Hall conductivity in x-y plane as
an example. V is the volume in real space, and T is the tem-
perature. Mz

E is the circulation of the phonon energy current
named the energy magnetization [24]. This correction term
completely cancels the Kubo term to successfully avoid the di-
vergence of the phonon Hall conductivity at zero temperature
in the theory with Kubo term alone. By solving the eigensys-
tem, the Berry curvatures and phonon Hall conductivity are
given by Qin etal.:

�qi = −Im
[∂ψ̄qi

∂q
× ∂ψqi

∂q

]
(10)

and

κxy = − 1

2T

∫ ∞

−∞
dε ε2σxy(ε)

dn(ε)

dε
, (11)

where

ψ̄ = ψ†

(
Dq 0

0 I

)
, σxy(ε) = − 1

V h̄

∑
h̄ωqi�ε

�z
qi, (12)

n(ε) = 1/(eε/(kBT ) − 1) is the Bose function at temperature T ,
ε represents the energy, and kB is the Boltzmann constant. The
summation includes both positive and negative frequencies.
The most common source of the Aq is the external magnetic
field which has been applied in many experiments measuring
the PHE. To describe this process, spin-phonon interaction
(SPI) was introduced.
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A. Spin-phonon interaction

After the observation of the PHE in 2005, several re-
searchers tried to explain the experiments theoretically [3–5]
and all of them focused on the Raman-type SPI. Under an
external magnetic field, the SPI in an ionic crystal lattice has
the form of [5]

HI =
∑

i

hα · (uα × pα ), (13)

where hα = − qα

2Mα
B if it is purely due to Lorentz force, mα

and qα are the ionic mass and charge at site α, and uα and
pα are the vectors of displacement and momentum of the αth
lattice site, respectively. If one assumes the magnetic field is
along the z axis, the SPI can be written as

HI = uT Ap, (14)

where A is an antisymmetric block diagonal matrix in real
space with the diagonal block being ( 0 hα

−hα 0 ). However, us-
ing qα as the charge of the ion is not very accurate in real
materials and, in fact, ionic materials do not have free charges.
Instead, charge property should be described by a tensor, i.e.,
the Born effective charge tensor [25]. With this correction, the
A matrix is

A = e

4Mα

(
ZT

α × B + B × Zα

)
, (15)

where Zα is the Born effective charge dyadic of the ion at site
α. The derivation and the meaning of the cross product are
discussed in the Appendix.

B. An optimization: �(x)

Although Eq. (11) is enough to calculate the phonon Hall
conductivity, it is usually difficult to implement the integral
over the energy accurately if the Berry curvatures at some q
points have large values. However, it is accessible to avoid
this difficulty if we initially integrate over the energy by hand.
In such a way, the formula of the phonon Hall conductivity
becomes

κxy = k2
BT

2V h̄

∑
q,i

�z
qi(β h̄ωqi ), (16)

where β = 1/kBT , and

(x) =

⎧⎪⎪⎨
⎪⎪⎩

x2

ex − 1
− 2x ln(|ex − 1|)
+ 2Re[Li2(e−x )]

, x 
= 0

π2/3, x = 0.

(17)

Li2 is the so-called dilogarithm function. Although the diloga-
rithm function is still an integral, there are developed reliable
packages to calculate it accurately in many languages such
as FORTRAN, C++, and MATHEMATICA. With this formula,
the accuracy can be greatly boosted, therefore we call it an
optimization. The details of the integration can be found in
the Appendix.

IV. NUMERICAL DETAILS, RESULTS AND DISCUSSION

Dynamic matrix, vector potential, and Berry curvatures
are the ingredients to calculate the phonon Hall conductivity.
We determine the structures of the materials based on first-
principles calculations using QUANTUM ESPRESSO (QE) [26],
then calculate their interatomic force constants (IFCs) up to
fourth order with the help of the AIMD package in QE, and fi-
nally using ALAMODE to extract the corresponding dynamic
matrix including both analytic and nonanalytic (with LO-TO
splitting) parts. We assume the vector potential is just from
the SPI introduced in the last section with the block diagonal
A matrix. The Born effective charge dyadic is calculated by
the ph.x module in QE. As for the Berry curvatures, Eq. (10)
is too abstract to be used in a real calculation but, fortunately,
converting it to a more explicit form using the eigenequation
is already a common skill in topological physics. Taking the z
component of the Berry curvature as an example,

�z
j,qxqy

= −Im

⎡
⎣∑

j 
= j′

ψ̄ j
∂H̃
∂qx

ψ j′ψ̄ j′
∂H̃
∂qy

ψ j

(ω j − ω j′ + iη)2
− (qx ↔ qy)

⎤
⎦,

(18)

where ω j is the eigenfrequency in Eq. (8) and η is related to
the inverse of the phonon lifetime to avoid infinity when there
are degenerate points. Since both the analytic and nonanalytic
parts of the dynamic matrix have explicit formulas and the
SPI is independent of q, the Berry curvatures can be explicitly
worked out. Thereafter, the phonon Hall conductivity can be
obtained by the summation of the weighted Berry curvatures
in the first Brillouin zone.

A. Numerical results for NaCl

In 2011, Agarwalla et al. calculated the PHE in NaCl using
GENERAL UTILITY LATTICE PROGRAM with a Coulomb poten-
tial and a non-Coulomb Buckingham potential [27]. However,
at that time, they used a not-quite-correct theory and their
approach was still model based. Therefore, we recalculate
the PHE in NaCl in first principles as a different bench-
mark. In our first-principles calculations, we apply structure
optimization with the PAW-PBE pseudopotential for Na and
Cl to determine the lattice constant, which turns out to be
5.65 Å with the energy cutoff being 500 eV, and we use a
2 × 2 × 2 supercell to calculate the IFCs. A 50 × 50 × 50
grid and a 8 × 8 × 8 grid are employed in calculating the
dynamic matrix according to equation (6) for q and q′, respec-
tively. The small η is chosen to be 0.1 cm−1.

Figure 1(a) shows the phonon dispersion of NaCl at T =
300 K without an external magnetic field. LO-TO splitting
is considered using the mixed-space approach [28]. It can be
seen in Fig. 1(a) that there are many degenerate points. If we
apply a magnetic field (along z direction throughout the paper)
of 3 × 105 T, those degenerate points will be lifted especially
for the two TO modes as Fig. 1(b) illustrates. Therefore,
the role magnetic field plays is to open gaps in the phonon
dispersion. Since NaCl has a simple structure, the branches
in phonon dispersion can be well separated from each other
by the applied magnetic field. As a result, we can draw the
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FIG. 1. (a) Phonon dispersion of NaCl at T = 300 K without
magnetic field. (b) Phonon dispersion of NaCl at T = 300 K with
an external magnetic field being 3 × 105 T.

corresponding Berry curvatures of each branch, which are
shown in Fig. 2. Certain symmetries are observed in Fig. 2.
The first and second acoustic branches are almost opposite
to each other, so are the first and second optical branches,
while the third acoustic branch and the third optical branch
have their own patterns. This behavior is consistent with the
phonon dispersion of NaCl.

Figure 3 illustrates the dependence of the phonon Hall
conductivity on magnetic field and temperature. It can be seen
that as the temperature goes to 0, conductivity also decreases
to 0. This is a favorable correction compared with the blowup
of the conductivity near 0 K in Agarwalla et al.’s plots. For
a small magnetic field, the magnitude of the conductivity is
roughly linearly growing up, and when the magnetic field
increases further, the magnitude starts to decrease, the same
behavior as that in Agarwalla et al.’s results. However, the

conductivity does not change signs in the same range of the
magnetic field. Moreover, the magnitudes of our results are
about one order larger than Agarwalla et al.’s, which is another
progress of the ab initio approach.

Although we obtain observable values of the phonon Hall
conductivity, it requires a rather large magnetic field, about
105 T at least. In experiments, a magnetic field with an order
of magnitude 1 is enough to induce observable and even large
phonon Hall conductivity in complex materials [1,10]. There-
fore, it deserves to implement our approach in some much
more complicated materials such as materials in the family of
perovskites.

B. Numerical results for BTO

BTO has a large dielectric constant, and it was argued that
it is due to its soft optical phonons [13] at the � point. Previous
study implies that a large dielectric constant could result in
large phonon Hall conductivity [11], therefore, we calculate
the PHE in BTO to verify this point. At different temper-
ature ranges, BTO has different structures, while currently
this structural diversity cannot be precisely caught by first-
principles calculations [29]. Therefore, we still choose the
simple cubic BTO to implement the calculation. PAW-PBE
pseudopotentials for Ba, Ti, and O are employed with a 2 ×
2 × 2 supercell to calculate the dynamic matrix. The lattice
constant is optimized to be 4.024 Å and the energy cutoff is set
to be 800 eV. q and q′ grids are 50 × 50 × 50 and 8 × 8 × 8,
respectively. The small η is still chosen to be 0.1 cm−1.

The phonon dispersion of BTO at T = 60 K is illustrated
in Fig. 4 where the two soft TO modes can be clearly seen

FIG. 2. The Berry curvatures of six positive branches in b1 − b2 reciprocal plane of NaCl under the magnetic field B = 3 × 105 T at
temperature T = 300 K, where b1 = 2π

a (−q̂x + q̂y + q̂z ), b2 = 2π

a (q̂x − q̂y + q̂z ) are the two of three basis vectors with a being the lattice
constant. The horizontal and vertical axes represent the fraction of b1 and b2 in the range of (−0.5, 0.5). The unit of the Berry curvatures is a2

0,
where a0 is the Bohr radius. From (a)–(f), the associated eigenvalues are in ascending order.
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FIG. 3. (a) Phonon Hall conductivity versus the applied magnetic field at T = 50 K and T = 100 K, respectively. (b) Phonon Hall
conductivity versus temperature at B = 3 × 105 T and B = 5 × 105 T, respectively.

near the � point whose frequencies are close to 0. Applying
magnetic field results in a similar behavior as in NaCl, which
is trying to open gaps in dispersion. Since our goal for NaCl
is to provide a benchmark while for BTO is to compare with
experimental values, we use a reasonably large magnetic field
with an order of magnitude 1 in this case. Within this range,
the phonon dispersion almost remains the same under the
magnetic field, therefore, it is not necessary to demonstrate
it here.

Similar to Fig. 3, Fig. 5 shows the behaviours of the phonon
Hall conductivity against the magnetic field and temperature.
Figure 5(a) is drawn at 60 K, for this is roughly the lowest
temperature range that first-principles calculations can cor-
rectly address the soft optical phonons in BTO [13]. Again,

FIG. 4. Phonon dispersion of BTO at T = 60 K without mag-
netic field.

for a small magnetic field, the Hall conductivity demonstrates
a linear relationship with the magnetic field. For large fields,
the phonon Hall conductivity also becomes large and even has
a sign change. Figure 5(b) is under a magnetic field of 16 T,
the absolute value of Hall conductivity increases at first and
reaches a peak near 150 K, then starts to decrease. However,
the order of magnitude is two orders smaller than the order of
the experimental values in STO. Although STO and BTO are
different materials, they have very similar crystal structures
and both have soft optical modes at low temperatures [30].
Therefore, we think the comparison is reasonable.

We note that when we enlarge the magnetic field, the
phonon Hall conductivity in the BTO encounters a sign
change. Since the conductivity is just the sum of the weighted
Berry curvatures in the first Brillouin zone, we should ob-
serve clues for the sign change from the Berry curvatures and
phonon dispersion of the BTO. Usually, the great change of
Berry curvatures comes from band openings or band cross-
ings. However, monitoring the evolution of each branch in
the BTO is not a good idea. In the phonon dispersion of
the BTO, many branches are deeply entangled, so we can-
not always distinguish each branch correctly traveling around
the whole Brillouin zone nor the Berry curvatures of each
branch. Moreover, the phonon Hall conductivity is an over-
all effect summing over all the weighted Berry curvatures,
so we cannot only analyze the individual Berry curvatures
along the high symmetry path. Therefore, we decide to simply
split the branches into two groups, three acoustic branches,
and twelve optical branches, and draw a plot of contributions
to the phonon Hall conductivity of the two groups, which
is Fig. 6. Comparing with Fig. 5(a), we can conclude that
the acoustic contributions are larger than optical for small
magnetic fields so the total conductivity is negative initially,
and when the magnetic field surpasses some value, the sit-
uation gets reversed. Once a small magnetic field is applied
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FIG. 5. (a) Phonon Hall conductivity versus the applied magnetic field at T = 60 K. (b) Phonon Hall conductivity versus temperature at
B = 16 T.

to the system, the degenerate branches will be slightly lifted
(points near the � point are dominant) so the Berry curvatures
rapidly increase, as shown in the Fig. 6. Initial tiny gaps
nearly produce symmetric Berry curvatures [dominated by the
same η in Eq. (18)] among all the branches. However, due
to the  function, the acoustic branches with much smaller
eigenvalues will contribute more, resulting in a negative con-
ductivity (with a transformation, it is valid to just consider the
positive branches [6]). When the magnitude of the magnetic
field keeps increasing, by zooming in the phonon dispersion,
we find that the gaps in the acoustic branches grow faster than
those in the optical branches against the magnetic field. As a
result, the magnitude of the Berry curvatures of the acoustic

FIG. 6. Mode-dependent contributions to the phonon Hall effect
for varying magnetic fields at T = 60 K. The red squares stand
for the acoustic contributions and the blue dots for the optical
contributions.

branches decrease faster than those in the optical branches.
The slopes of the two groups in Fig. 6 verify this statement. Fi-
nally, at some value of the magnetic field, the optical branches
contribute more to the phonon Hall conductivity so a sign
change shows up.

Why are the results so small? Our intuition is that the
SPI, in this case, is too weak, for it cannot even remove the
degeneracy of the soft optical phonons. With this degeneracy,
although we have soft optical phonons, their effects just get
canceled. This canceling can be easily checked by looking
at the mode contribution to the phonon Hall conductivity.
However, currently we have no idea what the suitable in-
gredients are to open a gap between soft optical phonons
from first-principles calculations, and we would like to leave
it as an open question that deserves our further exploration.
Therefore, we perform a numerical test to open a gap by hand.

There are two ways to manually open a small gap at and
near the � point, one is to lift the higher soft optical phonon
branch and the other is to lift the lower soft optical phonon
branch. The latter will induce band-crossing points near the �

point. Figure 7 shows the Hall conductivity after these two
operations. It can be seen that their magnitudes are indeed
enlarged to be close to the experimental values. These two
operations result in opposite signs, and usually the phonon
Hall conductivity experiments measured have a negative sign.

C. Discussion for STO

Last year, an experimental group found a large phonon
Hall conductivity in STO under the magnetic field around
15 T. Therefore, we also explored the PHE in STO by first-
principles calculations. Since BTO and STO have a similar
structure, the numerical details are almost the same as BTO
except for the pseudopotential files. Our optimized lattice
constant for STO is 3.852 Å based on the PBEsol exchange-
correlation functional for Sr, Ti, and O [31], which performs
better than other functionals and is consistent with the
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FIG. 7. (a) Open a small gap by manually lifting 1% of the value of the higher soft optical phonon branch at and near � point (the chosen
range is where the frequencies are lower than 100 cm−1). (b) Open a small gap with the same value and range as (a) but by manually lifting
1% of the value of the lower soft optical phonon branch which will introduce band-crossing points near � point. These two operations can be
imagined considering a partially degenerate two-level system.

previous experimental values [32] and theoretical calculations
[15]. However, we cannot obtain large phonon Hall conduc-
tivity even after manually opening a gap, and the order of
magnitude is still two orders smaller than the experiments in
STO. The failure could result from many reasons. First, we
choose a cubic structure while at low temperature, STO has
different phases of structure. Second, we expect there should
be soft phonon modes with frequencies being close to 0 near
the � point so the dielectric constant of the STO will be as
large as 104 at low temperature, while our current approach
utilizing ALAMODE cannot produce that soft optical modes
and the dielectric constant we obtained is about three orders
smaller than expected. Third, perhaps we cannot produce large
PHE with the SPI.

Right after the experiment, a theoretical paper by Chen
et al. discussed this experiment in detail [11]. The authors
pointed out that with Qin’s theory, the phonon Hall conductiv-
ity can only be about four orders smaller than the experimental
value. Although our results are two orders smaller, it is not
large enough. Moreover, according to our observation, the SPI
we used is too weak to open a gap between two soft phonon
modes at the � point. Therefore, the degeneration may cause
canceling during the calculation. We obtain large values as
those in the experiment if we open a gap by hand in BTO
(not in STO, for we cannot produce soft phonon modes in
STO). In Chen et al.’s paper, they also provide another direc-
tion to explain the experiment, which is using the Boltzmann
transport theory. With their approach, they made a successful
prediction of the ratio between the longitudinal conductivity
and the phonon Hall conductivity. However, there is another
experiment in STO challenging their theory. Just by replacing
the 16O in STO with the isotope 18O, researchers found that
the phonon Hall conductivity will be reduced by two orders
[12]. It is difficult to explain this behavior using Boltzmann
transport theory for the replacement only changes the mass.

Moreover, it is unnatural that we can only explain the PHE
with macroscopic methods.

When there is an external magnetic field, the ion will ex-
perience two effective vector potentials: one is from the real
magnetic field (the SPI in our case), and the other is from the
Berry phase due to the phase of electron ground state, which
was first pointed out by Mead and Truhlar [33]. The latter one
has already been considered in Qin’s theory, and Saito et al.
have discussed in detail how to include it in a square lattice
model [7]. However, it seems that nobody knows how to cal-
culate this electron-related vector potential in first-principles
calculations. Another electron-related physical process is the
spin-orbit coupling (SOC) of electrons. In our consideration,
the SOC may affect the PHE in two ways. First, the SOC may
relate to the electronic Berry phase, but we cannot deal with
it yet. Second, the SOC may modify the phonon dispersion
directly. As a quick exploration, we calculate the phonon
dispersion of the STO turning on the SOC at zero temperature,
which is illustrated in the Appendix. However, the effect of
the SOC is rather weak that the phonon dispersion almost
remains the same. Although previous research reported the
SOC in the STO-based heterostructures [34] and gating sys-
tem [35], there are no studies on the SOC in bulk STO or BTO
before. Therefore, the high-temperature effect of the SOC in
the STO or BTO deserves future exploration. In addition, in
our calculations, we do not take care of the cubic potential
term which is related to the phonon lifetime. Qin’s theory
starts from the harmonic assumption, therefore we cannot deal
with the cubic term with this theory. Currently, we simply
add a small constant value η in Eq. (18) to represent the
inverse of the phonon lifetime. Although we can tune the η

to modify the phonon Hall conductivity, a systematical theory
for PHE considering the cubic term should be developed in
future work. Therefore, we think the experiments still lack a
microscopic explanation and our intuition is that it may be
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relevant to the inner electronic topological structure of the
STO or the cubic potential term in the STO, which is a future
project to explore.

V. CONCLUSION

In summary, we introduce an approach to calculate
the phonon Hall conductivity in real materials using first-
principles calculations and implemented it for NaCl, BTO,
and STO. Although the approach is very direct, it highly relies
on whether first-principles calculations can predict materials
properly and how to introduce the effective vector potential
in materials. We have provided a benchmark of the PHE in
NaCl to be examined in the future and, based on our cal-
culation, there is still a gap to address soft phonons in STO
using first-principles calculations. We conclude that SPI is
not a good candidate to explain the PHE in real materials
and propose that the inner electronic structure or cubic po-
tential term in STO may be possible directions to explore in
future work. Finally, we think the relationship between the
soft mode and κxy is far from clear quantitatively and needs
further exploration. This study provides an effective route to
capture the PHE from the accurate first-principles calculations
in any real materials and has implications in promoting related
experimental investigations.
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APPENDIX A: SPIN-PHONON INTERACTION
WITH BORN EFFECTIVE CHARGE

If we take a careful look at the form of SPI, it can be
found that it has a similar form as the Hamiltonian containing
a Lorentz force, therefore, to generalize it to couple with
the Born effective charge, we should start from the magnetic
energy. The energy of a magnetic moment is

Vm = −m · B, (A1)

where usually m = e
2 r × v, e is the charge of the particle.

Since the Born effective charge is a tensor, we should insert
it into the equation carefully. A reasonable argument is from
the way the Born effective charge acts on the electric field,
which is ZT E. Here we take the transpose of Z because the
first index of it is associated with the electric field [25]. If
we change the reference system so the charge appears to
move with a velocity v, it will also feel a magnetic field
E → E + v × B. Therefore, ZT should act on v × B, not on B
directly. Moreover, in electronic systems, the rate of change of
the polarization is dP

dt = eZv. Analogous to this, we propose
that in the magnetic case, Z acts on v. However, this replace-
ment breaks the antisymmetry over r and v. To restore it, we

add a term with Z acting also on r so the energy becomes

Vm = − e

4
[r × (Zv) + (Zr) × v] · B

= − e

4
[((vZT ) × B) · r + (v × B) · (Zr)]

= − e

4
[viZkiBlε

kl jr j + εiklviBkZl jr j]

≡ − e

4
[v · (ZT × B + B × Z) · r]. (A2)

Then comparing it with the form of the SPI, HI = uT Ap =
−pT Au, we can conclude that

A = e

4Mα

(
ZT

α × B + B × Zα

)
. (A3)

APPENDIX B: THE � FUNCTION

Given Eq. (11), we can first integrate with respect to
energy,

κxy = 1

2TV h̄

∑
q,i

�z
qi

∫ ∞

−∞
dεε2θ (ε − h̄ωqi )

dn(ε)

dε

≡ k2
BT

2V h̄

∑
q,i

�z
qi(β h̄ωqi ), (B1)

where θ is the step function, n(ε) = 1/(eβε − 1) is the Bose
function, β = 1/kBT , and

(x) =
∫ ∞

x
y2dn(y), (B2)

with the substitution βε → y. By integration by parts, we
obtain

(x) = x2

ex − 1
+

∫ ∞

x

2ydy

ey − 1
. (B3)

When x = 0, the first term is an indeterminate value, but the
original integral in this case has a definite value π2/3. When

FIG. 8. The phonon dispersion of the STO with and without the
SOC at 0 K. The black solid line stands for the case without the SOC
and the red dotted line for the case with the SOC.
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x 
= 0, we make another substitution y → − ln(u):

(x) = x2

ex − 1
− 2

∫ e−x

0+

ln(u)

1 − u
du. (B4)

Again we use integration by parts:

(x) = x2

ex −1
+2 ln(u) ln(|1 − u|)∣∣e−x

0+ −2
∫ e−x

0+

ln |1 − u|
u

du

= x2

ex − 1
− 2x ln(|1 − e−x|) − 2

∫ e−x

0+

ln|1 − u|
u

du.

(B5)

The last term is related to the Spence’s function or the diloga-
rithm function:

−
∫ x

0+

ln |1 − u|
u

du =

⎧⎪⎨
⎪⎩

Li2(x), x � 1

π2/3 − ln2(x)/2

− Li2(1/x)
, x > 1.

(B6)

Since Li2(x) + Li2(1/x) = π2/6 − ln2(−x)/2, we can com-
bine two cases so, finally, we obtain

(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2

ex − 1
− 2x ln(|ex − 1|)
+ 2Re[Li2(e−x )]

, x 
= 0

π2/3, x = 0.

(B7)

Here we always take the real part of the Li2(e−x ) for when
e−x > 1, it is a complex value while (x) is real.

APPENDIX C: SPIN-ORBIT COUPLING IN STO

We calculate the phonon dispersion of the STO with the
SOC considered at zero temperature. The numerical details
are the same as we introduced in the main text except the
SOC turned on during the first-principles calculations. The
comparison is given in Fig. 8. It can be seen that the effect
of the SOC at zero temperature is too weak to modify the
phonon dispersion obviously. The effect of the SOC at higher
temperature has not been reported yet and, currently, precise
first-principles calculations for STO at nonzero temperatures
are still challenging.
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