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Signatures of many-body localization in the dynamics of two-level systems in glasses
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We investigate the quantum dynamics of two-level systems (TLS) in glasses at low temperatures (1 K and
below). We study an ensemble of TLSs coupled to phonons. By integrating out the phonons within the framework
of the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation, we derive analytically the explicit
form of the interactions among TLSs, and of the dissipation terms. We find that the unitary dynamics of the
system shows clear signatures of many-body localization physics. We study numerically the time behavior of
the concurrence, which measures pairwise entanglement also in nonisolated systems, and show that it presents a
power-law decay both in the absence and in the presence of dissipation, if the latter is not too large. These features
can be ascribed to the strong, long-tailed disorder characterizing the distributions of the model parameters. Our
findings show that assuming ergodicity when discussing TLS physics might not be justified for all kinds of
experiments on low-temperature glasses.
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I. INTRODUCTION

Recent years have witnessed several advances in our un-
derstanding of the dynamics of many-body quantum systems.
On one hand, the mechanism by which thermal equilibrium
appears in isolated quantum systems has been explained via
the Eigenstate Thermalization Hypothesis (ETH) [1–3], and
its connection to the classic von Neumann ergodic theorem
has been made clear [4]. On the other hand, a generic mech-
anism by which quantum systems can avoid going to thermal
equilibrium has been identified in many-body localization
(MBL) [5–11]. Analogous phenomena take place in driven
periodic systems (time crystals) [12–14], and in systems with-
out disorder [15–23]. These progresses give now a more or
less complete picture of the various ways of thermalization in
quantum systems, under different conditions.

One of the places in which one routinely finds disorder
and quantum effects at the same time is in the study of
low-temperature properties of glasses. A series of classic ex-
periments [24,25] has made manifest that the properties of
glasses at temperatures of 1 K and below show a surprising
degree of universality, and deviate significantly from Debye
theory. Several theoretical ideas aimed at explaining these re-
sults, mostly on the lines of two seminal works [26,27]. There,
the authors introduced the idea of bi-stable tunneling systems
(or two-level systems, TLSs), whose parameters (energy dif-
ference and tunneling rates) are very broadly distributed. With
an appropriate choice of such distributions, one can reproduce
quantitatively the values of several equilibrium quantities,
including specific heat, conductivity, and sound attenuation.
The range of TLS models has been expanded considerably
beyond the original works to account for various experimental
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facts [28,29], and even criticized as a glorified curve-fitting
procedure [30–32].

In a glass, TLSs interact with phonons and, if they have
an electric dipole moment, also with photons. The conse-
quence of the interaction between TLSs and the phonon (and
photon) bath is twofold: it generates TLS-TLS interactions,
which have been observed in several experiments [33–38],
and it is responsible for the equilibration of the TLSs at
the bath temperature. While the former have been subject of
extensive studies [39–43], and also have been used to explain
the discrepancies between experiments and the original TLS
model, the issue of thermalization has been overlooked so
far. Namely, TLSs are always assumed thermal on all experi-
mentally accessible timescales, and standard thermodynamic
ensembles are applied.

The purpose of this paper is to investigate the quantum
dynamics of TLSs coupled to phonons, and to discuss in
particular how they reach thermal equilibrium. We idealize the
system TLSs + phonons as an isolated system, and we analyt-
ically derive the Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) master equation for the reduced density matrix of
the TLSs, tracing out the phonons. We find that the TLS
unitary evolution (the so-called Liouvillian) is governed by
a Hamiltonian with an extensive number of local conserved
quantities, as the effective Hamiltonian of MBL systems; the
dissipative term (the so-called Lindbladian) destroys localiza-
tion and drives the system to a thermal state. We show that,
considering the typical values of the TLS disorder parameters,
dissipation is much slower than any other time scale of the
problem, and TLS relaxation dynamics shows the fingerprint
of localization for a long time window.

Recently, a growing body of literature has investigated
the impact of dissipation and dephasing on MBL systems
[44–52]. The research question underlying these works con-
cerns how the imperfect isolation from the environment enters
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the experimental measurements on MBL systems [53–56].
Even though dissipative baths necessarily lead to delocaliza-
tion, it has been found that at intermediate and long time
scales the relaxation dynamics of MBL systems coupled to
heat baths shows clear signatures of the localized phase, and
differs from the one of ergodic systems. These findings are in
agreement with the results of the present study, as will become
evident in the following.

We focus in particular on the creation and spreading of
entanglement as measured by the concurrence [57–59] and
the entanglement entropy. The former measures the amount
of entanglement between two TLSs; under time evolution it
grows to a maximum, and then decays and vanishes. The
latter instead increases monotonically with time to reach a
thermodynamic value. We simulate both the artificially iso-
lated TLS system (i.e., dissipation is set to zero), and the open
system. For the artificially isolated system, we can confidently
investigate the thermodynamic limit (our numerics goes up
to N = 60 TLSs). We observe that, for long time scales,
the concurrence decays as a power-law C ∼ t−βi , down to a
plateau value which is exponentially small in the number of
TLSs. This slow power-law decay is the signature of local-
ization, and contrasts with the exponentially fast decay one
would observe for an ergodic system. In the open system,
we find that the concurrence always vanishes, never reaching
the plateau observed in the unitary case. This is not surpris-
ing, since the phonon (and photon) bath to which TLSs are
coupled is effectively infinite, and entanglement can spread
indefinitely. Moreover, for not too large dissipation, we find
that the concurrence decays as a power-law C ∼ t−βo , as in
the artificially isolated system, indicating that the signatures
of TLS localization are observable even in this case for long
time windows. The exponents βi,o in the two scenarios are
of the same order of magnitude. Their comparison shows
that, within the statistical errors and finite-size corrections, β

increases in the presence of dissipation.
The structure of the paper is as follows. In Sec. II, we in-

troduce the Hamiltonian of the full system (TLSs + phonons),
and comment on the various parameters that are needed to de-
scribe TLSs in amorphous media. In Sec. III, we introduce the
GKSL equation for the TLS density matrix which is obtained
integrating out the phonons. We present the explicit form of
the TLS-TLS interactions and dissipation terms, and discuss
their competition. Thus, we sketch the dynamical phase di-
agram of the system. In Sec. IV, we present the numerical
results on the real-time evolution of the TLSs. In particular,
in Sec. IV C, we consider the system as artificially isolated,
studying the unitary part of the GKSL dynamics, and we an-
alyze the signatures of MBL on the entanglement quantifiers.
In Sec. IV D, instead, we reintroduce the dissipative terms of
the GKSL dynamics, and show how they affect the results of
Sec. IV C. Finally, in Sec. V, we summarize our findings and
indicate possible future research directions.

II. THE TLS MODEL

We define the total Hamiltonian of the TLSs system and
the thermal bath as [39,41,60]

H = HTLS + HB + Hint. (1)

TABLE I. Summary of the TLS model parameters for fused
quartz (SiO2), borosilicate glass (BK7), and plexiglass (PMMA). The
parameters vL, vT ρ, and the Debye temperature TD are independent;
their values are derived from experimental measurements [60,62].
The (average) TLS-phonon coupling γ is experimentally accessi-
ble too [62]. One can reasonably assume W ≈ kBTglass: indeed the
TLSs are formed at the glass transition [28]. As a consequence, one
should also set �max ≈ 10−1 W in order to have a density of states
that goes to zero above W [26], and �min ≈ 10−9 W to reproduce
instead a flat DOS at low temperatures [63]. The precise value of
�max and �min is not crucial, since they enter only logarithmically
in the quantities of interest. One can obtain the numerical density
of the TLSs, ρTLS, from the experimentally measurable parameter
P̄ = ρTLS/W ln(�max/�min ) [28,62].

SiO2 BK7 PMMA

W (meV) 130 70 30
�max (meV) 13 7 3
� (meV) 10−3 10−3 10−4

�min (meV) 10−7 10−7 10−8

γ [eV] 0.8 0.7 0.3
ρ (g/cm3) 2.2 2.5 1.2
vL (km/s) 5.8 6.2 3.2
vT (km/s) 3.8 3.8 1.6
kBTD (meV) 30 30 10
ρTLS (nm−3) 0.3 0.2 0.05
h̄τ−1 (meV) 1.8 1.7 0.45

The phonon bath is described by

HB =
∑

k

h̄ωkψ
†
k ψk , (2)

ψk (respectively ψ
†
k ) being the annihilation (respectively cre-

ation) operator of a phonon with wave vector and polarization
k = (q, α). The dispersion relation in amorphous solids is, to
a good approximation at low temperatures [61], ωqα � vαq
with v = vL for longitudinal modes and v = vT for transverse
modes.1 Typically vL � 1.6 vT (see Table I).

The TLS Hamiltonian is

HTLS =
∑

i

(
�iσ

x
i + εiσ

z
i

)
. (3)

We employ Pauli spins to represent the two states of a TLS;
εi is the energy splitting and �i the tunneling amplitude in
the ith double well. According to the original works [26,27],
we consider ε as drawn from a uniform distribution of width
W � 0.1 eV:

pε(ε) = 1

W
�(W − ε)�(ε) (4)

(� is the Heaviside step function). In Refs. [26,27], it is
also argued that the tunneling amplitudes �i are broadly
distributed, and that the most reasonable distribution, from a

1Isotropy is due to structural disorder and holds up to short scales.
A different dispersion is encountered in ultrastable vapor-deposited
glasses [76], which are essentially two-dimensional.
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simplicity standpoint, is log-uniform:

p�(�) = �(� − �min)�(�max − �)

ln(�max/�min)�
(5)

where

�min = � × 10−n�/2, �max = � × 10n�/2. (6)

The parameter n� defines the span of the distribution:
�max/�min = 10n� . Since 〈ln �〉 = ln �, we note that �

is the typical value. Usually in the literature, n� � 8 and
�/W ≈ 10−5, making p�(�) very wide.

The interaction Hamiltonian of the localized degrees of
freedom with the strain field is, to lowest order [39,41,60],

Hint =
∑

ik

σ z
i (ξikψk + H.c.), (7)

with

ξik = −i

√
h̄

2V ρ ωk
γiD

ab
i eab

k eiq·ri . (8)

Above, ρ is the material density, V the volume, γiDab
i the

elastic dipole tensor of the ith TLS (the strength γi has the
dimension of an energy and Dab

i is dimensionless), and eab
k :=

1
2 (qaêb

qα + qbêa
qα ) [q is the wave vector and êqα the unit (q, α)-

polarization vector]. γi and Dab
i are random variables; their

probability distributions are induced by the distributions of the
shapes and directions of the TLSs in space. In the literature
[28,29], it is argued that γi should be of the same order of
magnitude of W , since the former is related to the energy shift
induced in a TLS by a phonon, and it must be comparable
with the energy imbalance of the two minima in the double
well. Therefore, for simplicity, we set γi ≡ W and absorb in
the dipole entries Dab

i all the disorder fluctuations: we consider
Dab

i to be random variables of order 1. We will not specify the
full distribution of their entries, since in Sec. III B, we will
show that only some combinations are needed. We refer to
those Sections for more details.

We report in Table I the experimental values of the TLS
model parameters for three well-known structural glasses.

III. THE GKSL MASTER EQUATION

To study the dynamics of the TLSs, we need to integrate
out the phonons. We choose to work in the GKSL framework
[64,65], obtaining a master equation for the (reduced) density
matrix of the TLSs ρ, that reads

∂tρ(t ) = − i

h̄
[HTLS + HLS, ρ(t )] +

∑
κ

Lκρ(t ). (9)

The first term on the right-hand side (r.h.s.) describes the uni-
tary evolution of the system, and it is called the Liouvillian. It
is governed by HTLS, which is the TLS Hamiltonian of Eq. (3),
and HLS , which is the Lamb-Stark shift Hamiltonian [it will
be specified below in Eq. (16)]. The second term on the r.h.s.,
the so-called Lindbladian, describes instead dissipation and
decoherence. Lκ are the Lindblad super-operators; in general,
the label κ can assume O(N2) values but, as we will show in

the following, in our system the dominant terms are on-site,
reducing κ ≡ i = 1, 2, . . . , N .

The GKSL master equation (9) relies on some approxi-
mations [64,65]. First, one assumes weak coupling between
TLSs and phonons. This assumption is usually taken in litera-
ture [28]; its validity has to be checked a posteriori, verifying
that the energy scales of decoherence and dissipation induced
by phonons are smaller than the TLS energy set by W . The
GKSL framework consists in three further approximations:
the Born, the Markov, and the rotating wave approximation.
In the Born approximation, one assumes that at all times the
influence of the TLSs on the phonon thermal population is
negligible. This is a consequence of weak coupling, and of
the TLSs being a dilute system in the (amorphous) lattice.
Therefore, we expect the Born approximation to be valid to
a good extent in our systems. The Markov approximation
instead entails that all the bath excitations decay on very fast
timescales with respect to those of the TLSs. This is not guar-
anteed when working at ultra-low temperatures, but it is still
a good starting point. Finally,the rotating wave approximation
assumes that, when considering two TLSs, the resonant pro-
cesses are dominant, or equivalently that the relaxation time
of TLSs in the open-system, τR, is long with respect to the
time scale of the intrinsic evolution of the system [64]; in
formulas: τR � |νi − ν j |−1. We will validate a posteriori this
assumption in Sec. III C.

Within these assumptions, the TLS-TLS interactions in HLS

commute with the isolated TLS Hamiltonian: [HTLS, HLS] =
0, ultimately leading to the MBL character of the unitary
dynamics. In further studies, it might be interesting to go
beyond the GKSL master equation, and relax its assumptions.

A. The free TLS eigenoperators

In order to compute the Lamb-Stark shift HLS and the
Lindblad superoperators Lκ , it is convenient to diagonalize
the TLS Hamiltonian HTLS [64,65]. We look for single-site
operators Si such that

[HTLS, Si] = −h̄νSi. (10)

The linear problem is easily solved, finding eigenvalues

h̄νi,0 = 0, h̄νi,± = ±h̄νi = ±2
√

ε2
i + �2

i , (11)

with corresponding eigenoperators

Sz
i = 	vi,0 · 	σi, S±

i = 	vi,± · 	σi, (12)

where

	vi,0 = − 2

h̄νi
(�i, 0, εi ), 	vi,± = 2

h̄νi
(−εi,±ih̄νi/2,�i ).

(13)
Notice that, since typically �i 
 εi ∼ W , h̄νi will be of order
W . Also, defining Sx

i = (S+
i + S−

i )/2 and Sy
i = (S+

i − S−
i )/2i,

the operators Sx
i , Sy

i , Sz
i form a Pauli basis.

At this point, it is easy to verify that the TLS Hamiltonian
reads

HTLS = −1

2

∑
i

h̄νiS
z
i . (14)
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FIG. 1. Virtual [(a) and (b)] and real [(c) and (d)] phonon
processes that lead to TLS-TLS interactions and dissipation, respec-
tively. (a) Interactions in the Sz–Sz channel are mediated by phonons
of vanishing frequency ω, and take place among each couple i j,
yielding HLS of Eq. (16). (b) Flip-flop interactions can take place
only if the two TLSs resonate: this is a very rare event, because
the νi’s are widely distributed random variables. We disregard this
possibility altogether throughout this study. (c) Dephasing of a single
TLS under the action of the phonon bath. This process is negligible
because there are no real phonons at ω = 0. (d) Decay of a TLS
into a phonon. Considering that resonating TLSs are very rare and
the phonon density of states vanishes at ω = 0, as noted above, it
is easy to see that nonunitary processes involving two TLSs can be
neglected.

B. Coupling to phonons

The coupling with phonons induces both dissipation and
TLS–TLS interactions. Under the assumptions discussed
above, they can be be modelled via the GKSL master equa-
tion. Its final form for TLSs in glasses is given by

∂tρ(t ) = − i

h̄

[
− 1

2

∑
i

h̄νiS
z
i +

∑
i j

Ji jS
z
i Sz

j, ρ(t )

]

+
∑

i

Yi fT (h̄νi )(S
+
i ρ(t )S−

i + S−
i ρ(t )S+

i − 4ρ(t ))

+
∑

i

Yi(S
+
i ρ(t )S−

i + {ρ(t ), Sz
i } − 2ρ(t )). (15)

In the previous equation, the first term on the r.h.s. corre-
sponds to the commutator − i

h̄ [HTLS + HLS, ρ(t )], where

HLS =
∑

i j

Ji jS
z
i Sz

j (16)

is the Lamb-Stark shift Hamiltonian. The second term on
the r.h.s. contains the dissipative terms; it is written sepa-
rating explicitly the temperature dependent and independent
contributions: fT (ε) := (eε/kBT − 1)−1 is, indeed, the Bose-
Einstein distribution function at temperature T . Considering
that h̄νi ∼ W ∼ 0.1 eV, however, at ultra-low temperature
(T ∼ 1 K and below) fT � 0, and our system is effectively
at zero temperature. Thus, in the following we will keep only
the temperature-independent contributions.

Before introducing the expressions for Yi and Ji j , a few
comments are in order. As depicted in Fig. 1, in gen-
eral interactions can take place either in the Sz–Sz channel

[panel (a)], or by flipping two spins with the emission and
absorption of a virtual phonon [panel (b)]. This latter case, for
our system, can be neglected: since νi and ν j are random vari-
ables, the matching condition ω = νi = ν j (ω is the phonon
frequency), entailed by the rotating wave approximation, is a
rare event. Thus the Lamb-Stark shifts are always diagonal in
Sz.2

Moreover, the Lindblad superoperators of Eq. (9) corre-
spond only to the decay processes in Fig. 1(d), since purely
dephasing processes [panel (c)] are absent. This is simply
because there is no density of states of the phonons at zero
frequency.

Having understood what are the physical processes behind
the GKSL evolution, we can compute explicitly the dissipa-
tion rates Yi and the interaction strengths Ji j . As stated above,
they both come from phonon processes; therefore, one can
treat them in a unified way. We start by rewriting the inter-
action Hamiltonian, Eq. (7), as

Hint =
∑

ik

σ z
i (ξikψk + H.c.) =:

∑
i

σ z
i Ei : (17)

Ei are the environment operators that need to be traced out.
Then, following [64,65], we define

�ω
i j := 1

h̄2

∫ ∞

0
ds eiωs TrB

[
ρT

B Ê†
i (t ) Ê j (t − s)

]
(18)

with the hat on Êi(t ) indicating the interaction picture. It then
holds

Yi =
(

�i

h̄νi

)2[
�

νi
ii + (

�
νi
ii

)∗]∣∣∣
T =0

, (19)

Ji j = 2εi

h̄νi

2ε j

h̄ν j

h̄

2i

[
�0

i j − (
�0

ji

)∗]
. (20)

The prefactors �i/h̄νi and 2εi/h̄νi come from the basis rota-
tion in Eq. (12).

We leave to Appendix A all the details of the computation
of �ω

i j , which is rather straightforward, while we present here
the results obtained:

Yi = �2
i γ

2
i νiTr

(
D2

i

)
12πρ h̄3v5

, (21)

Ji j = γiεi

h̄νi

γ jε j

h̄ν j

Di j

4πρv2r3
i j

. (22)

Above, Tr(D2
i ) = ∑

ab Dab
i Dba

i , and Di j is a specific contrac-
tion of the dipoles Dab

i and Dcd
j , defined in Eq. (A27).

At this point, we can check a posteriori whether the weak
coupling and the rotating wave approximations are valid.
Plugging in Eqs. (21) and (22), the typical values of the
parameters, we find h̄Yi/W ∼ 10−8 and Ji j/W ∼ 10−3. There-
fore, even if the coupling constant is comparable to the on-site

2Even accounting for rare interactions in the Sx–Sx channel, the
picture is not modified. Indeed, terms of the form Ki jSx

i Sx
j will still

decay with the distance ri j : the probability of having a resonant i j
couple that is also close in real space is vanishingly small. Therefore
the MBL-breaking effect of weak Sx

i Sx
j terms [77–79] is negligible in

comparison to the Lindblad dissipator.
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energies γ ∼ W , we see that assuming weak coupling is per-
fectly justified a posteriori. Moreover, as anticipated at the
beginning of this Section, the rotating wave approximation
is amply valid too. Indeed, the relaxation time in the open
system is much longer than the intrinsic time scale of TLSs:
Y −1

i � |νi − ν j |−1 ∼ h̄W −1.

C. Dynamical phases from the GKSL equation

The GKSL equation (9) constitutes the starting point for
exploring the quantum dynamics of the TLSs. As a first thing,
we notice that in the absence of dissipation the evolution
would be unitary, governed by the Hamiltonian

HTLS + HLS = −1

2

∑
i

h̄νiS
z
i +

∑
i j

Ji jS
z
i Sz

j . (23)

HTLS + HLS is completely expressed in terms of the extensive
set of local conserved quantities Sz

i . This is the same property
of the effective Hamiltonian of MBL systems, known as the
l-bit Hamiltonian [8,66–69]. Borrowing the terminology from
MBL, we can refer to the Sz

i ’s as the l-bits, or Local Inte-
grals Of Motion (LIOMs); indeed, they are on-site operators
whose values are conserved during time evolution. However,
HTLS + HLS presents two main differences with respect to
the l-bit Hamiltonian of standard MBL systems. First, in the
TLS Hamiltonian the l-bits are formed by single spins, not
exponentially localized groups of them. Second, the interac-
tion between the TLS decays with distance as a power law,
Ji j ∝ r−3

i j , rather than exponentially. We will comment more
on this point later, in Sec. IV C.

The diagonal interactions in HLS are responsible for the
dephasing of the spins. That is to say, if one artificially turns
off the jump operators, i.e. if one sets the dissipation rates
Yi ≡ 0, diffusive transport is suppressed but the entanglement
spreading persists. We will present numerical results on this
artificial situation in Sec. IV C, showing that the entanglement
entropy grows slowly, but indefinitely in time, while the con-
currence decays as a power law.

The picture described above is broken by the introduction
of the jump operators: dissipative terms in the GKSL equation
kill long-time coherence and drive the system to a thermal
state. Nevertheless, one can observe an MBL transient regime
in the relaxation dynamics, if the time scales of dissipation are
appreciably longer than those of interactions. Such competi-
tion is quantified by the dimensionless ratio

h̄Yi

Ji j
∼
(

�

W

)2( W

h̄τ−1

)3

, (24)

where τ = r/v, r being the typical distance between TLSs
and v the speed of sound in the glass. If this ratio is sensibly
smaller than 1, the signatures of the localized phase should be
observed in the dynamics of the system, and in particular in
the spreading of entanglement. In Fig. 2, we show a tentative
dynamical phase diagram for the TLS system.

Recalling that in experiments � ∼ 10−5 W while W ∼
0.1 eV and, considering v ∼ 5 km/s and r ∼ 10 nm, we
have h̄τ−1 ∼ 1 meV. Thus the ratio is approximately h̄Y/J ∼
10−5–10−4, making dissipation much slower than the interac-
tion part of the unitary dynamics. Even if one allows �—the

FIG. 2. Sketch of the expected phase diagram for TLSs in
glasses. From Eq. (24), we see that an MBL transient regime can
be observed before thermalization takes place, if the typical time
scales of interaction are short with respect to the dissipation time
scales (blue-shaded area). The three glassy materials reported in
Table I lie well within the MBL region, even accounting for the
large uncertainties in the parameter � (the standard deviation of
ln(�i ) is plotted as an errorbar). Thus the localized regime should
be experimentally observable.

most difficult parameter to infer from experiments — to vary
few orders of magnitude, the system will still present an
observable MBL transient regime.

IV. NUMERICAL SIMULATIONS

In this section, we present the results of our numerical sim-
ulations on the real-time evolution of the TLSs. The analysis
will be divided into two parts. In Sec. IV C, we will consider
the artificially isolated system (i.e. the one evolving only
under the unitary dynamics given by the Liouvillian of the
GKSL) governed by the Hamiltonian in Eq. (23). In Sec. IV D,
we will reintroduce the dissipative terms and consider the full
TLS evolution governed by the GKSL master equation (15).

Before going through that, in the next Secs. IV A and
IV B, we will briefly discuss the assumptions involved in our
numerical simulations, and define the dynamical observables.

A. Disorder distributions of the parameters

As discussed in Sec. II, in the literature the parameters
defining the TLS model are drawn from wide probability
distributions [see pε and p� in Eq. (4) and (5), respectively].
It follows that the competing time scales in the GKSL master
equation (namely ν−1

i , h̄/Ji j , and Y −1
i ) are distributed across

several orders of magnitude and, even though their typical
values are very different, they overlap one with another. In our
numerical simulations we employ simplified and less broad
distributions, arguing that this choice, if properly taken, does
not qualitatively alter the physical content and predictions of
the model.

We fix W ≡ 1, thus setting the (dimensionless) energy
scale; �/W = 10−1, unless otherwise specified, and n� = 2.
We also set γi ≡ W , the material density ρ = 2 g/cm3, and the
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L
Jij

L
L

FIG. 3. The TLSs are uniformly distributed in a cube of size
L, at constant density. The pairwise interactions Ji j in Eq. (22) are
mediated by phonons. These are also responsible for the dissipation
in Eq. (21). We employ periodic boundary conditions to minimize
finite-size effects.

speed of sound vL,T = 5 km/s, irrespective of polarization.
We consider Tr(D2

i ) to be the square of a Gaussian random
variable of zero average and variance 1, since it must be
positive, and Di j to be a Gaussian random variable of zero
average and standard deviation 1, since it can take both signs
(see also Appendix A). Finally, we consider the TLSs as
uniformly distributed in a cube with side L, and compute their
distances ri j using periodic boundary conditions. The cube
side depends on the number of TLSs as L = L0N1/3, with
L0 � ρ

−1/3
TLS , so that we keep fixed the TLS number density

ρTLS. For numerical purposes, we fix L0 = 1 nm. See Table I
for a comparison with the experimental values, and Fig. 3 for
a sketch of the system.

In order to explore the phase diagram obtained in the
GKSL framework, and shown in Fig. 2, we introduce two
further artificial parameters to tune interaction and dissipation
strengths:

Ji j → ηJi j, Yi → εYi. (25)

In Sec. IV C, we study the artificially isolated system, setting
η = 105 and ε = 0. In Sec. IV D, we reintroduce the dissipator
in the GKSL master equation, and we set η = 105 and ε =
10−6, 10−4, 1.

With these choices of the parameters, the on-site frequen-
cies νi, the TLS-TLS interactions ηJi j/h̄ (with η = 105), and
the dissipation rates εYi (for ε = 1) are of comparable orders
of magnitude and are much less widely distributed than orig-
inally. The latter feature is particularly useful for numerical
purposes, since one can access only small system sizes and,
hence, cannot sample well broad distributions. Our results will
be discussed in view of these choices.

B. Initial state and dynamical observables

We always take the initial state of the dynamics to be a
product state, in which each TLS is represented by a random

vector on the Bloch sphere:

|ψ (0)〉 =
N⊗

i=1

(cos(θi/2)| ↑〉i + eiφi sin(θi/2)| ↓〉i ), (26)

where θi ∈ [0, π ] and φi ∈ [0, 2π ). Thus the system is ini-
tially at infinite temperature, and we can track precisely the
entanglement growth and spreading.

The choice of the appropriate entanglement measure is not
obvious: since we are dealing with an open quantum system,
we wish to discriminate between quantum entanglement and
thermal entropy. A reliable measure of (pairwise) quantum
entanglement in open systems is the concurrence Ci j [57–59],
where i and j are TLS indices. The concurrence quantifies the
distance of the two-site reduced density matrix ρi j from the
manifold of mixed, separable states whose reduced density
matrix can be written as ρ = ∑

a paρ
sep
a , where ρ

sep
a are sep-

arable, pa � 0, and
∑

a pa = 1. This implies that, if Ci j > 0,
there is no mixture of separable states that can account for the
correlations between sites i and j. For two spins 1/2, it can be
shown [59] that

Ci j = max {0, λ1 − λ2 − λ3 − λ4}, (27)

where λ2
a are the eigenvalues of the matrix Ri j = ρi j (σy ⊗

σy)ρ∗
i j (σy ⊗ σy) sorted in descending order, and the complex

conjugation is done in the standard computational basis.
We define the average concurrence as

C(t ) := 1

N

∑
1�i< j�N

Ci j (t ). (28)

The normalization factor 1/N (instead of the seemingly natu-
ral 1/N2) is due to the monogamy of entanglement: each TLS
can be highly entangled only with another TLS, so among
the N (N − 1)/2 terms in the sum, only O(N ) will be non-
negligible.

Its particular definition allows the concurrence to quantify
the entanglement between the two TLSs considered, irrespec-
tive of how they are entangled with other degrees of freedom.
Thus, it spots entanglement between two TLSs even if they are
thermal, i.e., also entangled with a heat bath. For this reason,
we employ the concurrence as a well-defined entanglement
measure both in the absence (Sec. IV C) and in the presence
(Sec. IV D) of dissipation.

It is interesting to compare the time behavior of the con-
currence with the half-system entanglement entropy (HSEE)

SE (t ) = −Tr(ρA ln ρA), (29)

where ρA is the reduced density matrix of the half system A
in the bipartition A|B. Since the system is three-dimensional,
and the TLSs do not fall on a regular lattice, we bipartite
the system in the following way. For each TLS, a bubble is
constructed around it so that N/2 TLSs fall inside and N/2
outside the bubble. The entanglement entropy relative to the
bipartition is computed as in Eq. (29), and then averaged over
all such bipartitions. We measure SE (t ) both with and without
the dissipator (see Secs. IV C and IV D, respectively).
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C. Unitary evolution of the TLSs

This Section is entirely devoted to the study of the uni-
tary time evolution of a system of N TLSs governed by the
Hamiltonian HTLS + HLS of Eq. (23), that we reproduce here
for clarity:

HTLS + HLS = −1

2

∑
i

h̄νiS
z
i +

∑
i j

Ji jS
z
i Sz

j .

As discussed in Sec. III C, this Hamiltonian is diagonal in
the operators Sz

i , i.e., the values assumed by Sz
i are conserved

quantities; therefore, adopting the terminology of MBL sys-
tems, we say that HTLS + HLS is in the l-bit form, and Sz

i are
LIOMs.

Studying the dynamics induced only by the Hamiltonian
term of the GKSL equation (15) is equivalent to set ε = 0 [see
Eq. (25)], i.e., to assume that the time scales of dissipation are
much longer than those of interactions: 1/Yi � h̄/Ji j . In this
limit, it is clear that a coherent many-body dynamics can take
place before thermal equilibrium is reached. This situation
corresponds to the bulk of the MBL phase depicted in the
phase diagram of Fig. 2.

Thanks to the diagonal nature of the Hamiltonian (23) and
to the choice of initial product states, few-sites observables are
efficient to compute, as was recognized in previous studies
[70–72]. We refer the interested reader to Appendix B for
more details on the computation. Here, we just mention that
to compute the concurrence, which is a two-site observable,
within the diagonal Hamiltonian (23) it is not necessary to
perform the time evolution of the whole 2N × 2N density
matrix, but only to carry out O(N ) operations. Therefore we
could easily simulate systems of N = 60 TLSs.

The results of the simulations for the unitary evolution are
shown in Figs. 4–6. One can see that the concurrence C(t ),
defined in Eq. (28), raises linearly from the initial value 0
(the initial state is factorized) to a value independent of N
(Fig. 4), but slightly dependent on � (Fig. 5). It then falls
off to a plateau via a power-law decay, whose exponent βi

remains finite in the thermodynamic limit (inset of Fig. 4),
and depends on � (inset of Fig. 5). Figure 6(a) shows that
the concurrence plateau decays exponentially with the system
size: C(∞) ∝ e−αN . Finally, from Fig. 6(b), we see that the
concurrence reaches its maximum on time scales of order
h̄/Ji j . In conclusion, the concurrence time behavior can be
schematized as

C(t ) ∼
⎧⎨
⎩

t if t < t1
t−βi if t1 < t < t2
e−αN if t > t2

, (30)

where t1 does not depend significantly on N,� but depends
parametrically on h̄/Ji j , while t2 grows with N and diverges
in the thermodynamic limit.

The decay of the concurrence from its maximum is due to
the fact that the interactions Ji j make the entanglement spread
among many TLSs, as illustrated in Fig. 7, while each TLS
cannot be highly entangled with more than one other TLS
because of the monogamy of the entanglement. The power-
law decay of the concurrence from its maximum is in contrast
to the behavior of ergodic systems, in which the concurrence
vanishes exponentially fast [71]. The slowness of such decay

FIG. 4. Average concurrence within the unitary dynamics, ε = 0
(solid lines). After a linear raise C ∼ t (black dashed-dotted line),
the average concurrence decays with a power-law C ∼ t−βi (dashed
lines), down to a value which is exponentially small in N . We set
� = 0.1, η = 105; the results are averaged over 5000 disorder real-
izations. (Inset) The exponent βi depends on N and reaches a finite
value in the thermodynamic limit. The errors are computed by using
the statistical uncertainties of the concurrence values. Not all datasets
were shown in the main figure to improve readability.

is the fingerprint of the lack of thermalization and of the
presence of many-body localization in the artificially isolated
TLS system. In fact, slow decays of correlation functions
are known [70] to be a feature of MBL dynamics, and the
concurrence (albeit not an operator nor a correlation function)
follows the same behavior.

We stress again that HT LS + HLS , although completely ex-
pressed in terms of local integrals of motion, is different from
the effective l-bit Hamiltonian of MBL systems, as already
pointed out in Sec. III C. In particular, the TLS interactions
in HLS scale as a power law with distance. Following general

FIG. 5. Dependence of the average concurrence decay exponent
βi on � in the case of unitary evolution (ε = 0). We set N = 50,
η = 105, and averaged over 5000 disorder realization. We see that the
smaller �, the faster the decay, which remains however compatible
with a power-law C(t ) ∼ t−βi (dashed lines).
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FIG. 6. Results for the unitary dynamics, ε = 0. (a) Plateau
value of the average concurrence at long times (dots), with errors
coming from statistical fluctuations. From a fit (solid line) we find
that C(∞) ∝ e−αN with α ≈ 0.8. This is considerably larger than
the value given by the ETH prediction, i.e., a random state, which
obeys C ∝ e−a2N

with a ≈ 0.127 (see Appendix C). Here η = 105,
� = 0.1, and an average over 10 000 disorder realizations was per-
formed. (b) Average concurrence for different interaction strengths
η. Rescaling the time as t → tη/105 (we normalize to η = 105 to
compare to the other plots) the curves collapse, showing that the
value of η only shifts the timescale but does not modify the shape
of the curve C(t ). Here N = 50, � = 0.1, and an average over 1000
disorder realizations was performed.

arguments [70,73], one would expect that for long-range in-
teractions the correlation functions decay in time as stretched
exponentials. We cannot exclude that a stretched-exponential
behavior would be observed in TLSs if one pushes the dynam-
ics at larger times. In the present study, however, we are only
interested in the TLS relaxation dynamics at intermediate time
scales since, at long times, dissipation would always bring the
system to a thermal state.

The results on the half-system entanglement entropy
(HSEE) are shown in Fig. 7, compared with the behavior
of C(t ). This comparison confirms, as anticipated, that the
concurrence starts to decrease when the entanglement spreads
and, thus, SE (t ) starts to increase.

In addition, Fig. 7 shows that SE (t ) grows slowly for a
large time window. This slowness is known [74] to be the
signature of localization, and shows that TLSs remain coher-
ent and nonergodic during the time-evolution. According to

FIG. 7. Unitary evolution: half-system entanglement entropy per
unit volume SE (t )/N , as defined in Eq. (29), for various system
sizes (solid lines). We set � = 0.1, η = 105, and averaged over 1000
disorder realization. The average concurrences C(t ) [Eq. (28)] are
shown as dashed lines for comparison. We see that the concurrence
reaches a maximum at short times, as nearby TLSs start to evolve co-
herently. Then, it starts to decay because the entanglement becomes
many-body, as shown by the increase in the HSEE. In this regime,
the growth of the HSEE is compatible both with a small power law
SE (t ) ∼ tα with α ∼ 1, as well as ln(t ); the dotted line shows ln(t )
as a guide for the eye. (Inset) The HSEE saturates to a volume law,
as expected for an MBL system: the phase of each spin depends
on all the others. The error bars are computed from the statistical
fluctuations of the plateau values.

the arguments in [8,73,75], we expect that for a long-range,
3d system as the TLS one entanglement would grow alge-
braically in time, SE (t ) ∼ tα with α ∼ 1. From our data, the
entanglement growth is compatible with both a power-law
with small exponent (∼1), and a logarithmic growth. In the
inset of Fig. 7, we see that the asymptotic value of HSEE,
SE (∞), is proportional to N , indicating a volume law.

D. Full evolution of the TLSs

This Section is entirely devoted to the study of the time
evolution of the TLSs governed by the GKSL master equation
(15), that we reproduce here for clarity:

∂tρ(t ) = − i

h̄

[
−
∑

i

h̄νi

2
Sz

i +
∑

i j

Ji jS
z
i Sz

j, ρ(t )

]

+
∑

i

Yi fT (h̄νi )[S
+
i ρ(t )S−

i + S−
i ρ(t )S+

i − 4ρ(t )]

+
∑

i

Yi
[
S+

i ρ(t )S−
i + {

ρ(t ), Sz
i

}− 2ρ(t )
]
.

We set T = 0, but ε �= 0 [see Eq. (25)], i.e., the system is in
the presence of dissipation and decoherence. Increasing ε, we
increase the typical dissipation rate. For our particular choice
of parameters (Sec. IV A), when ε = 1, dissipation ultimately
becomes comparable with the timescale of the interactions Ji j .

To investigate the time evolution of the system, one has to
integrate numerically the GKSL master equation for the TLS
density matrix (see Appendix D for more details). Because of
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FIG. 8. C(t ), as defined in Eq. (28), for ε = 0, 10−6, 1, and dif-
ferent values of N . We see that the presence of dissipation in the
GKSL master equation (15) decreases the concurrence maximum
and moves it at earlier times. We set � = 0.1, η = 105, and averaged
over at least 1000 disorder realizations.

the doubling of the Hilbert space dimension, we are forced to
small system sizes, up to N = 9. In the following analysis, we
varied both N (to perform a finite-size scaling) and ε.

As can be seen from Fig. 8, when ε is small enough
the concurrence C(t ) reaches its maximum at the same time
as with unitary dynamics (ε = 0). Then, it decays from
such peak and stabilizes around a finite value dependent on
N (cf. Sec. IV C), following the same behavior as in the
case ε = 0. Ultimately, the dissipation forces C(t ) to vanish;
C(t ) departs from the ε = 0 plateau, C(∞; ε = 0), with a
stretched-exponential functional form (Fig. 9). We can ascribe
this feature to the interaction between TLSs and phonons:
when ε �= 0, thanks to the dissipative terms in the GKSL equa-
tion (15), entanglement can spread among infinitely many

FIG. 9. Stretched-exponential fit of the concurrence for
ε = 10−6, 10−4, normalized to the plateau reached at ε = 0:
C(t ; ε)/C(∞; ε = 0). Using as fitting function α exp {−( t+t0

τ
)δ},

we obtained δ � 0.2 and τ = O(1). The plot shows the results for
� = 0.1, η = 105, averaged over at least 1000 disorder realizations.

FIG. 10. (a) Power-law fit of C(t ) at large times for ε = 1.
(b) Power-law exponents βi (ε = 0; data from Fig. 4) and βo (ε = 1)
as a function of 1/N . We see that the concurrence decays faster
as ε increases (dashed lines). However, our data can capture the
behavior of C(t ) in the presence of dissipation only at small N ,
i.e., in the preasymptotic region. We expect the large N behavior
to give a larger exponent βo, as it happens for βi (dashed-dotted
line). We set � = 0.1, η = 105, and averaged over at least 5000
disorder realizations. The errors are computed by using the statistical
uncertainties of the concurrence values.

phonons, preventing the concurrence from stabilizing around
the plateau value.

Furthermore, Fig. 8 shows that, increasing the dissipation
strength (ε = 1), the concurrence maximum becomes smaller
and is reached at earlier times. However, the decay from
the maximum follows a power-law behavior as in the uni-
tary case, albeit with a different exponent βo, as reported in
Fig. 10(a). This feature is very important since it shows that
the signatures of localization are visible also in the presence
of dissipation, if the latter is not too large. The reason at its
origin might be linked to the specific (in particular, on-site)
form of the dissipation operators in the GKSL equation [45].
The power-law exponent βo depends on ε and N , as shown in
Fig. 10(b), and remains finite in the thermodynamic limit. Due
to the small sizes accessible when integrating the full GKSL
equation, we expect the extrapolated thermodynamic value of
βo to be underestimated [see Fig. 10(b), and the results on the
unitary case ε = 0].
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FIG. 11. Half-system entanglement entropy SE (t ), as defined in
Sec. IV B, per number of TLSs for various N and ε. The plot shows
the results for � = 0.1 and η = 105, averaged over at least 1000
disorder realizations. For ε = 10−6, we see that the entanglement
spreading takes place in two steps: first, the TLSs become entangled
with other TLSs and SE (t )/N reaches the plateau found in the case
of unitary dynamics (ε = 0); then, HSEE grows further due to the
spread of the entanglement among TLSs and phonons. For ε = 1,
SE (t )/N is almost independent of N , indicating a volume law.

Notice that the behavior of the concurrence is determined
only by the ratio h̄Yi/Ji j . Remember that, in the unitary case,
where the dissipation is absent, changing the typical strength
of Ji j through the parameter η only shifts the timescale of
C(t ), without modifying the shape of the curve [see Sec. IV C,
Fig. 6(b)]. Hence, in this section, we employ the artificial
parameter ε to investigate the behavior of pairwise entangle-
ment in the different regions of the phase diagram (Fig. 2) by
(effectively) changing the ratio h̄Yi/Ji j .

Complementary to the concurrence is the half-system en-
tanglement entropy (HSEE), SE (t ), as defined in Sec. IV B.
Its behavior for various N and ε is shown in Fig. 11. As
in the unitary case, HSEE starts to increase roughly when
C(t ) reaches its maximum, i.e., when the TLSs start to evolve
coherently. It keeps increasing at larger times when entangle-
ment spreads inside the system. From the data at ε = 10−6,
it can be seen that the entanglement spreading takes place in
two steps: first, the TLSs become entangled one with another
and SE (t ) reaches the plateau found with unitary dynamics
(ε = 0); then, the HSEE increases further due to the dissipa-
tive terms in the Lindbladian (15). Indeed, for ε �= 0 the TLSs
entangle also with the thermal bath.

V. CONCLUSIONS

In this study, we investigated the well-known Two-Level
System (TLS) model for glasses at low temperatures. We
studied the quantum dynamics of tunneling TLSs coupled to
phonons. Within the framework of the Gorini–Kossakowski–

Sudarshan–Lindblad (GKSL) master equation, and by means
of a weak coupling approximation, we computed explicitly
the phonon-mediated interactions among TLSs and the dissi-
pation rates.

We found that, as a consequence of disorder, the Hamil-
tonian responsible for the unitary part of the TLS dynamics,
and accounting for TLS-TLS interactions, is completely ex-
pressed in terms of local integrals of motion, and is thus
Many-Body Localized (MBL). Even though it differs from
the effective l-bit Hamiltonian of standard MBL systems, in
particular because the TLS-TLS interactions decay as a power
law with distance, the TLS relaxation dynamics presents clear
signatures of quantum many-body localization. Indeed, simu-
lating the artificially isolated system with unitary dynamics
governed by the TLS Hamiltonian, we found that the con-
currence decays slowly in time as a power law, rather than
exponentially fast as it would for an ergodic system. We also
observed that the entanglement entropy grows slowly, as in
standard MBL systems.

This picture is broken by the presence of dissipation, in-
duced by real processes of TLSs and phonons, which destroy
MBL and ultimately drive the system to a thermal state.

The competition between TLS-TLS interactions and dissi-
pation determines the presence of two distinct regions in the
dynamical phase diagram of the model: when interactions are
comparable or stronger than dissipation, the system dynamics
presents a transient bona fide MBL region; in the opposite
case, the system quickly thermalizes. Considering the typical
disorder distribution parameters encompassed in the literature,
it seems that real glassy materials sit in the bulk of the tran-
sient MBL region of the phase diagram.

We explored numerically the dynamical phase diagram of
the model, by tuning interaction and dissipation strengths. We
found that, in the MBL region of the phase diagram, even for
dissipation strengths of the same order of magnitude of the
interactions, the dynamics of the entanglement resembles the
one in the absence of dissipation, showing clear signatures of
localization: the concurrence decays as a power law as in the
artificially isolated system.

These findings suggest that the signatures of MBL might be
experimentally accessible in real glassy samples at ultralow
temperatures, for instance, using ultrafast laser probes. The
dynamics we have depicted in this paper should be robust
from material to material and against the uncertainty in the
characterization of the disorder distributions.
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APPENDIX A: EXPLICIT FORM OF INTERACTIONS AND DISSIPATOR

We want to compute explicitly Yi and Ji j defined in Eqs. (19) and (20), respectively. To do so, we need �ω
i j defined in Eq. (18),

that we reproduce here

�ω
i j := 1

h̄2

∫ ∞

0
ds eiωs TrB

[
ρT

B Ê†
i (t ) Ê j (t − s)

]
. (A1)

Therefore, as a first thing, we need to evolve the operators Ei in the interaction picture. Recalling that [Eqs. (8) and (17)]

Ej := ξ jkψk + H.c. = −i

√
h̄

2V ρ ωk
γ jD

ab
j eab

k eiq·r j ψk + H.c., (A2)

it holds

Êi(t ) = eiHpht/h̄Eie
−iHpht/h̄ =

∑
k

(ξike−iωktψk + ξ ∗
ikeiωktψ

†
k ). (A3)

Thus, it follows

h̄2�ω
i j =

∫ ∞

0
ds eiωs TrB

{
ρT

B

∑
kl

(ξike−iωktψk + h.c.)(ξ jl e
−iωl (t−s)ψl + H.c.)

}

=
∫ ∞

0
ds eiωs

∑
k

{
ξikξ

∗
jk e−iωk s TrB

[
ρT

B ψk ψ
†
k

]+ ξ ∗
ikξ jk eiωk s TrB

[
ρT

B ψ
†
k ψk

]}

=
∫ ∞

0
ds eiωs

∑
k

[ξikξ
∗
jk e−iωk s ( fT (h̄ωk ) + 1) + ξ ∗

ikξ jk eiωk s fT (h̄ωk )], (A4)

where we recall fT is the Bose-Einstein distribution function at temperature T . We perform the time integral using the identity∫ ∞

0
ds eiζ s = i PV

1

ζ
+ πδ(ζ ). (A5)

Plugging in the explicit expression of ξik from Eqs. (8), we arrive at

�ω
i j = γiγ j

2ρ

∑
abcd

Dab
i Dcd

j

∑
α

∫
d3q

(2π )3

1

h̄ωqα

eab
qαecd

qα

[
( fT (h̄ωqα ) + 1)

(
iPV

1

ω − ωqα

+ πδ(ω − ωqα )

)
eiq·(ri−r j )

+ fT (h̄ωqα )

(
iPV

1

ω + ωqα

+ πδ(ω + ωqα )

)
e−iq·(ri−r j )

]
. (A6)

1. The dissipation rates

The dissipation rates Yi can be computed from Eq. (A6) by taking the real part of �ω
ii [see Eq. (19)]:

Yi =
(

�i

h̄νi

)2

2 Re �
νi
ii

∣∣
T =0. (A7)

Hence, we need to compute [see Eq. (A6)]

Re �ω
ii = πγ 2

i

2ρ

∑
abcd

Dab
i Dcd

i

∑
α

∫
d3q

(2π )3

1

h̄ωqα

eab
qαecd

qα[( fT (h̄ωqα ) + 1)δ(ω − ωqα ) + fT (h̄ωqα )δ(ω + ωqα )]. (A8)

One could in principle consider the longitudinal and transverse polarizations separately, however it is convenient to employ an
isotropic Debye model with sound velocity

1

v3
:= 1

3

∑
α

1

v3
α

. (A9)

Within this assumption, it is convenient to compute the angular averages summing over all polarizations as

1

4π

∑
abcd

∑
α

∫
d� eab

qαecd
qαDab

i Dcd
i = 1

3
Tr(D2

i ) q2, (A10)

and therefore,

Re �ω
ii = γ 2

i Tr(D2
i )

12πρ h̄v

∫ ∞

0
dq q3[( fT (h̄vq) + 1)δ(ω − vq) + fT (h̄vq)δ(ω + vq)]. (A11)

214205-11



ARTIACO, BALDUCCI, AND SCARDICCHIO PHYSICAL REVIEW B 103, 214205 (2021)

We know from the theory of the GKSL equation [64,65] that dissipation and dephasing rates are obtained by setting
respectively ω = ±νi, 0 in Eq. (A11). However, as argued in the main text we are effectively at zero temperature: fT =0 = 0,
and we are left with only

Re �
νi
ii

∣∣
T =0 = γ 2

i ν3
i Tr(D2

i )

12πρ h̄v5
. (A12)

Notice in particular that �0
ii = 0 since the phonons have zero density of states at ω = 0. Using Eq. (A7), we finally arrive at

Yi = �2
i γ

2
i νiTr

(
D2

i

)
12πρ h̄3v5

, (A13)

that is exactly Eq. (21).

2. The interaction strengths

From the general considerations reported in the main text (see Sec. III B and Fig. 1), we know that interactions take place
mostly in the Sz–Sz channel. What we need to compute is the coefficient Ji j in front, that comes from the imaginary part of �0

i j of
Eq. (A6). With hindsight, we note that the temperature-dependent terms will not contribute; therefore, we just need to compute
the following quantity:

�i j := −i
[
�0

i j − (
�0

ji

)∗] = γiγ j

4ρ

∑
abcd

Dab
i Dcd

j

∑
α

PV
∫

d3q

(2π )3

1

h̄ωqα

(
qaêb

qα + qbêa
qα

)(
qcêd

qα + qd êc
qα

)eiq·(ri−r j )

−ωqα

. (A14)

The interactions Ji j are then given by [see Eq. (20)]

Ji j = 2εi

h̄νi

2ε j

h̄ν j

h̄

2
�i j . (A15)

We can proceed as follows: we split the different polarization contributions, then evaluate the angular integrals, and, finally, the
|q| integral. Treating separately the different polarization here is crucial: as will be clear from Eq. (A27), there is a contribution
that vanishes if vL = vT .

Let us define some quantities that will soon appear in the computation:

Iabcd (ζ ) := 1

4π

∫
d� q̂aq̂bq̂cq̂d eiζ cos θ , (A16)

Iab(ζ ) := 1

4π

∫
d� q̂aq̂beiζ cos θ . (A17)

Explicitly, they read

Ixxyy(ζ ) = 1

3
Ixxxx(ζ ) = −3ζ cos ζ + (ζ 2 − 3) sin ζ

ζ 5
, Ixxzz(ζ ) = −ζ (ζ 2 − 12) cos ζ − (5ζ 2 − 12) sin ζ

ζ 5
,

Izzzz(ζ ) = 4ζ (ζ 2 − 6) cos ζ + (ζ 4 − 12ζ 2 + 24) sin ζ

ζ 5
, Ixx(ζ ) = −ζ cos ζ + sin ζ

ζ 3
, Izz(ζ ) = 2ζ cos ζ + (ζ 2 − 2) sin ζ

ζ 3
.

(A18)

Similar ones are obtained exchanging x and y and permuting the indices; all the others are zero. We can parametrize them as

Iabcd (ζ ) = 1

ζ 5

4∑
l=0

Cabcd
l ζ l sl (ζ ), Iab(ζ ) = 1

ζ 3

2∑
l=0

Cab
l ζ l sl (ζ ), (A19)

where

sl (ζ ) :=
{

sin ζ l even
cos ζ l odd. (A20)

Let us start considering the longitudinally polarized modes. Since êqL = q̂, we find

[�i j]L = −γiγ j

ρ

∑
abcd

Dab
i Dcd

j PV
∫

d3q

(2π )3

1

h̄v2
Lq2

q2q̂aq̂bq̂cq̂d eiq·(ri−r j ). (A21)
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Setting the ẑ axis along (ri − r j ), defining the modulus distance |ri − r j | = ri j and ζ = qri j , and using the definition of Iabcd in
Eq. (A16) above, we find

[�i j]L = − γiγ j

2π2ρ h̄v2
L

∑
abcd

Dab
i Dcd

j PV
∫

dq q2Iabcd (qri j )

= − γiγ j

2π2ρ h̄v2
Lr3

i j

4∑
l=0

[∑
abcd

Cabcd
l Dab

i Dcd
j

]
PV

∫
dζ ζ l−3sl (ζ ). (A22)

One can check that all the IR divergences cancel out (since Cabcd
0 = −Cabcd

1 ), while the UV divergences are harmless thanks to
the oscillating functions sl (ζ ). We find

[�i j]L = − γiγ j

2π2ρ h̄v2
Lr3

i j

∑
abcd

(
π

4
Cabcd

0 + π

2
Cabcd

2

)
Dab

i Dcd
j = − γiγ j

8πρ h̄v2
Lr3

i j

∑
abcd

(
Cabcd

0 + 2Cabcd
2

)
Dab

i Dcd
j . (A23)

Now we perform a similar computation for the transversely polarized modes. Using the relation,∑
α trans.

êa
qα êb

qα = δab − q̂aq̂b, (A24)

we see that there are terms involving Iab (coming from δab) and terms involving Iabcd (coming form q̂aq̂b). It is easy to check
that the result is

[�i j]T = − γiγ j

8πρ h̄v2
T r3

i j

∑
abcd

(
2Cac

0 δbd − Cabcd
0 − 2Cabcd

2

)
Dab

i Dcd
j . (A25)

Summing the longitudinal and transverse contributions in Eqs. (A23) and (A25), we finally obtain

�i j = γiγ jDi j

8πρ h̄v2r3
i j

(A26)

having defined

Di j := v2
∑
abcd

[
−2Cac

0 δbd

v2
T

+ (
Cabcd

0 + 2Cabcd
2

)( 1

v2
T

− 1

v2
L

)]
Dab

i Dcd
j , (A27)

where v is the average velocity defined in Eq. (A9). Despite the cumbersome appearance, Di j are dimensionless random variables
with zero average and standard deviation of order 1. Finally, by means of Eq. (A15):

Ji j = γiεi

h̄νi

γ jε j

h̄ν j

Di j

4πρv2r3
i j

, (A28)

that is Eq. (22) of the main text.

APPENDIX B: TWO-SITE OBSERVABLES WITHIN THE DIAGONAL UNITARY EVOLUTION

In this section, we show how to compute with O(N ) steps the two-site density matrix ρi j , and therefore any two-site
observable, for the Hamiltonian (23). Call the initial density matrix

ρ0 =
N⊗

i=1

ρ0,i =
N⊗

i=1

∑
si,s′

i

ρ
sis′

i
0,i |si〉〈s′

i| (B1)

and recall that the Hamiltonian (23) reads explicitly

HTLS + HLS = −1

2

∑
i

h̄νiS
z
i +

∑
i j

Ji jS
z
i Sz

j .

Time evolving the density matrix according to the von Neumann equation and rearranging the sum, one finds

ρ(t ) =
∑
s,s′

∏
i

ρ
sis′

i
0,i |s〉〈s′|e−i(H [s]−H [s′])t/h̄ (B2)
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with H[s] = − 1
2

∑
i h̄νisi +∑

i j Ji jsis j , where si = ±1 is the projection of the spin-1/2 on the z axis. Without loss of generality,
we can trace out all the spins but the first two. The matrix elements of the two-site reduced density matrix read

〈s1s2|ρ12(t )|s′
1s′

2〉 = 〈s1s2|Tr3···N ρ(t )|s′
1s′

2〉 =
∑

s3···sN

ρ
s1,s′

1
0,1 ρ

s2,s′
2

0,2 ρ
s3,s3
0,3 · · · ρsN ,sN

0,N e−i(H [s1s2s3···sN ]−H [s′
1s′

2s3···sN ])t/h̄

= ρ
s1,s′

1
0,1 ρ

s2,s′
2

0,2 e−i�H12[s]t/h̄
N∏

j=3

[ρ↑,↑
0, j e−i�H12 j [s]t/h̄ + ρ

↓,↓
0, j ei�H12 j [s]t/h̄], (B3)

having defined

�H12[s] := 2J12(s1s2 − s′
1s′

2) − h̄ν1

2
(s1 − s′

1) − h̄ν2

2
(s2 − s′

2), �H12 j[s] := 2J1 j (s1 − s′
1) + 2J2 j (s2 − s′

2). (B4)

From the knowledge of ρi j , the concurrence follows by using Eq. (27).

Notice that an analog procedure gives the k-site reduced
density matrix with O(k2N ) steps. Thus this computation al-
lows to access few-sites observables for large system sizes.

APPENDIX C: CONCURRENCE IN A RANDOM STATE

Let us consider a system of N spin-1/2. A random,
uniformly distributed state is |ψ〉 = U |ψ0〉, U being a Haar-
random unitary, and |ψ0〉 a reference state. Equivalently, a
random state is |ψ〉 = ∑

{s} A{s}|{s}〉, with the coefficients A{s}
being uniformly distributed over CPM−1, with M = 2N .

The concurrence of two spins, say sites 1 and 2 wlog.,
follows from the knowledge of the square roots of the eigen-
values of the matrix R12 = ρ12(σy ⊗ σy)ρ∗

12(σy ⊗ σy). The
exact determination of such eigenvalues has evaded our an-
alytical attempts, but we can give an heuristic argument that
captures the scaling with N . Consider, instead of the square
roots of the eigenvalues of R12, directly the eigenvalues λa of
ρ12. Classical works [80,81] give us their probability density
function:

p(λ1, λ2, λ3, λ4) ∝ δ

(
1 −

4∑
a=1

λa

) 4∏
a=1

λM−4
a

∏
a<b

(λa − λb)2

(C1)

with the constraint λa > 0, a = 1, . . . , 4. With hindsight, we
perform the change of variables

ρ12 ≡ 1

4
Id + 1

4
√

M − 4
τ12, λa ≡ 1

4
+ μa

4
√

M − 4
, (C2)

so that

p(μ1, μ2, μ3, μ4)

∝ δ

(
4∑

a=1

μa

)
4∏

a=1

(
1 + μa√

M − 4

)M−4 ∏
a<b

(μa − μb)2

∝ δ

(
4∑

a=1

μa

)
exp

[
−1

2

∑
a

μ2
a + O

(
1√

M − 4

)]

×
∏
a<b

(μa − μb)2. (C3)

We see that, at this order, we can let μa range from −∞ to
+∞ if N is big enough.

At this point, we note that not only the eigenvalues of τ12,
but every entry of the matrix is at most of order 1 because of
our rescaling. This enables us to expand

√
R12 =

[
1

16
Id + 1

16
√

M − 4

[
τ12 + (σy ⊗ σy)τ ∗

12(σy ⊗ σy)
]

+O

(
1

M

)]1/2

= 1

4
Id + 1

8
√

M − 4

[
τ12 + (σy ⊗ σy)τ ∗

12(σy ⊗ σy)
]

+ O

(
1

M

)
. (C4)

The matrix 1
2 [τ12 + (σy ⊗ σy)τ ∗

12(σy ⊗ σy)] is traceless and
very roughly its eigenvalues will have a joint probability den-
sity function very similar to that of τ12. For this reason, we
can approximate the average concurrence with

〈C〉 ≈
∫

d 	μ p(	μ) max

{
0,

2μ1 − 1

4
√

M − 4
− 1

2

}
, (C5)

where we have used the δ-function constraint and called μ1

the largest eigenvalue. Integrating only on μ1, and forgetting
the presence of μ2, μ3, μ4 (otherwise the integration becomes
rather cumbersome), we find

〈C〉 ≈ e−(M+√
M−4)/2

2
√

2π (M − 4)3/2
, (C6)

from which

ln2(− ln〈C〉) ≈ ln(a) + bN + · · · (C7)

with a = 1/2 and b = 1. As can be seen from Fig. 12, this
scaling is correct, but the numerical factor a is different.

APPENDIX D: INTEGRATION OF THE GKSL MASTER
EQUATION

The density matrix of the system can be parametrized as

ρ(t ) =
∑

μ1···μN

Cμ1···μN (t )Sμ1
1 ⊗ · · · ⊗ SμN

N , (D1)
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FIG. 12. The average concurrence in a random state follows the
scaling 〈C〉 ∼ e−a2bN

. The dots show the concurrence averaged over
107 randomly generated states, and over every couple of spins for
each state. A linear fit is shown for comparison: b = 1.009(6), but
a = 0.127(3), differing from a = 1/2 found analytically [Eq. (C7)].

where Sμi
i ∈ {Idi, S+

i , S−
i , Sz

i }. Writing explicitly the GKSL
equation (see Eqs. (15) and (23) in the main text), we get

∂tρ(t ) = − i

h̄

[
−
∑

i

h̄νi

2
Sz

i +
∑

i j

Ji jS
z
i Sz

j, ρ(t )

]

+
∑

i

Yi fT (h̄νi )[S
+
i ρ(t )S−

i + S−
i ρ(t )S+

i − 4ρ(t )]

+
∑

i

Yi[S
+
i ρ(t )S−

i + {ρ(t ), Sz
i } − 2ρ(t )]. (D2)

In the absence of the interactions (i.e., ignoring the term∑
i j Ji jS

z
i Sz

j), the evolution can be easily computed, and the
density matrix evolves as

∂tCμ1···μN =
[∑

i

λ
μi
i

]
Cμ1···μN +

∑
i

4Yi δμizCμ1···0i ···μN ,

(D3)
where the δμiz are Kronecker deltas, the λ

μi
i ’s are given by

λz
i = −4Yi(1 + 2 fT ), λ±

i = 1
2λz

i ± iνi, (D4)

and λ0
i = 0. When interactions are suppressed, the TLSs

evolve independently one from the other and any factorized

initial state will remain such at all times. One has

ρ(t ) =
N⊗

i=1

∑
μi

Pμi
i (t )Sμi

i ⇒ Cμ1···μN (t )

= Pμ1
1 (t ) · · · PμN

N (t ) ∀t . (D5)

The interactions among TLSs make the evolution more
complicated. Computing the commutator[

Sz
i Sz

j, Sμi
i S

μ j

j

] = Sz
i Sμi

i

[
Sz

j, S
μ j

j

]+ [
Sz

i , Sμi
i

]
S

μ j

j Sz
j

= 2
∑
μ′

iμ
′
j

[(δμi0δμ′
iz + δμizδμ′

i0 + δμi+δμ′
i+

− δμi−δμ′
i−)(δμ j+δμ′

j+ − δμ j−δμ′
j−)

+ (δμ j 0δμ′
j z + δμ j zδμ′

j 0 − δμ j+δμ′
j+

+ δμ j−δμ′
j−)(δμi+δμ′

i+ − δμi−δμ′
i−)]Sμ′

i
i S

μ′
j

j

(D6)

and defining

ζμμ′
:= δμ0δμ′3 + δμ3δμ′0, κμμ′

:= 2δμ+δμ′+ − 2δμ−δμ′−,

(D7)

one arrives at∑
i �= j

Ji j
[
Sz

i Sz
j, Sμi

i S
μ j

j

]

= 2
∑
i< j

Ji j

∑
μ′

iμ
′
j

[ζμiμ
′
iκμ jμ

′
j + (i ↔ j)]Sμ′

i
i S

μ′
j

j . (D8)

The full evolution of the density matrix is given by

∂tCμ1···μN =
∑

i

λ
μi
i Cμ1···μN +

∑
i

4Yi δμizCμ1···0i ···μN

− 2i

h̄

∑
i< j

Ji j

∑
μ′

iμ
′
j

(ζμiμ
′
iκμ jμ

′
j

+ κμiμ
′
iζμ jμ

′
j )Cμ1···μ′

i···μ′
j ···μN . (D9)

This is a systems of 4N partial differential equations. We
solved it by matrix exponentiation, using the library for linear
algebra with sparse matrices contained in SCIPY (PYTHON).
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ence of dephasing on many-body localization, Phys. Rev. B 93,
094205 (2016).

[48] B. Everest, I. Lesanovsky, J. P. Garrahan, and E. Levi, Role of
interactions in a dissipative many-body localized system, Phys.
Rev. B 95, 024310 (2017).

[49] R. Nandkishore and S. Gopalakrishnan, Many body localized
systems weakly coupled to baths, Annalen der Physik 529,
1600181 (2017).

[50] I. Vakulchyk, I. Yusipov, M. Ivanchenko, S. Flach, and S.
Denisov, Signatures of many-body localization in steady states
of open quantum systems, Phys. Rev. B 98, 020202(R) (2018).

[51] S. Gopalakrishnan and S. Parameswaran, Dynamics and trans-
port at the threshold of many-body localization, Phys. Rep. 862,
1 (2020).

214205-16

https://doi.org/10.1002/andp.201700169
https://doi.org/10.1016/j.aop.2016.03.010
https://doi.org/10.1038/nature21413
https://doi.org/10.1088/1361-6633/aa8b38
https://doi.org/10.1063/1.4893505
https://doi.org/10.1016/j.aop.2015.08.024
https://doi.org/10.1073/pnas.1520033113
https://doi.org/10.1103/PhysRevLett.117.240601
https://doi.org/10.1103/PhysRevX.7.041021
https://doi.org/10.1103/PhysRevLett.120.030601
https://doi.org/10.1103/PhysRevLett.122.040606
https://doi.org/10.1073/pnas.1819316116
https://doi.org/10.1103/PhysRevResearch.2.032034
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1103/PhysRevB.8.2896
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1007/BF00660072
https://doi.org/10.1088/0034-4885/50/12/003
https://doi.org/10.1016/0921-4526(91)90246-B
https://doi.org/10.1021/jp402222g
https://doi.org/10.1016/0038-1098(75)90743-7
https://doi.org/10.1103/PhysRevLett.79.2831
https://doi.org/10.1103/PhysRevLett.80.5361
https://doi.org/10.1016/S0301-0104(99)00140-8
https://doi.org/10.1103/PhysRevLett.84.2176
https://doi.org/10.1038/ncomms7182
https://doi.org/10.1051/jphys:01975003609081100
https://doi.org/10.1103/PhysRevB.16.2879
https://doi.org/10.1088/0953-8984/1/28/009
https://doi.org/10.1007/BF02571127
https://doi.org/10.1103/PhysRevB.95.144207
https://doi.org/10.1103/PhysRevB.90.064203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevB.93.094205
https://doi.org/10.1103/PhysRevB.95.024310
https://doi.org/10.1002/andp.201600181
https://doi.org/10.1103/PhysRevB.98.020202
https://doi.org/10.1016/j.physrep.2020.03.003


SIGNATURES OF MANY-BODY LOCALIZATION IN THE … PHYSICAL REVIEW B 103, 214205 (2021)

[52] E. Wybo, M. Knap, and F. Pollmann, Entanglement dynamics
of a many-body localized system coupled to a bath, Phys. Rev.
B 102, 064304 (2020).

[53] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fischer, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Ob-
servation of many-body localization of interacting fermions in
a quasirandom optical lattice, Science 349, 842 (2015).

[54] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber, I.
Bloch, and U. Schneider, Coupling Identical One-Dimensional
Many-Body Localized Systems, Phys. Rev. Lett. 116, 140401
(2016).

[55] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Many-body
localization in a quantum simulator with programmable random
disorder, Nat. Phys. 12, 907 (2016).

[56] H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber, S.
Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch, and
U. Schneider, Signatures of Many-Body Localization in a Con-
trolled Open Quantum System, Phys. Rev. X 7, 011034 (2017).

[57] S. Hill and W. K. Wootters, Entanglement of a Pair of Quantum
Bits, Phys. Rev. Lett. 78, 5022 (1997).

[58] W. K. Wootters, Entanglement of Formation of an Arbitrary
State of Two Qubits, Phys. Rev. Lett. 80, 2245 (1998).

[59] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[60] H. M. Carruzzo and C. C. Yu, Why Phonon Scattering in
Glasses is Universally Small at Low Temperatures, Phys. Rev.
Lett. 124, 075902 (2020).

[61] B. Ruzicka, T. Scopigno, S. Caponi, A. Fontana, O. Pilla, P.
Giura, G. Monaco, E. Pontecorvo, G. Ruocco, and F. Sette,
Evidence of anomalous dispersion of the generalized sound
velocity in glasses, Phys. Rev. B 69, 100201(R) (2004).

[62] J. F. Berret and M. Meißner, How universal are the low temper-
ature acoustic properties of glasses? Z. Phys. B 70, 65 (1988).

[63] S. Hunklinger and A. Raychaudhuri, Progress in Low Temper-
ature Physics, Vol. 9 (Elsevier, Amsterdam, 1986), Chap. 3,
pp. 265–344.

[64] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, Oxford, 2007), p. 656.

[65] D. Manzano, A short introduction to the lindblad master equa-
tion, AIP Adv. 10, 025106 (2020).

[66] T. E. O’Brien, D. A. Abanin, G. Vidal, and Z. Papić, Explicit
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