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Mode delocalization in disordered photonic Chern insulator
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In disordered two-dimensional Chern insulators, a single bulk extended mode per band is predicted to exist
up to a critical disorder strength, with all other bulk modes localized. This behavior contrasts with topologically
trivial two-dimensional phases, whose modes are all immediately localized by disorder. Using a tight-binding
model of a realistic photonic Chern insulator, we show that delocalized bulk eigenstates can be observed in an
experimentally realistic setting. This requires the selective use of resonator losses to suppress topological edge
states and acquiring sufficiently large ensemble sizes using variable resonator detunings.
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I. INTRODUCTION

One of the most intriguing features of the integer quantum
Hall effect [1–3] is the extraordinary accuracy of quantization
in the Hall resistivity of about one part in 109. Disorder plays
an important role in this phenomenon; without disorder, the
integer quantum Hall effect’s celebrated conductance quan-
tization plateaus could not exist [2]. As the seminal work
of Anderson et al. has shown, the effects of disorder are
strongly dependent on the spatial dimensionality [4–6]. In
one dimension, arbitrarily weak disorder localizes all states,
whereas three-dimensional systems host localized states at
low energies and extended states at high energies, separated
by a mobility edge. In two dimensions (2D), the effects of
disorder depend on the time-reversal and spin symmetries of
the system [7]. For normal 2D materials, which are in the
orthogonal symmetry class, all states are localized by disorder,
similar to the one-dimensional case [8,9]. For the unitary
class, which includes integer quantum Hall systems and other
Chern insulators, localization occurs via a mechanism called
levitation and annihilation: In the limit of infinite system size,
the introduction of disorder causes all states to localize ex-
cept for one state per (topologically nontrivial) band, which
remains extended; with increasing disorder strength, extended
states in adjacent bands can move toward each other and
annihilate, producing a transition to a purely localized phase
[10–14].

The interplateau longitudinal conductance peaks in the
integer quantum Hall effect constitute the principal experi-
mental evidence for the special bulk extended states in 2D
unitary disordered systems [15,16]. In Chern insulators with-
out Landau levels, there is thus far little experimental evidence
for these states nor for theorized behaviors such as levitation
and annihilation, though many numerical studies have been
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performed [12–14,17–19]. In condensed-matter settings, such
experiments are very challenging due to the need to fabricate
large samples with controlled amounts of disorder.

This paper investigates the possibility of using photonics
to probe the localization behavior of 2D Chern insulators.
Over the last decade, photonics has emerged as a versatile
setting for realizing phenomena associated with band topol-
ogy [20,21], including reflectionless edge transport [22–28],
topological pumping [29–33], spin and valley Hall edge states
[34,35], Fermi arcs [36], and more. Topological phenomena
also hold promise for novel device applications in photonics,
such as highly robust waveguides and delay lines [23,25,26],
amplifiers [37], isolators [38], and lasers [39–41]. There are
several reasons to consider using photonic topological insula-
tors to study the localization properties of topological phases.
First, different disorder configurations can be implemented
on a single device by means of optical, thermal, acoustic,
or electrical pumps [27,32,42], which should simplify the
acquisition of ensembles with many independent disorder re-
alizations. Second, it is possible to excite any frequency in
the band or band gap via a number of available launching
schemes. Third, field distributions can be observed by near-
field imaging or other techniques, allowing for the accurate
and direct determination of quantities such as localization
lengths [26,28]. Fourth, losses can be controllably incorpo-
rated into photonic structures [43], which, as we shall see,
is helpful for distinguishing the experimental signatures of
bulk delocalization from the effects of topological edge states.
Although photonics has already been extensively employed
for the experimental study of ordinary Anderson localization
[44], it has never been used to investigate the peculiar local-
ization properties of bulk states in Chern insulators.

The downside, however, is that photonic Chern insulators
must be formed from deliberately structured photonic media,
such as photonic crystals, metamaterials, coupled resonators,
or waveguide arrays [20,21]. In some of these platforms,
fabrication technologies are unable to create lattices that are
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sufficiently large, relative to the unit cell, for localization stud-
ies. Moreover, several platforms exhibit rather high radiative
and material losses; while a loss-induced decay length of (say)
several unit cells might be acceptable for the purposes of
demonstrating topological edge transport, it could complicate
localization studies through the introduction of exponentially
decreasing intensity profiles to states that are supposed to be
delocalized.

We focus on a type of 2D photonic Chern insulator consist-
ing of a lattice of on-chip coupled ring resonators, which has
recently been proposed and implemented [27,28]. This system
is amenable to theoretical analysis since it can be accurately
described by a tight-binding model [27]. It has been ex-
perimentally realized using silicon photonics, featuring large
lattice sizes of up to 15 × 7 unit cells and sufficiently low
levels of loss that edge transport was observed over distances
of over a dozen unit cells [28]. The lattice parameters can
be altered by methods such as optical pumping [27,28], so
disorder ensembles can be readily generated in each photonic
lattice through spatially inhomogenous pumping, reducing the
need to fabricate many different samples.

Using tight-binding simulations, we show that this plat-
form could be used to access the delocalization of bulk
Chern insulator states and the levitation and annihilation phe-
nomenon. A clear experimental signature can be achieved
with a lattice size of about 50 × 12, a modest increase rel-
ative to existing experiments [28], and far smaller than the
lattices in previous numerical localization studies (which typ-
ically feature sample lengths of 103 or more) [8,9,12,13,45].
Silicon-on-insulator, which is typically used in experiments
involving coupled ring resonators [28], has a loss level of
∼1 dB/cm. While silicon is the best choice for compactness, it
is not particularly a low-loss platform. Silicon nitride [46] can
achieve losses of ∼1 dB/m, and we show that the presence
of losses at such levels does not affect the key results. The
topological edge states of the Chern insulator tend to conflict
with the experimental signature of the delocalized bulk states,
but we find that the former can be suppressed by adding losses
to the resonators along the lattice edges. Hence, the photonic
lattice can provide a way to explore the localization behavior
of bulk states in disordered topological insulators, which have
thus far resisted in-depth experimental investigation.

II. MODEL

We consider a photonic Chern insulator of a type that has
recently been proposed [27] and implemented using silicon
photonics [28]. As shown in Fig. 1(a), the system consists
of a bipartite square lattice of resonant site rings coupled to
off-resonant link rings. The site rings occupy two sublattices,
denoted by A and B, and the link rings introduce nearest-
neighbor and next-nearest-neighbor couplings between them.
Light propagation within the lattice can be decomposed into
two pseudospin sectors (corresponding to clockwise or coun-
terclockwise circulation in the site rings), which do not
interact due to local momentum conservation at the inter-ring
coupling regions [25,26]. Within each sector, time-reversal
symmetry is effectively broken (however, the physical struc-
ture is time-reversal symmetric and can be fabricated from
ordinary dielectric materials).

FIG. 1. (a) Schematic of a finite lattice of coupled optical res-
onators, composed of Nx unit cells along x (length) and Ny unit cells
along y (width). A loss term iγ is added to the sites along the top
and bottom edges. Light is injected into the sites on the first column
via uniformly excited coupling waveguides (orange arrows); there
are no coupling waveguides on the rightmost column, which serves
as a closed edge. Inset: Close-up view of one unit cell, showing the
selected direction of circulation within the resonators. (b), (c) Calcu-
lated band structures of the semi-infinite lattice (infinite length and
finite width Ny = 20, with losses omitted), for (b) the topological
phase (M = 0) and (c) the trivial phase (M = 4J). Edge states are
shown in blue. In (b), the right-moving (left-moving) edge state
is localized on the bottom (top) edge. In (c), there are edge states
localized on the bottom edge, but these do not span the gap.

In the absence of disorder and losses, the system is de-
scribed by the following tight-binding Hamiltonian [27]:

H = (ε + M ) nA + (ε − M ) nB + Vnn + V †
nn + Vnnn, (1)

where

ε = 2J cot(φ/2), (2)

nA =
∑

r

a†
r ar, nB =

∑
r

b†
r br, (3)

Vnn = W1

∑
r

[
a†

r (br + br+x+y) + b†
r (ar−x + ar−y )

]
, (4)

Vnnn = W2

∑
r

[
a†

r

∑
±

âr±y + b†
r

∑
±

br±x

]
, (5)

W1 = J exp(iφ/4) csc(φ/2), W2 = J csc(φ/2). (6)

Here, ar and br are the annihilation operators for the A and
B sublattices on the unit cell at position r (with r + x de-
noting the position one unit cell to the right, etc.), M is a
sublattice-dependent resonator detuning for the site rings, and
J and φ parametrize the couplings mediated by the link rings.
For φ �= 0, time-reversal symmetry is effectively broken. Each
eigenvalue of H , denoted by δν, corresponds to the detuning
of a photonic eigenmode relative to a reference frequency.
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For a given nonzero φ, which depends on the detuning of
the link rings relative to the site rings, the lattice supports both
a topological band insulator phase (a Chern insulator) and a
topologically trivial phase (a normal insulator), depending on
the value of M/J , the relative detuning between the site ring
sublattices [27]. In the following, we take φ = π (i.e., link
rings exactly antiresonant with the site rings), with M = 0
for the Chern insulator and M = 4J for the normal insulator.
In Figs. 1(b) and 1(c), their band structures are plotted for
a disorder-free quasi-one-dimensional geometry (i.e., a strip
that is infinite in x and finite in y with open boundary condi-
tions). For the Chern insulator (M = 0), the gap is spanned
by chiral edge states that are localized to opposite edges,
consistent with the Chern numbers of ±1 possessed by the two
bulk bands [20,21,27,28]. For the normal insulator (M = 4J),
there are no edge states spanning the gap.

We consider rectangular lattices of length Nx and width Ny.
As indicated in Fig. 1(a), light is injected uniformly into the
lattice via waveguides coupled to the site rings on the left edge
(i.e., all site rings along that edge are excited with equal inten-
sity and phase). The light returning from the lattice bulk is
assumed to outcouple through the same coupling waveguides.

In an actual experiment, the intensities on individual res-
onators can be determined from direct measurements of weak
light scattering [26,28]. The site intensities in column n can
be calculated from the frequency-domain Green’s function
(obtained using the procedure of MacKinnon and Kramer [9],
which is based on the recursive Green’s function technique
[47–49]). However, the calculation has a subtle dependence
on whether the excitations in column 1 are mutually coherent
or incoherent. First, consider the incoherent case, in which dif-
ferent sites bear no fixed phase relationship with one another.
The total intensity on column n is Tr(G†G), where G is the
Green’s function matrix between sites in column 1 and sites
in column n. We can thus define

T = 1

Ny
Tr

(
G†G

)
, (7)

which is the standard definition of the transmittance as used
in the electronic transport literature for determining the con-
ductance of a sample [9]. On the other hand, in photonic
experiments, the inputs typically originate from a single laser
source with strong spatial coherence. In that case, the effective
transmittance in column n is

Tc = 〈ψ1|G†G|ψ1〉
〈ψ1|ψ1〉 , (8)

where |ψ1〉 is the input vector (e.g., [1, 1, . . . , 1] if all input
waveguides have the same phase).

Anderson-type disorder is introduced into the lattice in
the form of a random detuning on each site ring, drawn in-
dependently from a uniform distribution over [−W/2,W/2],
where W is a tunable disorder strength parameter. In an ac-
tual photonic lattice, such disorder is introduced in part by
unavoidable fabrication imperfections; a previous experiment
found this to be on the order of the coupling strength J (the ba-
sic “energy” scale of the tight-binding model) [28]. Additional
disorder can be introduced through spatially inhomogenous
pumping [27,32,42]. We assume that an ensemble of indepen-
dent disorder configurations can thus be achieved.

We can then compute the disorder average 〈ln(T )〉 for the
incoherent input case. This is related to the localization length
ξ by [50,51]

〈ln(T )〉 ∝ −2n

ξ
. (9)

Therefore, ξ can be extracted from a linear fit of 〈ln(T )〉
against n. For coherent inputs, we substitute T with Tc in
Eq. (9). We find numerically that although the values of 〈ln T 〉
and 〈ln Tc〉 are generally different, both cases yield the same
fitted value of ξ , as shown in the Appendix. Hence, the use
of spatially coherent inputs in a photonic experiment is con-
sistent with the standard definition of the localization length,
based on Eq. (7), which is what our subsequent numerical
results are based on.

We then define the normalized localization length [8]

ξN (δν,W ) = ξ

Ny
, (10)

which depends implicitly on the operating frequency detun-
ing δν, as well as the disorder strength W . In the localized
regime, ξN decreases with Ny and vanishes in the Ny → ∞
limit. When extended states are present, ξN increases with
Ny and diverges in the Ny → ∞ limit. For the critical states
at a mobility edge, ξN approaches a finite constant in as
Ny → ∞. Hence, for given δν and W , we can detect the
presence of extended states by finding how ξN (δν) varies with
Ny [12,17,45,52,53].

In numerical studies of bulk localization in 2D lattices, it
has been conventional to take periodic boundary conditions
along the upper and lower edges so the sample forms an
edgeless waveguide [8,9,13,45]. The reason for doing this is
that Chern insulators and other 2D topological insulators host
topological edge states that are robust against disorder and
extended along the edge, which can interfere with the sig-
nature of bulk localization of delocalization. However, since
we aim to investigate the feasibility of a realistic on-chip
photonic experiment, it is not appropriate for us to impose
periodic boundary conditions. Instead, we introduce losses
to the sites residing at the edge of the system, as shown by
the gray outlines in Fig. 1(a). The losses are modeled as
an imaginary contribution to the detuning, −iγ , where we
take γ = J (later, we will also study the effects of smaller
losses on all the other sites). In experiments, losses can be
deliberately introduced by adding lossy materials or claddings
or additional scattering defects to the resonators [43,54]. It is
desirable to avoid significantly altering the real detuning of
the edge resonators while doing so; otherwise, the edge states
may simply be shifted onto adjacent rows further into the bulk.

III. RESULTS

Figure 2 shows the normalized localization length ξN ver-
sus the source frequency detuning δν, for different disorder
strengths W and different lattice widths Ny. The lattices are
in the Chern insulator phase (M = 0) and have fixed length
Nx = 50. At the upper and lower edges, we impose open
(Dirichlet-like) boundary conditions. As mentioned, losses are
added to the sites on the upper and lower edges to suppress the
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FIG. 2. Normalized localization length ξN versus relative detuning δν for samples with length Nx = 50, different widths Ny, different
disorder strengths W , and open boundary conditions along y. A loss term −iγ with γ = J is added to the edge sites to suppress the edge
state. The ensemble size for disorder averages is 500. Black arrows indicate critical behavior (ξN increasing or constant with Ny), as shown in
the inset for W = 6. For large W , levitation and annihilation of the critical states is observed and the bulk states are completely localized for
W � 10J . The band gap of the ordered bulk system is highlighted in yellow.

topological edge state; the losses on the other resonators are
assumed to be negligible.

For most values of δν, we find that ξN decreases with
increasing Ny. As explained in the previous section, this in-
dicates that the eigenmodes at these frequencies are localized
by the disorder. However, in Figs. 2(a)–2(d), representing
disorder strengths up to W = 8J , there are two regions on each
side of the band gap where ξN is constant or increases with Ny.
This is evidence for the bulk extended states believed to exist
in disordered Chern insulators [12–14,17–19]. In agreement
with theoretical predictions, there is only a narrow range of
frequencies within each band where this phenomenon occurs.

The signature of delocalization is more easily observable
if the ensemble size is large. In Fig. 2, each data point
is averaged from an ensemble of 500 independent disorder
realizations. It would be experimentally unfeasible to fabri-
cate one physical sample for each disorder realization, but it
should be possible to implement disorder dynamically via spa-
tially inhomogenous and actively switchable optical, thermal,
acoustic, or electrical pumps [27,32,42]. This would allow nu-
merous independent disorder realizations to be generated with
a few physical samples corresponding to different Ny. Further-
more, according to our simulations, delocalization may still be
observable for ensemble sizes of as low as 50.

Figure 3(a) shows the Chern number calculated for the
lower band versus the disorder strength W [18,55]. The Chern
number is computed by summing the Berry flux through
each plaquette of the discretized Brillouin zone following
Fukui’s method [56], using a computationally efficient cou-
pling matrix method to calculate the Berry flux [18,55]. With
increasing W , the Chern number is quantized to unity until

FIG. 3. (a) Chern number of the lower band versus disorder
strength W for a 32 × 32 lattice (averaged over 200 disorder realiza-
tions). (b) Critical energy δνc (where the extended state is located)
versus W for the realistic sample corresponding to Fig. 2. Each
shaded region indicates the detuning range over which ξN does not
decrease with Ny, and the dots and solid lines indicate the midpoint
of the range. (c) Normalized localization length versus δν for the
Hermitian quasi-1D system (Nx = 10 000) with periodic boundary
along y at a disorder strength W = 8J . (d) Critical energy δνc versus
W for semi-infinite lattice corresponding to (c). The localization
transition by annihilation can be observed at W = 9J . The ensemble
size used for (c) and (d) is 50.
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W ≈ 8J , after which it decreases to zero. This is consistent
with the results shown in Fig. 2, where the signature of the
delocalized bulk mode, a property of the Chern insulator,
disappears between W = 8J and W = 10J . In Fig. 3(b), we
plot the range of critical frequencies (i.e., the frequency range
over which ξN does not decrease with Ny) versus W . As the
system transitions from Chern insulator to normal insulator,
the critical frequencies shift toward one another, and for W �
9J become impossible to distinguish over the statistical noise.
Hence, a photonic lattice can provide evidence for the long-
standing theoretical prediction that topologically insulating
behavior is destroyed by strong disorder through the levitation
and annihilation of the delocalized bulk states [10–14].

In Fig. 3(c), we present simulation results for an ide-
alized (and experimentally unrealistic) lattice with periodic
boundary conditions on the upper and lower edges, and a
much greater length of Nx = 104. Delocalization is observed
at around the same frequencies as in Fig. 2(d). To confirm that
this delocalization is not an artifact of small lattice widths, we
have simulated systems with much larger widths and verified
that they exhibit similar behavior (see Supplemental Mate-
rial [57]). This shows that the results in Fig. 2, which were
obtained for experimentally realistic open boundary condi-
tions and much shorter length Nx = 50, accurately identify
the frequencies at which the delocalized bulk states appear.
In Fig. 3(d), we plot the range of critical frequencies versus
disorder strength W using the idealized lattice with periodic
boundary conditions and large Nx. It displays the same levita-
tion and annihilation behavior as in Fig. 3(b). The large error
bar near the annihilation point (W ≈ 9J) is due to the fact that
the two humps seen in Fig. 3(c) merge into a single large hump
near the annihilation point for the range of Ny considered here.
In Fig. 3(b), this was not observed due to the smaller lattice
size and the effects of the open boundary conditions.

To verify that the loss on the edge sites is necessary for
the observation of bulk delocalization, in Fig. 4(a) we plot
ξN versus δν with these losses omitted. In this case, high
transmission is observed in the frequency range corresponding
to the bulk gap, due to transport by the now-unsuppressed
topological edge states. The frequency range over which ξN is
constant or increasing with Ny appears to occur near the center
of the bulk gap, rather than within each band as in Fig. 2.

In Fig. 4(b), we show that the delocalization signature can
still be observed when there is weak but nonzero losses on
the other resonators. In real photonic structures, some material
and radiative losses are always present. Here, we assign each
nonedge site a loss of −iγ ′, where γ ′ = 10−3J . This level
of losses is consistent what can be achieved experimentally.
For example, the silicon-on-insulator implementation of the
model in Ref. [28] had a loss of γ ′ ≈ 0.03J and a silicon ni-
tride platform [46] can achieve a loss level smaller by a factor
of around 1/100. Therefore, a loss level of γ ′ = 10−3J should
be achievable, and it should hence be possible to observe
a frequency region in which ξN is approximately constant
with Ny.

Finally, to verify the topological origin of the bulk extended
state, Figs. 4(c) and 4(d) shows the results for M = 4J , for
which the lattice is in its normal insulator phase. In this case,
there is no clear range of frequencies in which ξN is constant
or increasing with Ny.

FIG. 4. Plots of normalized localization length versus relative
detuning δν for different scenarios. (a) Chern insulator (M = 0) with
disorder strength W = 6J , with the losses on the upper and lower
edge sites omitted. Transmission now peaks in the bulk gap (yellow
region) due to the topological edge states, and the signature of bulk
delocalization cannot be discerned. (b) Chern insulator (M = 0) with
disorder strength W = 6J and with small losses −iγ ′ on the nonedge
sites. Here we take γ ′ = 10−3J . As before, the sites on the upper
and lower edges have loss −iJ , and all other parameters are the
same as in Fig. 2. Bulk delocalization can be observed at δν ≈ −2J .
For clarity, only negative values of δν are plotted. (c), (d) Normal
insulator (M = 4J) with disorder strengths of (c) 4J and (d) 6J and
length Nx = 50. The ensemble size is 500 for all subplots.

IV. DISCUSSION

We have proposed an experimentally feasible way to probe
the localization behavior of disordered Chern insulators using
a recently developed photonic platform [28]. Using a realistic
tight-binding model [27], we showed that it is possible to
observe the existence of extended states in the bulk bands, a
characteristic feature of disordered Chern insulators, as well
as the levitation and annihilation of these extended states
under increasing disorder [10–14]. The required system sizes,
disorder strengths, and loss levels are all in the experimentally
accessible range.

In the results presented above, disorder has been modeled
as detunings of individual resonator frequencies, i.e., on-site
or diagonal disorder, which is the dominant form of disorder
in such systems. However, experimental realizations will also
feature random variations in other system parameters, which
manifest as off-diagonal disorder. Our results are robust to a
relatively high amount of off-diagonal disorder (see Supple-
mental Material [57]).

There may be other ways to use photonic Chern insulators
to probe the interplay of disorder and topological phases, such
as level-spacing statistics [6,53]. Apart from observing local-
ization lengths from averaged intensity measurements, it may
also be possible to probe the system using the Wigner time
delay, which is insensitive to losses and has previously been
used to establish the extended nature of photonic topological
edge states [58]. However, we have thus far been unable to
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find a clear signature of bulk state delocalization in Wigner
time-delay statistics. It may also be interesting to explore the
effects of adding optical gain to such a system to determine
whether bulk extended modes could be observed through their
promotion into lasing modes.

Finally, although our proposal has focused on photonic
resonator lattices, similar ideas can be generalized to other
photonic lattices, and more broadly to other bosonic systems,
such as acoustic, electrical, or mechanical lattices [59–61].
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APPENDIX: COHERENT VERSUS INCOHERENT
EXCITATION

Let Gba denote the Green’s function matrix element be-
tween site a in the input column 1 to site b in column n. If
the input on site a is ψ (1)

a , the complex wave amplitude on site
b is ψ

(n)
b = ∑

a Gbaψ
(1)
a and the intensity on that site is

I (n)
b = ∣∣ψ (n)

b

∣∣2 =
∑

ac

GbaG∗
bcψ

(in)
a ψ (in)∗

c . (A1)

For uniform incoherent excitation (i.e., no fixed phase rela-
tionship between different input sites), we take an average
over an ensemble of input wave amplitudes with equal
magnitude

√
Iin/Ny and random phases. Averaging over the

ensemble gives the mean intensity

〈
I (n)
b

〉 = Iin

Ny

∑
a

|Gba|2, (A2)

Hence, the total intensity in column n is

I (n) =
∑

b

〈
I (n)
b

〉 = Iin

Ny
Tr

(
G†

nGn
)
. (A3)

Normalizing by Iin yields the transmittance formula Eq. (7).
On the other hand, if the input is spatially coherent, we do not

FIG. 5. (a) Plots of 〈ln(T )〉 and 〈ln(Tc )〉 versus column index n
for Nx = 50, Ny = 10, W = 6J , and δν = 0.9J , and averaging over
500 disorder realizations. Straight lines are linear least-squares fits.
The fitted slopes are almost identical, so incoherent and coherent
excitation yield the same localization length. (b) Normalized local-
ization length ξN extracted using T and Tc, plotted against relative
detuning δν/J for W = 6J . All other parameters are the same as in
Fig. 2. (c) Intensity profiles for a single disorder realization (W = 6J)
with coherent excitation (upper row) and incoherent excitation (lower
row). The incoherent case is modeled by the input sites having ran-
dom phases but equal intensities. Left column shows results for δν =
−2.3J (near the critical detuning), and right column for δν = −1.5J
(away from the critical detuning). The sample width is Ny = 10 and
all other parameters are same as Fig. 2.

perform an average over the random phases and the intensity
depends explicitly on the input vector, leading to Eq. (8).

Figure 5(a) plots the resulting dependence of 〈ln(T )〉 and
〈ln(Tc)〉 with n, for a typical choice of W and δν. The two
quantities exhibit the same scaling behavior, so the same es-
timate for the localization length ξN is obtained regardless of
whether we use T or Tc in Eq. (9). As an example, Fig. 5(b)
shows the plot of ξN versus δν, similar to Fig. 2, for disorder
strength W = 6J . Estimating the localization length using ei-
ther T (incoherent excitation) or Tc (coherent excitation) gives
essentially the same results.

Figure 5(c) plots the intensity profiles within the lattice
for a single given disorder realization, for coherent and inco-
herent (random phase) excitations. Near the critical detuning
(left panels), the coherent and incoherent excitation schemes
produce very similar intensity profiles, consistent with the
existence of delocalized bulk eigenstates that can be excited.
Away from the critical detuning, the intensity profiles may
be dissimilar (right panels) for a given disorder realization
and choice of input phases. After averaging the transmittances
over many disorder realizations, the coherent and incoherent
excitation schemes yield the same localization lengths, regard-
less of the choice of δν.
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