
PHYSICAL REVIEW B 103, 214104 (2021)

Polarization rotation by external electric field in the two-dimensional
antiferroelectric squaric acid H2C4O4
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A pseudospin model for description of the influence of the electric field, confined to the plane of sublattice
polarization, on the two-dimensional squaric acid antiferroelectrics is developed. The temperature–electric field
T -E1 phase diagram is constructed. Most of the field-induced transitions are found to be associated with
polarization rotation. The system behavior is best characterized by the introduced noncollinearity angle θ ,
which is the angle between the sublattice polarizations. The collinear ferroelectric phase and two noncollinear
phases with almost antiparallel and perpendicular polarizations of the sublattices are identified. The diagram also
contains the crossover region, where the noncollinearity angle varies continuously between, nominally, 180◦ and
90◦. The first- and second-order transition lines, supercritical lines, critical and two bicritical end points, and the
tricritical point on the T -E1 phase diagram are detected. Three plateaus are observed in the field dependence of
the net polarization at low temperatures.
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I. INTRODUCTION

The squaric acid H2C4O4 (3,4-dihydroxy-3-cyclobutene-
1,2-dione) is a classical example of a two-dimensional
antiferroelectric. In these crystals, the hydrogen-bonded C4O4

groups form sheets parallel to the ac plane and stacked along
the b axis. Below the transition at 373 K, a spontaneous
polarization arises in these sheets, with the neighboring sheets
polarized in the opposite directions [1–3]. At the transition,
the crystal symmetry changes from centrosymmetric tetrago-
nal, I4/m, to monoclinic, P21/m.

Protons on the hydrogen bonds in squaric acid move in
double-well potentials, so each of the protons can occupy a
site closer to the C4O4 group or the other site on the bond,
closer to the neighboring C4O4 group. The C4O4 groups pos-
sess C1h symmetry both below and above the transition [4]; the
distortion from the square shape is caused by formation of a
double bond between those two adjacent carbon atoms, closer
to which two protons on the hydrogen bonds sit. The sublattice
polarization is mostly electronic, while the direct contribution
of ions and displaced protons is significantly smaller [5].

External electric fields produce many interesting effects in
antiferroelectrics. Probably the best known is the switching
of a negative sublattice polarization by the bias field and the
resulting transition from the antiferroelectric (AFE) to a ferro-
electric (FE) phase, manifesting itself in the classical double
P-E hysteresis loops. Typical high permittivity and dielectric
strength of antiferroelectrics as well as a small remnant po-
larization of the double loops make these systems promising
candidates for use in the high-energy-storage capacitors.

In conventional ferroelectrics, the external electric field
applied along the axis of spontaneous polarization is a field
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conjugate to the order parameter. The T -E phase diagram in
the case of the first-order phase transition at zero field is sim-
ple. The transition temperature increases with the field, and
the transition line ends at the critical point [6–9]. At the fields
above the critical one, the rounded maxima of the dielec-
tric permittivity are observed along the so-called Widom line
[7–9]. In the case of antiferroelectrics, there is no physically
realizable electric field conjugate to the sublattice polariza-
tion, and the phase diagram is much more complicated.

Okada et al. [10–12] and recently Tolèdano [13] explored
the T -E phase diagram of a uniaxial antiferroelectric using the
phenomenological approach. In particular, it has been found
[10–12] that apart from the field-induced FE phase, there
exists an additional semipolar phase at elevated fields, where
an incomplete compensation of the sublattice polarizations
occurs.

In contrast to the uniaxial antiferroelectrics, where the av-
erage sublattice polarization is either parallel or antiparallel to
the predetermined direction, the pseudotetragonal symmetry
of the squaric acid crystal lattice and, foremost, of its two-
dimensional hydrogen bond networks, permits 90◦ rotations
of the sublattice polarizations by the applied electric field.
Hysteresis loop measurements and Berry phase calculations
by Horiuchi et al. [5] have given evidence for such a rotation.
Microscopically, it would invoke a relocation of one of the
two protons in each molecule to the other site along the
same hydrogen bond and a simultaneous switching of the
π bond to those carbon atoms, close to which the protons
would sit after the relocation. Further calculations [14] have
shown that the field-induced sublattice polarization rotation
by 90◦ is possible at different orientations of the field within
the ac plane. It is also predicted [5,14] that higher fields, in
particular E1 ± E3 applied along the diagonals of the ac plane,
can relocate the second proton of each molecule along the
hydrogen bond, resulting in a 180◦ rotation of the negative
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FIG. 1. Crystal structure of squaric acid as viewed along the b
axis. Figure is taken from Refs. [19,20]. Two adjacent layers are
shown, with black and open circles each. The A- and B-type C4O4

groups are indicated (see text for explanation), and the hydrogen
bonds are numbered.

sublattice polarization as compared to the initial AFE phase
and inducing the collinear ferroelectric phase, analogous to
that in uniaxial antiferroelectrics.

Theoretical model description of the antiferroelectric tran-
sition in squaric acid is usually based on a certain version of
the proton ordering model, invoking four-particle correlations
between protons within the planes [15–18]. The four-particle
Hamiltonians are basically identical to those for NH4H2PO4

crystals, antiferroelectrics of the KH2PO4 family. Recently we
have developed a deformable four-particle model for squaric
acid [19] that describes the effects associated with the diago-
nal lattice strains and changes in the hydrogen bond geometry:
the thermal expansion, influence of external hydrostatic pres-
sure, and dependence of the interaction constants on the H-site
distance δ.

In the present paper, we shall modify our recently pro-
posed model [19] to take into account the changes in the
system symmetry caused by the electric fields applied within
the plane of the hydrogen bonds. The system Hamiltonian,
thermodynamic potential, and equations for the order param-
eters and lattice strains are obtained in Sec. II. Results of
numerical calculations are presented in Sec. III, where the
temperature–electric field phase diagram is constructed. The
Appendix contains a thorough coverage of the variety of the
temperature dependences of the order parameters, strains, and
static dielectric permittivity at different values of the field.

II. THE MODEL

There are two formula units in the low-temperature phase
unit cell of squaric acid. In our model, the unit cell consists
of two C4O4 groups and four hydrogen atoms ( f = 1, 2, 3, 4;
see Fig. 1) attached to one of them (the A-type group). All
hydrogens around the B-type groups are considered to belong
to the A-type groups, with which the B groups are hydrogen
bonded. Note that the two C4O4 groups of each unit cell
belong to different neighboring layers. The center of each

hydrogen bond lies exactly above the center of the hydrogen
bond in the layer below it (as seen along the b axis).

As usually in the proton ordering models, we consider
interactions between protons, leading to ordering in their sys-
tem. Motion of protons in double-well potentials is described
by Ising pseudospins, whose two eigenvalues σyq f = ±1 are
assigned to two equilibrium positions of the f th proton. Here
y stands for the layer index, and q is the index of the A-type
C4O4 group. It is assumed that the crystal is placed into
electric fields E1 and E3 directed along the a and c axes.

The system Hamiltonian [19]

H = NUseed + H intra
long + H inter

long + Hshort (1)

includes ferroelectric intralayer long-range interactions H intra
long ,

ensuring ferroelectric ordering within each separate layer,
antiferroelectric interlayer interactions H inter

long responsible for
alternation of polarizations in the stacked layers, and the
short-range configurational interactions between protons
Hshort, which include also the interactions with external elec-
tric fields. Here N is the number of the unit cells in the crystal.

The so-called seed energy [19] in the Hamiltonian

Useed = v

2

3∑
i j=1

c(0)
i j uiu j − v

3∑
i j=1

c(0)
i j α

(0)
i

(
T − T 0

i

)
u j (2)

corresponds to the deformable host lattice of heavy ions that
forms the double-well potentials for the motion of protons.
It contains elastic and thermal expansion contributions
associated with uniform diagonal lattice strains u1, u2, and
u3; c(0)

i j and α
(0)
i are the seed elastic constants and thermal

expansion coefficients; T 0
i determine the reference point of

the thermal expansion of the crystal, which can be chosen
arbitrarily; and v is the unit cell volume at this reference
point. Contributions of the monoclinic strain u5 are ignored.
Note that for the indices of the second-rank tensors u and α(0)

and of the fourth-rank tensor c(0) the usual Voigt notations
11 → 1, 22 → 2, 33 → 3, 13 → 5 [21] are used throughout
the paper. The Hooke’s law for the thermally expanding
host lattice, following from Useed, allows us [19] to describe
correctly the regular thermal expansion of squaric acid,
observed in the paraelectric phase, as well as the hydrostatic
pressure dependence of the lattice constants. The theoretical
anomalous behavior of the strains below the antiferroelectric
transition, caused by coupling of the host heavy ion lattice
to the subsystem of ordered protons, is also in a very good
agreement with experimental data [19].

The short-range Hamiltonian Hshort describes the four-
particle configurational correlations between protons sitting
around each C4O4 group. It is assumed that the energy of four
lateral configurations Ea, where two protons are in positions
close to the adjacent oxygens of the C4O4 group and two other
protons are closer to the neighboring C4O4 groups (see Fig. 2
and Table I, configurations 1–4), is the lowest of all. This level
is thus four times degenerate in the absence of an external
electric field. The next level is two diagonal configurations
with the energy Es, where the protons are close to the opposite
oxygens of the C4O4 group (configurations 5 and 6 in Table I).
Then there are eight single-ionized configurations with three
or only one close protons, having the energy E1 (configura-
tions 7–14), and two double-ionized configurations with four
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FIG. 2. Dipole moments of the lateral proton configuration
(configuration 1 of Table I) around an A-type C4O4 group, as
deduced from the results of Ref. [5]. μH

1 = (2μH , 0, 0), μπ
1 =

(2μπ
‖ , 0, −2μπ

⊥). Directions of the dipole moments associated with
protons and with electrons are shown by blue and red arrows,
respectively; the green arrow is the total dipole moment of the con-
figuration; and the vector lengths are nominal.

or zero protons (E0, configurations 15 and 16). We accept that
Ea < Es � E1 � E0. Lateral proton configurations, being the
ground-state ones in squaric acid, are confirmed by structural
measurements (e.g., Refs. [1,5]).

The electric fields E1 and E3 remove the degeneracy of the
lowest level of four lateral proton configurations Ea, as well
as of the second excited level of single-ionized configurations
E1. The energies of the diagonal (5 and 6) and double-ionized
(15 and 16) proton configurations, having no dipole moment
in the ac plane, remain unchanged.

Our modeling of the electric field influence on the squaric
acid is heavily based on the results of the Berry phase calcula-
tions [5], which have shown that the sublattice polarization in
this crystal is formed predominantly by the electronic contri-
butions of switchable π -bond dipoles, rather than directly by
displacements of protons along the hydrogen bonds. Positions
of the double bonds, however, are determined by the proton
configurations around the given C4O4 group: In the ground-
state lateral configurations, the bond is formed between the
two neighboring carbons, near which protons sit on the hy-
drogen bonds (see Fig. 2), and also between the carbons and
adjacent to them oxygens, next to which there is no proton
(meaning that the protons on these bonds sit in the minima
close to the neighboring C4O4 groups).

Directions of the electronic and total sublattice polar-
izations are, at least at low temperatures, determined by
populations of the four ground-state lateral proton configura-
tions in the sublattice. For the configuration 1, these directions
are depicted in Fig. 2. The proton contribution vector goes
along the [100] axis, while the electronic contribution is at
an angle to it. The three other lateral configurations and their
dipole moments can be obtained from the scheme of Fig. 2
by rotation by a multiple of 90◦. It is taken that in absence
of the electric field the protons in the AFE phase are mostly
in configuration 1 in the positively polarized sublattice and in
configuration 3 in the negatively polarized sublattice. Then,
the observed [5] 90◦ switching of polarization means that the
protons in the negatively polarized sublattice move from the
configuration 3 to configuration 2 or 4, and the total 180◦
rotation of polarization means switching to configuration 1.

No polarization calculations for the single-ionized con-
figurations, like the Berry phase calculations for the lateral

TABLE I. Proton configurations and their energies Ẽi in pres-
ence of the electric fields E1 and E3; W3 = μH E1 + μπ

‖ E1 − μπ
⊥E3;

W1 = −μH E3 − μπ
‖ E3 − μπ

⊥E1. Directions of the dipole moments
associated with protons and with electrons are shown by blue and
green arrows, respectively.

214104-3



A. P. MOINA PHYSICAL REVIEW B 103, 214104 (2021)

FIG. 3. Dipole moments of the single-ionized proton config-
uration with one proton (configuration 7 of Table I). μH

7 =
(μH , 0, −μH ), μπ

7 = (μπ
‖ − μπ

⊥, 0, −μπ
‖ − μπ

⊥).

configurations [5], has been performed yet. Hence, while the
direction of the protonic polarization can be easily deter-
mined, the direction of the electronic polarization for them
is largely a guesswork. As one can see in Fig. 2, for the lat-
eral configurations the electronic dipole moment is directed,
roughly, from the two protons toward the two double bonds
between carbons and oxygens, next to which there is no pro-
ton, i.e., qualitatively, from the region of the lowest electron
density to the region with the highest electron density. In
analogy to the case of the lateral configurations, we shall
assume that in the single-ionized configuration (Fig. 3), the
electronic dipole moment is directed from the single proton
toward the double bond between the oxygen and carbon along
the diagonal of the C4O4 group. With the proton dipole mo-
ment directed at 45◦ to the crystallographic axes, we again
obtain approximately the same angle between the the protonic
and electronic polarization vectors, as in the case of the lateral
configurations, and we shall assume that this angle is exactly
the same.

Likewise, we assume that the ratio of the absolute values of
the proton and electronic dipole moments is the same in lateral
and in single-ionized configurations. For the lateral config-
urations, the absolute value of the proton dipole moment is
denoted as 2μH . The electronic dipole moment vector has
two components: 2μπ

‖ along the direction of the proton dipole
moment and 2μπ

⊥ in the perpendicular direction. So, if we
have μH

1 = (2μH , 0, 0), μπ
1 = (2μπ

‖ , 0,−2μπ
⊥) for configura-

tion 1 and μH
7 = (μH , 0,−μH ) for configuration 7, then from

the above assumptions it follows that μπ
7 = (μπ

‖ − μπ
⊥, 0,

−μπ
‖ − μπ

⊥).
For single-ionized configurations 11–14 with three pro-

tons, we use the same reasoning as above for configurations
7–10 with a single proton. In particular, the dipole moments
of configuration 13 are the same as those of configuration 7.
The dipole moments of all single-ionized configurations can
be obtained by rotation of the the dipole moments of configu-
rations 7 and 13. The dipole moment vectors and energies Ẽi

of all configurations in presence of the electric fields E1 and
E3 are summarized in Table I.

In fact, exact orientation and magnitude of the electronic
dipole moments of the single-ionized configurations are not
too significant. These configurations represent the second
excited energy level of the short-range part of the total Hamil-
tonian (1), lying at (E1 − Ea)/kB = 1100 K [19] above the
ground-state level. The magnitude of its splitting by the
electric field is determined by the vector of the total dipole

moment of these configurations (Fig. 3), only the electronic
component of which has been guessed. Even though the actual
electronic dipole moment most likely somewhat deviates from
the guessed one, the error in the fraction of the correction
to the energy of the second excited level of part of the total
Hamiltonian, brought in by this deviation, is not expected to
perceptibly affect the overall system behavior.

To go from the representation of proton configuration en-
ergies to the pseudospin representation, we use the standard
procedure [19,22,23], according to which the Hamiltonian
of the short-range correlations between protons surrounding
each A-type C4O4 group is written as

HA
yq =

16∑
i=1

N̂i(yq)Ẽi, N̂i(yq) =
4∏

f =1

1

2
(1 + s f σyq f ), (3)

where N̂i(yq) is the operator of the ith configuration, and Ẽi

is its energy. s f = ±1 is the sign of the eigenvalue of the
pseudospin σyq f operator in this particular configuration. It
is assumed that s f = +1 if the proton at the f th bond is
localized at the H-site proximal to the given A-type C4O4

group, and s f = −1 if the proton is localized at the other
(distal) H site of the same bond. Using Eq. (3) and the energies
Ẽi given in Table I, we arrive at the following expression for
the short-range Hamiltonian, identical to that used in the pro-
ton ordering model for the NH4H2PO4-type antiferroelectrics
(see, e.g., Ref. [24]):

HA
yq = V

[
σyq1

2

σyq2

2
+ σyq2

2

σyq3

2
+ σyq3

2

σyq4

2
+ σyq4

2

σyq1

2

]

+U

[
σyq1

2

σyq3

2
+ σyq2

2

σyq4

2

]
+ �

σyq1

2

σyq2

2

σyq3

2

σyq4

2

−
4∑

f =1

[μ f 1E1 + μ f 3E3]
σyq f

2
. (4)

Here the short-range interaction constants

V = −ε − w1

2
, U = ε + w1

2
, � = 2ε − 8w + 2w1

(5)

are linear functions of the Slater-Takagi type energy parame-
ters

ε = Es − Ea, w = E1 − Ea, w1 = E0 − Ea.

It will be assumed that w1 → ∞. Finally, the dipole moments
μ f 1 and μ f 3 are the following:

μ11 = −μ31 = μH + μπ
‖ − μπ

⊥,

μ21 = −μ41 = μH + μπ
‖ + μπ

⊥, (6)

and

μ13 = −μ33 = −μH − μπ
‖ − μπ

⊥,

μ23 = −μ43 = μH + μπ
‖ − μπ

⊥. (7)

It can be shown that just like for the KH2PO4 family crys-
tals the contributions of the correlations of the protons around
the A- and B-type groups to the total thermodynamic potential
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are equal. The Hamiltonian of the short-range interactions
then can be written as

Hshort → 2
∑

qy

HA
qy, (8)

where the expression for HA
qy is given by Eq. (4).

The long-range interactions in the system Hamiltonian (1)
are the dipole-dipole interactions, in analogy to the case of
KH2PO4 [22], renormalized by the proton-lattice coupling.
The mean field approximation (MFA) is usually used for these
interactions. In this approximation, we obtain the following
expressions [19] for the long-range intralayer

H intra
long = − 1

2

Ny∑
y=1

∑
qq′
f f ′

J intra
f f ′ (qq′)

σyq f

2

σyq′ f ′

2

	 − 2
∑
yq f

F intra
yq f

σyq f

2
+

∑
yq f

F intra
yq f

〈σyq f 〉
2

. (9)

and interlayer

H inter
long = − 1

2

∑
y

∑
y′ �=y

∑
qq′
f f ′

J inter
f f ′ (yy′; qq′)

σyq f

2

σy′q′ f ′

2

	 − 2
∑
yq f

F inter
yq f

σyq f

2
+

∑
yq f

F inter
yq f

〈σyq f 〉
2

(10)

interactions. Here Ny is the total number of the layers. The
internal mean fields are

F intra
yq f = 1

4

∑
q′ f ′

J intra
f f ′ (qq′)〈σyq′ f ′ 〉,

F inter
yq f = 1

4

∑
y′q′ f ′

J intra
f f ′ (yy; qq′)〈σy′q′ f ′ 〉. (11)

The four-particle cluster approximation will be used for
the short-range interactions, described by the Hamiltonian (4).
The thermodynamic potential of the system can be written as
[19]

G = NUseed +
∑
yq f

(
F intra

yq f + F inter
yq f

) 〈σyq f 〉
2

− 1

β

×
∑

qy

⎡
⎣2 ln Sp exp

(−βH (4)
qy

)− 4∑
f =1

ln Sp exp
(−βH (1)

qy f

)⎤⎦,

(12)

where β = (kBT )−1. The cluster Hamiltonian is

H (4)
qy = HA

qy −
4∑

f =1

zyq f

β

σyq f

2
, (13)

where

zyq f = β
[

yq f + 2F intra

yq f + 2F inter
yq f + μ f 1E1 + μ f 3E3

]
.

The fields 
yq f are the effective cluster fields that describe
short-range interactions of the spin σyq f with the particles
from outside the cluster q. They are determined from the self-
consistency condition, stating that the pseudospin mean values
calculated with the four-particle (13) and with the one-particle

H (1)
yq f = −[
yq f + zyq f ]

σyq f

2

Hamiltonians must coincide.
The following symmetry of the pseudospin mean val-

ues was assumed for the antiferroelectrically ordered two-
sublattice model in absence of external electric field [19]:

〈σyq f 〉 = exp[ik2Ry]η f . (14)

Here k2 = (0, b2, 0); b2 is the basis vector of the reciprocal
lattice; the factor exp[ik2Ry] = ±1 denotes two sublattices
of an antiferroelectric; and Ry is the position vector of the
yth layer. We shall call the two sublattices of the model,
where exp[ik2Ry] = 1 and −1, as the plus and minus sub-
lattices, respectively. Neglecting the experimentally observed
[1] weak nonequivalence of the hydrogen bonds linking the
C4O4 groups along the a and c axes, we described the sys-
tem behavior in the absence of the field by the single order
parameter η:

η ≡ η1 = η2 = −η3 = −η4. (15)

In the presence of external electric fields E1 or E3, the
mentioned nonequivalence can no longer be ignored. Also,
the pseudospin mean values in the plus and minus sublattices
differ not only by their signs, as in Eq. (14), but also by their
absolute values. This leaves us with four independent order
parameters,

〈σyq f 〉 = η f ±,

two for the plus and two for the minus sublattices,

η1± = −η3±; η2± = −η4±, (16)

in accordance with the system translational symmetry.
Taking into account Eq. (16), we can write the MFA Hamil-

tonians of the long-range interactions (9) and (10) as

H intra
long + H inter

long = N

[
ν

(η1+ − η1−)2

4
+ ν

(η2+ − η2−)2

4
+ ν ′ (η1+ + η1−)2

4
+ ν ′ (η2+ + η2−)2

4

]

− 2
∑

yq

[σqy1 − σqy3

2

(
ν
η1+ − η1−

2
+ ν ′ η1+ + η1−

2

)
+ σqy2 − σqy4

2

(
ν
η2+ − η2−

2
+ ν ′ η2+ + η2−

2

)]
. (17)
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The resulting interaction constants ν and ν ′ are linear combi-
nations of the eigenvalues

ν = J intra
11 (0) − J intra

13 (0)

4
+ J inter

11 (k2) − J inter
13 (k2)

4
,

ν ′ = J intra
11 (0) − J intra

13 (0)

4
+ J inter

11 (0) − J inter
13 (0)

4
, (18)

of the matrices of the long-range interaction constant
Fourier transforms at the center of the Brillouin zone and

at k2:

J intra
f f ′ (0) =

∑
q′

J intra
f f ′ (qq′),

J inter
f f ′ (0) =

∑
q−q′

∑
y−y′

J inter
f f ′ (yy′; qq′),

J inter
f f ′ (k2) =

∑
q−q′

∑
y−y′

J inter
f f ′ (yy′; qq′) exp[ik2(Ry − Ry′ )]. (19)

We also took into account the the symmetry of the Fourier
transforms over the bond indices f and f ′: J11 = J22 = J33 =
J44, J12 = J23 = J34 = J41, J13 = J24.

Eventually, the thermodynamic potential per one unit cell is obtained in the following form:

G

N
= Useed − 1

β
[ln D+ + ln D−] − 1

2β

[
ln

(
1 − η2

1+
) + ln

(
1 − η2

2+
) + ln

(
1 − η2

1−
) + ln

(
1 − η2

2−
)]

+ ν
(η1+ − η1−)2

4
+ ν

(η2+ − η2−)2

4
+ ν ′ (η1+ + η1−)2

4
+ ν ′ (η2+ + η2−)2

4
, (20)

where

D± = a + cosh(z1± + z2±) + 2b(cosh z1± + cosh z2±) + cosh(z1± − z2±),

z f ± = 1

2
ln

1 + η f ±
1 − η f ±

± βν
η f + − η f −

2
+ βν ′ η f + + η f −

2
+ β

μ f 1E1

2
+ β

μ f 3E3

2
;

a = exp(−βε), b = exp(−βw).

The short-range Slater-Takagi energies, according to the
model [19], are considered to be quadratic functions of the
H-site distance δ. In its turn, the distance δ is taken to vary ac-
cording to its experimentally observed [1] above the transition
linear temperature dependence

δ = δ0[1 + δT (T − TN0)], (21)

where TN0 is the transition temperature at zero electric field. It
yields

ε = ε′
0[1 + δT (T − TN0)]2, w = w0[1 + δT (T − TN0)]2.

(22)

For the parameters of the long-range (dipole-dipole) interac-
tions ν and ν ′, both the dependence of the dipole moments on
δ and the variation of the interactions with the changes in the
equilibrium distances between protons (dipoles) are taken into
account [19]:

ν = ν0[1 + δT (T − TN0)]2 +
3∑

i=1

ψiui,

ν ′ = ν ′
0[1 + δT (T − TN0)]2 +

3∑
i=1

ψ ′
i ui. (23)

It should be mentioned that this form of the proton-
lattice coupling can be obtained from a microscopic
proton-phonon Hamiltonian by separating the uniform
lattice strains in the atomic displacements (see, e.g.,
Ref. [25]).

Minimization of the thermodynamic potential (20) with
respect to the order parameters η f ± ( f = 1, 2) and strains ui

yields the following equations:

η f ± = m f ±
D±

, (24)

0 =
3∑

j=1

c(0)
i j

[
u j − α

(0)
j

(
T − T 0

j

)]

+
2∑

f =1

{
ψi

η f + − η f −
2v

[
η f +

2
− η f −

2
− m f +

D+
+ m f −

D−

]

+ ψ ′
i

η f + + η f −
2v

[
η f +

2
+ η f −

2
− m f +

D+
− m f −

D−

]}
, (25)

where

m f ± = sinh(z1± + z2±) + 2b sinh z f ± ± sinh(z1± − z2±).

The first sum in Eq. (25) describes the regular linear thermal
expansion of a crystal, attributed entirely to the host lattice.
The anomalous parts of the strains [the second sum in (25)],
caused by the proton-lattice coupling, are quadratic functions
of the order parameters η f ±, indicating the electrostrictive
origin of these parts.

The net crystal polarizations P1 and P3 are

Pj = − 1

vN

∂G

∂Ej
= Pj+ + Pj−, (26)
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where

P1± = μH + μπ
‖

2v
(η1± + η2±) + μπ

⊥
2v

(η2± − η1±),

P3± = μH + μπ
‖

2v
(η2± − η1±) − μπ

⊥
2v

(η2± + η1±) (27)

are the sublattice polarizations. The total net polarization
within the ac plane is

P =
√

(P1+ + P1−)2 + (P3+ + P3−)2. (28)

The static dielectric permittivity ε11 can be found by nu-
merical differentiation of the net polarization P1 (26) with
respect to the electric field E1,

ε11 = 1

ε0

(
∂P1

∂E1

)
p

,

where ε0 ≈ 8.85 F/m is the electric constant. The differenti-
ation is carried out at constant external pressures (stresses),
equal to zero in our case, i.e., the permittivity of a mechani-
cally free crystal is calculated.

III. CALCULATIONS

A. Fitting procedure

Even though the model developed here allows us to explore
the influence of the electric field of any arbitrary orientation
within the ac plane, we restrict our numerical calculations by
the positive field E1 only.

The thermodynamic potential is minimized numerically
with respect to the order parameters η f ±. Simultaneously, the
strains ui are determined from Eqs. (25).

The values of most of the model parameters have been
determined earlier [19]. They were required to provide the
best fit to the experimental temperature curves of the sub-
lattice polarization (order parameter) at ambient pressure, the
temperature and hydrostatic pressure dependences of the lat-
tice strains ui, and the pressure dependence of the transition
temperature TN. Details of the fitting procedure are given in
Ref. [19].

New to the present model are the parameters ν ′
0, ψ ′

i [see
Eq. (23)] and the dipole moments μH + μπ

‖ and μπ
⊥. As

discussed in the Appendix, the values of ψ ′
i , along with ψi, de-

termine the behavior of the lattice strains at the field-induced
phase transitions. No experimental data for this are available
yet. For the sake of simplicity, we take for now that ψ ′

i = ψi.
The parameter ν ′

0 and the dipole moments are determined
by fitting the calculated curve of the dielectric permittivity
ε11 at zero external bias field to the experimental points of
Ref. [5], also considering the positions of the field-induced
transitions predicted by the model. It is also required that
μH + μπ

‖ > μπ
⊥, in accordance with the Berry phase calcu-

FIG. 4. The temperature dependences of the order parameters
η f ± (upper left), noncollinearity angle θ (upper right), dielectric
permittivity ε11 (lower left), and lattice strains u1 and u3 (lower right)
of squaric acid at E1 = 0. Open symbols: experimental points, taken
from Refs. [26] (◦), [5] (�), and [27] (�). Vertical dashed lines are
a guide to the eye, showing the phase transition. The noncollinearity
angle θ is introduced in Subsec. III B.

lations [5]. It cannot be said, however, that the adopted set of
ν ′

0 and μ is unique. The ramifications of this uncertainty are
discussed in more detail in Subsec. III C.

The obtained agreement with the experimental data in
the absence of the electric field is illustrated in Fig. 4.
The used values of the model parameters are given in
Table II.

B. Polarization rotation and noncollinearity angle

To describe the process of polarization rotation by
external electric fields, it is convenient to introduce a
new parameter, the noncollinearity angle θ , i.e., the an-
gle between polarization vectors of the plus and minus
sublattices,

θ =
∣∣∣∣∣∣arccos

η1+ + η2+√
2
(
η2

1+ + η2
2+

) − arccos
η1− + η2−√
2
(
η2

1− + η2
2−

)
∣∣∣∣∣∣.
(29)

The first and second terms here are the angles between the
actual plus and minus sublattice polarization vectors

P± = (P1±, 0, P3±), (30)

TABLE II. The adopted values of the model parameters. All, except μ and ν ′
0, are taken from Ref. [19].

ε′
0/kB w0/kB ν0/kB ν ′

0/kB ψ1/kB ψ2/kB ψ3/kB c0
11 c0

12 c0
13 c0

22 α0
1 α0

2 δT v μH + μπ
‖ μπ

⊥
(K) (1010 N/m2) (10−5 K−1) (10−28 m3) (10−29 C m)

395 1100 79.9 −50 −518 445 1096 6.5 2.3 −3.1 2.38–0.02T 1.2 13.0 20 2.0 3.64 1.65

214104-7



A. P. MOINA PHYSICAL REVIEW B 103, 214104 (2021)

FIG. 5. The ground-state proton configurations, respective polarization vectors P+ and P− of the plus and minus sublattices, the non-
collinearity angle θ [the angle between the sublattice polarizations, Eq. (29)], and the values of the order parameters η f ± at saturation for
the antiferroelectric, noncollinear ferrielectric NC90, and ferroelectric phases. The numbers in parentheses in cyan circles are the numbers
of the respective proton configurations from Table I. The hydrogen bond indices f = 1, 2, 3, 4 are shown. The green arrows indicate the
polarization vectors P± of the two sublattices. The red and cyan arrows show the proton flipping at the transitions from the configuration (3)
to configurations (2), (4), and (1). The NC90(2), NC90(4), and FE phases are the FE-α (ii), FE-α (iv), and FE-β (iii) phases, respectively, in
the notations of Ref. [5].

of which components P1±, P3± are given by Eqs. (27),
and the polarization vector P+ of the fully ordered plus
sublattice, being determined from Eqs. (30) and (27) at
η f + = 1. It should be noted that the noncollinearity angle
does not depend on the dipole moments μH + μπ

‖ or μπ
⊥

explicitly.
It is expected that as long as μH + μπ

‖ > μπ
⊥, the posi-

tive external field E1 switches the polarization in the minus
sublattice only, whereas in the plus sublattice the polarization
basically does not rotate. The situation is obviously reversed
if E1 < 0. The definition (29) of the noncollinearity angle θ is
based on this assumption.

At zero temperature, the field-induced polarization rotation
should occur via switching between the four lateral proton
configurations (configurations 1–4 in Table I). Figure 5 il-
lustrates the possible ground-state arrangements of protons in
the two sublattices, under assumption that the plus sublattice
polarization is not rotated. We also indicate which protons in
the minus sublattice should be flipped along the respective
hydrogen bond in order to switch to a different configuration.
Flipping of the proton at the f th bond means a change of a
sign of the respective order parameter η f −. The values (signs)
of the order parameters η1± and η2± in each phase are also
given in the figure. Note that η3± and η4± are related to η1±
and η2± via Eq. (16).

As one can see, the system ground-state configuration
can be antiferroelectric (θ = 180◦), ferroelectric (θ = 0), and
noncollinear (θ = 90◦), with the minus sublattice polarization
rotated by 90◦. Horiuchi et al. [5] call the latter configuration
the ferroelectric (FE)-α phase. Strictly speaking, it is not
ferroelectric, but noncollinear ferrielectric, with perpendicular
and distinct (by their magnitude at nonzero temperature) po-
larizations of the two sublattices. We shall denote it as NC90.
The predicted [5] FE-β phase with parallel polarizations of the
two sublattices is indeed collinear ferroelectric; it is simply FE
in our notations.

There are two possible realizations of the NC90 phase:
First, when the ground-state configuration for the minus sub-
lattice is configuration 2, and second, when it is configuration
4. The minus sublattice polarization vectors of these two real-
izations are antiparallel to each other and perpendicular to the
plus sublattice polarization. These two versions of the NC90
phase will be denoted as NC90(2) and NC90(4), respectively.
The protons with f = 2, 4 are flipped at the transition from
the AFE phase to the NC90(2) phase, and the protons with
f = 1, 3 at the transition to the NC90(4) phase.

Note that Fig. 5 corresponds to the fully saturated system.
When the temperature is raised, the directions of the polariza-
tion vectors and the values of the noncollinearity angle θ and
of the order parameters η f ± will deviate from those shown in
the figure due to the thermal fluctuations.

C. The phase diagram

To construct the T -E1 phase diagram of the squaric acid,
we analyzed the temperature and field behavior of the quan-
tities from Fig. 4. The temperature curves of these quantities
at different fields can be found in the Appendix. No change of
sign of η f + was observed, which means that the plus sublattice
polarization indeed is not switched by the field E1.

The phase diagram, obtained with the adopted set of the
model parameters, is shown in Fig. 6. We detected three lines
of the first-order phase transitions I, II, and III. The lines I
and II terminate at the critical points BCE1 and BCE2, which,
as will be discussed later, are, in fact, bicritical end points
[28]. The line III ends at the tricritical point TCP. The line
of the second-order phase transitions IV starts at the tricritical
pont TCP and terminates at the critical end point CEP, lying
at the line of the first-order transitions I in a close vicinity of
the bicritical end point BCE1. The coordinates of the critical
points, obtained with this set of the model parameters, are the
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FIG. 6. The T -E1 phase diagram of the squaric acid. Solid and
dashed lines indicate the first- and second-order phase transitions,
respectively. Dotted lines are the supercritical lines, corresponding
to the loci of smeared maxima in the field curves of the dielectric
permittivity. The open square, star, and full circles indicate the criti-
cal end point, tricritical point, and bicritical end points, respectively.

following:

BCE1 : Tbc1 = 370 K, Ebc1 = 111 kV/cm,

BCE2 : Tbc2 = 307 K, Ebc2 = 217 kV/cm,

TCP : Ttcp = 425 K, Etcp = 1039 kV/cm,

CEP : Tcep = 373 K, Ecep = 41 kV/cm.

In addition to the sharp anomalies at the first- and second-
order phase transitions, the temperature curves (isofields) of
the dielectric permittivity ε11 at different values of the field
also exhibit several smeared anomalies (see, e.g., Figs. 13–16
in the Appendix), and so do the field curves (isotherms) of the
permittivity at different temperatures. Loci of the anomalies in
the permittivity isotherms are indicated in the phase diagram
by the dotted lines V and VI. Line V connects BCE1 and
BCE2, whereas line VI starts in a close vicinity of BCE1

and terminates at line IV of the second-order transitions (see
Fig. 10 in the Appendix for a closeup of this part of the phase
diagram). Line V appears to be a continuation of the lines of
the first-order transition lines I and II beyond the bicritical end
points BCE1 and BCE2, and the parallels can be seen with
the Widom lines, observed in ferroelectrics in electric fields
applied along the axis of spontaneous polarization [7–9]. The
origin of line VI is less clear. In more detail, the supercritical
behavior of squaric acid will be explored elsewhere.

To identify the predicted phases, it is most efficient and
informative to look at the phase diagram overlapped with the
T -E1 color gradient plot of the noncollinearity angle θ , as in
Fig. 7.

The phase, existing at low temperatures and fields (the
red region), is, strictly speaking, noncollinear (canted) anti-
ferrielectric, as the true AFE phase with exactly antiparallel

FIG. 7. The T -E1 phase diagram of the squaric acid, overlapping
the T -E1 color contour plot of the noncollinearity angle θ . Black and
white lines and symbols are the same as in Fig. 6. Blue full triangles
� are the experimental points [5].

sublattice polarizations and zero net polarization exists at zero
field or zero temperature only. However, at nonzero fields,
only a slight rotation of the minus sublattice polarization
takes place in this region, discernible mostly at its upper right
boundary. This phase with θ ≈ 180◦ is very close to the initial
AFE phase and will be denoted as AFE*.

The phase between the transition lines II, III, and IV
(the green and blue regions in Fig. 7) is the noncollinear
ferrielectric phase NC90. In this phase, the noncollinearity
angle θ is mostly close to 90◦, only rapidly decreasing to
zero at increasing temperature within a narrow (blue) stripe
along the second-order phase transition line IV. Within this
stripe, which we shall denote as NC22*, a minor continu-
ous rotation of the plus sublattice polarization takes place,
and the order parameter η1− becomes positive (see
Figs. 12–19).

The value of the noncollinearity angle θ alone is not suffi-
cient to distinguish between the two realizations of the NC90
phase. However, examining the temperature curves of the
order parameters η f − at crossing line II (see Figs. 14 and 15),
one can see that it is the protons with f = 2, 4 that are flipped
at this transition. Hence, the phase between the lines II and III
is NC90(2), and the proton configuration 2 of the Table I is
realized as the ground-state one at these fields E1. Preliminary
calculations show that for the diagonally directed field E1-E3

the phase diagram topology is the same, but the intermediate
phase is NC90(4); that is, the proton configuration 4 is the
ground-state one between lines II and III.

The phase, stabilized within the narrow wedge between
lines I and IV with the tip at CEP, is noncollinear, with the
temperature variation of the angle θ analogous to that in the
NC90(2) phase. It is, however, possible that the phase in
this wedge is different from NC90(2). In that case, line VI
would signal the crossover from this phase to NC90(2). So
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far it is difficult to determine the criteria by which we could
unambiguously distinguish between these two noncollinear
phases. Hence, bearing this mentioned possibility in mind, we
shall nonetheless take for now that within this wedge the phase
NC90(2) is realized.

The phase observed at high fields and low temperatures and
at high temperatures and any nonzero field (the purple region
on the phase diagram) is the same collinear field-induced
ferroelectric phase (FE) with θ = 0. The true paraelectric
phase with zero sublattice polarizations exists only at E1 = 0.
A transition from any noncollinear phase to the collinear FE
phase can be realized only by crossing at least one line of the
phase transitions of the first or second order. In this phase, the
largest rotation of the plus sublattice polarization can be seen
(Figs. 12–19).

The first-order transition lines I and II end at the critical
points BCE1 and BCE2, around which the system can pass
smoothly from one ordered phase, AFE*, to another ordered
phase, NC90. Such critical points, terminating the lines of the
first-order transitions between two ordered phases, are usually
called bicritical end points [28], or, alternatively, double criti-
cal end points [29] or ordered critical points [30].

Within the region between the BCE1 and BCE2 points
(orange to yellow in Fig. 7), the mentioned smooth crossover
between the AFE* and NC90(2) phases occurs. Here the
minus sublattice polarization rotates continuously with in-
creasing field and becomes perpendicular to the plus sublattice
polarization; thus the noncollinearity angle θ changes grad-
ually from ≈180◦ to ≈90◦. We shall refer to this region as
NC135*. The crossover line V goes through it.

Hence, the theory predicts that on increasing the field at
temperatures below Tbc2 the system undergoes two successive
first-order phase transitions, associated with the polarization
switching. One is accompanied by the change of θ from
≈180◦ to ≈90◦ (the minus sublattice polarization jumps by
90◦), whereas at the other θ jumps from ≈90◦ to 0◦ (the minus
sublattice polarization jumps again by 90◦, resulting in its total
rotation by 180◦, as compared to the initial AFE phase). By
this, our theory corroborates the findings of Horiuchi et al.
[5,14] about the first transition and expands them about the
second one. Let us now compare our results and the previous
ones [5,14] in more detail.

Depending on temperature, the low-field polarization
switching occurs at the first-order transition line II, crossover
line V, and then line I between the points BCE1 and CEP;
i.e., the switching is either a phase transition or a crossover.
The temperature variation of the switching field is depicted in
Fig. 8. It is well described by the power law (TN0 − T )1/� with
different exponents: � ≈ 2.7 at TN0 − T between 0.4 and 7 K
and � ≈ 3.8 at TN0 − T between 7 and 21 K. Qualitatively,
the power law and the change of its exponent with temperature
are in agreement with the experimental observations for the
switching fields to the FE-α phase [5]. Quantitatively, the
calculated switching fields are about twice as high as exper-
imental ones, and the exponent in the power law 1/3.8 is
smaller than experimental ≈1/3.

As far as the second high-field transition from the NC90
to the FE phase is concerned, the earlier calculations [14]
predicted that it could be induced by the electric fields applied
along the diagonals in the ac plane: E1 ± E3. The present

FIG. 8. The switching field as a function of temperature. The
black and white lines and symbols are the same as in Fig. 6. The red
line: E1 = 85(TN0 − T )1/3.8; the green line: E1 = 69(TN0 − T )1/2.7.
The arrows indicate the temperature ranges, where these power laws
fit the calculated Esw (T ) curve. Blue triangles: experimental points
of Ref. [5] for the transition to the FE-α phase; blue lines: linear (for
the log scales) approximations of the experimental points.

model predicts such a transition for the field E1 as well.
Experimentally, the transition to the FE phase, induced by
the electric field E1 or E1 + E3, has not been detected so
far, because of the dielectric breakdown of crystal samples at
fields yet below 200 kV/cm [5,31].

The depolarization field, potentially arising at large values
of the net polarization induced by high external electric fields,
should further stabilize the NC90 phase. Hence, unless the
crystal splits into domains, or a screening space-charge layer
is formed at the crystal surfaces, the values of the external
field required to reach the NC90-FE transition can be even less
likely to be below the dielectric strength of a real crystal. The
shape and size of the samples are also important. Theoretical
modeling of these phenomena, however, lies beyond the scope
of the present study.

As already mentioned, the adopted set of the values of
the model parameters ν ′

0, μH + μπ
‖ , and μπ

⊥ is not unique.
The choice of these values was dictated by the fit to the
experimental [5] temperature curves of the permittivity ε11

and switching field Esw they provided, as illustrated in Figs. 4
and 8. Nonetheless, the values of these parameters still can
be varied within certain limits, and other acceptable sets of
them can be found, which provide similar agreement with the
experiment.

The calculated position of the transition line III is most
sensitive to the values of these parameters. For different ac-
ceptable sets, the corresponding to the line III fields may
vary at least between 600 and 1200 kV/cm and possibly in
a wider range. In view of this uncertainty, line III should be
considered only as a qualitative theoretical prediction of the
very existence of such a transition induced by the field E1,
rather than a quantitative estimate of the transition fields.

Generally speaking, the very topology of the T -E1 phase
diagram can change when the model parameters are changed
significantly. For the mentioned acceptable sets, the phase
diagram topology mostly remains as shown in Fig. 7. How-
ever, for some of such sets, particularly for those with lower
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FIG. 9. The calculated field dependences of total polarization P
(left) and its field derivative dP/dE1 (right) of the squaric acid at
different temperatures: 225 K (T < Tbc2), 350 K (Tbc2 < T < Tbc1),
375 K (Tcep < T < 390 K), 400 K (390 K < T < Ttcp), and 440 K
(Ttcp < T < 455 K). The values of dP/dE1 for 350 K are divided
by 4.

values of ν ′
0, the tricritical point (TCP) between lines III

and IV can split into a system of a bicritical end point
and a critical end point, lying on the line III. In this case
a noncollinear phase, different from NC90, is stabilized in
the newly emerged wedge between lines III and IV. Such
a splitting is a well-known phenomenon in the theory of
metamagnetic transitions, occurring, for instance, in the two-
sublattice Ising model at different ratios between competing
intrasublattice and intersublattice interactions [28]. There are
indications that for this and similar models, the splitting is an
artifact of the used MFA (see, e.g., Refs. [32] and references
therein). It is therefore possible that although our model is
more complicated than the mentioned Ising model, the other
predicted by the present calculations split system of critical
points, CEP-BCE1, may also be an artifact of the MFA used
for the long-range interactions. Further theoretical studies,
e.g., Monte Carlo calculations, may shed some light on this
problem. The presence of this splitting should be visible in
the temperature curves of the permittivity (see Fig. 12) and
specific heat. Thus, their experimental measurements with
the bias field E1 in the range 30–150 kV/cm might help to
establish the details of the phase diagram and to ascertain the
values of the model parameters by providing additional data
for the fitting procedure.

D. Polarization

Some characteristic (but not all possible) types of the field
dependences of the total crystal net polarization P at different
temperatures are illustrated in Fig. 9. At low temperatures,
T < Tbc2, the system undergoes two first-order phase transi-
tions with jumps of polarization, when lines II and III are
crossed. Three polarization plateaus are observed: zero AFE
net polarization below the first transition, intermediate ferri-
electric between the transitions, and ferroelectric above the
second transition. The theoretical values of polarization in
the fully ordered NC90(2) and FE phases are about 1.5 times

higher than the predicted by the Berry phase calculations 16.4
and 23.2 μC/cm2 [5].

At higher temperatures, the polarization plateaus are
smeared out. At Tbc2 < T < Tbc1, the lower jump of the polar-
ization is replaced with a steep gradual increase, as the field
increases across the region NC135* of the phase diagram,
while the upper jump of the polarization persists. A high
rounded peak of dP/dE1 corresponds to this steep increase;
the loci of such peaks in this temperature range correlate with
the crossover line V.

At Tcep < T < Ttcp, the system undergoes the second-order
phase transition at line IV and the first-order transition at line
III. At the lower transition, only a small, practically invisible
kink in the field dependence of polarization takes place. The
anomaly, however, is easily detected in the field derivative of
polarization. At Tcep < T � 390 K, this anomaly is followed
by a shallow maximum of dP/dE1. Loci of these maxima
correlate with the crossover line VI.

At Ttcp < T < 455 K, a reentrant behavior is observed, as
the system crosses line IV twice. Two kinks of the P(E1) take
place, with the lower anomaly again being identifiable only in
the field derivative of polarization. Above 455 K, the system
undergoes no phase transition and the field dependence of
polarization is smooth (not shown in the figure).

Detailed illustration of the temperature behavior of the or-
der parameters, noncollinearity angle, permittivity, and lattice
strains at different values of the electric field E1 can be found
in the Appendix.

IV. CONCLUDING REMARKS

We have presented the modification of the deformable
two-sublattice proton ordering model [19], aimed to describe
the effects of the external electric fields applied to anti-
ferroelectric crystals of squaric acid. The dipole moments
associated directly with protons and with the π bonds that
can be switched by proton rearrangement are included into
the model.

The major predicted effect of the positive electric field E1 is
a switching or continuous rotation of polarization in the minus
sublattice. The system state is best described by the introduced
noncollinearity angle θ , which is the angle between the polar-
ization vectors of the plus and minus sublattices, Eq. (29).

The constructed T -E1 phase diagram consists of the nearly
antiferroelectric (in fact, slightly noncollinear antiferrielec-
tric) phase with almost antiparallel sublattice polarizations
(AFE*, θ ≈ 180◦), noncollinear phase with nearly perpendic-
ular sublattice polarizations (NC90, θ ≈ 90◦), and collinear
ferroelectric phase (FE, θ = 0). More specifically, flipping of
protons at the f = 2, 4 bonds in the minus sublattice at the
transition between the AFE* and NC90 phases takes place,
which means that the NC90(2) version is realized (see Fig. 5).
The crossover region NC135* is also present in the diagram,
where the noncollinearity angle θ changes gradually from
about 180◦ to about 90◦ due to rotation of the minus sub-
lattice polarization, and the crossover between the AFE* and
NC90(2) phases occurs.

The continuous rotation of the sublattice polarization is
a statistically averaged phenomenon. The dipole moment of
each H2C4O4 group can only be oriented along the specific
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directions, described in Table I. At zero temperature, when
|η f ±| = 1, all the protons of a sublattice are in the same
lateral configuration (one of the configurations 1–4 of Table I).
Hence, the total sublattice polarization can only be directed
along one of the four directions, as shown in Fig. 5. However,
at higher temperatures, due to the interplay of the switching
external field and thermal fluctuations, protons around some
of the C4O4 groups can rearrange into other configurations,
including the single-ionized ones (configurations 7–14 of
Table I), thereby switching the dipole moments of these
groups. Because of this disorder, the resulting vector of the
total sublattice polarization can be directed arbitrarily, as
determined by relative populations of different proton config-
urations.

The predicted low-temperature sequence of the phase tran-
sitions AFE*→ NC90 → FE is the result of the interplay
of two mechanisms: external electric field, trying to realign
the minus sublattice polarization, and the antiferroelectric
long-range interlayer interactions between protons, trying to
stabilize the antiparallel orientation of the sublattice polar-
izations. Because of the unique geometry of the hydrogen
bonds in squaric acid, the polarization switching is a two-step
process. When the field is large enough to partially overcome
the AFE correlations, the minus sublattice polarization first
rotates by 90◦. Only when the field is sufficiently increased,
then the AFE correlations are completely overcome, and the
collinear ferroelectric state is induced.

The theoretical results qualitatively agree with the exper-
imental findings [5] for the transition or crossover between
the AFE* and NC90 phases. The calculated values of the net
polarization and the switching fields, however, are percepti-
bly higher than observed experimentally. The agreement with
experiment, at least for the switching fields, could possibly
be improved by inclusion of nonlinear terms into the system
Hamiltonian. It would also be very interesting to explore
in detail the nature of the supercritical lines found in the
temperature-electric field phase diagram as well as to consider
the effects induced by electric fields with orientations different
from E1. Such calculations are currently under way, and the
results will be published elsewhere.

APPENDIX

Here we shall use the notations for the phase transition
lines from Fig. 6 and for the phases from Fig. 7. The transition
lines, the supercritical lines obtained from the permittivity
isotherms, and critical end points for the lower part of the
T -E1 phase diagram are replotted in Fig. 10. In this figure,
we also indicated the loci of the smeared anomalies in the
temperature curves of the dielectric permittivity (lines VII and
VIII). In more detail, these anomalies are discussed below.

It is also convenient to introduce the angles of rotation of
the plus and minus sublattice polarizations

θ± = arccos
η1± + η2±√
2
(
η2

1± + η2
2±

) ,

which are the angles between the actual plus and minus sub-
lattice polarization vectors P±, Eq. (30), and the polarization
vector P+ of the fully ordered plus sublattice, determined

from Eqs. (30) and (27) at η f + = 1. Obviously, for the non-
collinearity angle, we have θ = |θ+ − θ−|. We shall plot the
temperature curves for the angles θ+ and θ only.

When the electric field E1 is increased until up to Ecep

(Fig. 11), the system behavior remains basically the same as
at zero field, except for appearance of small field-induced
positive values of η f ± above the transition. A perceptible
rotation of the plus sublattice polarization is seen only above
the transition in the FE phase, as follows from the temperature
curve of the angle θ+.

Qualitative changes occur when the field is raised above
Ecep (see Fig. 12). At fields between Ecep and Ebc1, the system
undergoes two successive phase transitions of the first and
then second orders at lines I and IV on increasing temperature.
The permittivity, which has an upward jump at the only phase
transition at fields below Ecep (see Fig. 11), now exhibits a
high sharp peak at approaching the first-order transition and a
finite downward jump at the second-order transition.

Between the transitions, the noncollinearity angle θ rapidly
decreases from above 90◦ down to zero. A perceptible rotation
of the plus sublattice polarization is observed only in the
NC22* region, at approaching the second transition, and in
the FE phase. On the other hand, the order parameter η2−
changes sign at the first-order transition, indicating a jump-
like switching of the minus sublattice polarization. At further
increase of the field, the jumps of the pseudospin mean values
at the line I decrease, until at Ebc1 this transition becomes of
the second order: The bicritical end point BCE1 is reached.

At fields above Ebc1, the system undergoes only the second-
order transition at line IV (see Fig. 13). Below the transition,
the system goes through the crossover region NC135*, where
the permittivity has a maximum at line VII and a smeared
kink at a higher temperature, whereas the order parameter
η2− rapidly but continuously increases to positive values. The
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FIG. 10. The low-field closeup of the T -E1 phase diagram. The
solid, dashed, and dotted lines (phase transition lines I, II, and IV,
and supercritical lines V and VI) and symbols (the critical end points
BCE1, BCE2, and CEP) are the same as in Fig. 6. The dash-dotted
lines VII and VIII are the loci of the smeared maxima in the permit-
tivity isofields.
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FIG. 11. The calculated temperature dependences of the order
parameters η f ± (upper left), the noncollinearity angle θ and angle of
rotation of the plus sublattice polarization θ+ (upper right), dielectric
permittivity (lower left), and lattice strains u1 and u3 (lower right)
of squaric acid at E1 = 35 kV/cm. Vertical dashed lines are drawn
through the phase transition points.

smooth change of the order parameter η2− sign means the
gradual rotation of the minus sublattice polarization and a
decrease of the noncollinearity angle θ from about 180◦ to
about 90◦. The sharp peaks of the dielectric permittivity and
jumps of the order parameters η f ± at the transition at the
line I, observed at fields below Ebc1 (Fig. 12), transform into
inflections in the temperature curves of η f − and θ and into
the rounded peak at the line VII. The closer is the field to the
bicritical end point BCE2, the sharper and higher this rounded
peak becomes.

In a narrow field range just below Ebc2, the system can
cross the line II (see Fig. 14), where it undergoes the
first-order transition from the AFE* to NC90 phase with
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FIG. 12. Same as in Fig. 11 at E1 = 100 kV/cm.
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FIG. 13. Same as in Fig. 11 at E1 = 200 kV/cm.

decreasing temperature. The transition is accompanied by a
δ-like peak of the permittivity. Also the noncollinearity angle
θ jumps from 180◦ to 90◦, and η2− abruptly changes its sign.
It means that at low temperatures configuration 2 becomes
the ground-state one in the minus sublattice, and the NC90(2)
version of the noncollinear phase is realized above line II.

The strains u1 and u3 do not exhibit any anomaly at cross-
ing line II at low temperatures. This follows from Eqs. (25),
as the fitting parameters ψ ′

i were arbitrarily set equal to ψi.
As one can see, the jumps of the strains at the transition,
when only the sign of one order parameter, in this case η2−,
is changed, are governed by the magnitudes of the differ-
ences (ψi − ψ ′

i ). Experimental measurements of the lattice
constants behavior at the field-induced transition at line II
would provide the data necessary to determine the values
of ψ ′

i .
At higher temperatures, the system goes through the

crossover region NC135*, where the permittivity has a

FIG. 14. Same as in Fig. 11 at E1 = 216 kV/cm.
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FIG. 15. Same as in Fig. 11 at E1 = 217.7 kV/cm.

rounded high peak at line VII and a kink at a higher temper-
ature, and then undergoes the second-order phase transition
at line IV with the downward jump of the permittivity. A
minor rotation of the plus sublattice polarization is observed
at temperatures just below the transition, in the NC22* region,
and above it, in the FE phase.

The line II is weakly nonmonotonic. Above Ebc2, there
exists a very narrow range of the field E1, where at increasing
temperature the system can exhibit a reentrant behavior from
the NC90(2) to AFE* and back to the NC90(2) phase at
low temperatures. This reentrant behavior, as illustrated in
Fig. 15, results in two jumps of order parameter η2− and of
angle θ , δ-like peaks of the dielectric permittivity, and barely
visible discontinuities of the strain u3. At temperatures above
these transitions, the permittivity behavior is the same as at
lower fields (see Fig. 14), only that the smeared maximum
corresponds to the line VIII now, where the system enters the
crossover region NC135* from the NC90(2) phase.

FIG. 16. Same as in Fig. 11 at E1 = 220 kV/cm.
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FIG. 17. Same as in Fig. 11 at E1 = 500 kV/cm.

In the field range above line II and below about
250 kV/cm, the system behavior, illustrated in Fig. 16, is
the same as at lower fields, shown in Fig. 15, except for the
absence of two first-order transitions at line II.

As the field E1 is increased, the kink in the temperature
curve of the permittivity disappears, and only the rounded
peak at line VIII and the jump at the second-order phase
transition at line IV remain. The peak temperature increases
with the field, following line VIII, until at around 375 kV/cm
it merges with the second-order phase transition at line IV and
disappears (see Fig. 10). Above that and up to the field of the
tricritical point Etcp, the temperature curves of the permittivity
exhibit only the anomaly at the line IV, as shown in Fig. 17.
The permittivity monotonically increases with temperature
below the transition and has a downward jump at the transi-
tion. The jump magnitude first decreases with increasing field,
but at about 850 kV/cm starts to increase again, until the finite
peak transforms into a δ-like one at the tricritical point TCP.
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FIG. 18. Same as in Fig. 11 at E1 = 1038 kV/cm.
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FIG. 19. Same as in Fig. 11 at E1 = 1045 kV/cm.

No additional smeared maximum in the temperature curves
of the permittivity is observed in the vicinity of the TCP
(Fig. 18). Such maxima, however, are expected to be detected
in the temperature curves of dP1/dT [33]. At the tricritical
point, line IV terminates, and at higher fields the phase transi-
tion, now at line III, is of the first order, as seen in Fig. 19.

The line III is nonmonotonic, just like line II. Therefore, at
higher fields the system exhibits a reentrant behavior between
the nearly fully ordered FE and NC90(2) phases, undergoing
two first-order phase transitions at line III, as shown in Fig. 20.
The permittivity has δ-like peaks at these transitions, and the
order parameter η1− drops from ≈1 to ≈ −1 and jumps back
to ≈1, at which the noncollinearity angle changes from zero
to 90◦ and back to zero. When increasing the field, these
transitions move closer and merge at about 1120 kV/cm.
Above that field, the system is in the FE phase at all
temperatures.

The general conclusions that can be drawn about the pre-
sented temperature dependences of the order parameters and
strains are the following:

(1) When crossing line II, the order parameter η2− of
the minus sublattice changes its sign, indicating flipping of
protons at f = 2, 4 bonds and the transition to the NC90(2)
phase (see Fig. 5). On the other hand, the order parameters
η f + of the plus sublattice never change their sign under the
positive electric field E1. A perceptible but still small rotation

FIG. 20. Same as in Fig. 11 at E1 = 1116 kV/cm.

of the plus sublattice polarization, described by the angle θ+,
is observed at high temperatures only, in the NC22* region
and in the FE phase.

(2) The strains u3 and u1 exhibit discernible discontinu-
ities at those phase transitions, when the absolute values of the
order parameters η f ± are changed significantly. At the transi-
tions, when only a sign of η f − is changed, these strains remain
unaffected. The strain u2, describing the crystal deformation
in the direction perpendicular to the polarization sheets, was
equally found to be unaffected by the field E1. These results
disagree with the earlier calculations [14], predicting that the
jumps of all three lattice constants are to be observed at the
field-induced phase transitions associated with the sublattice
polarization rotation and that in the field E1 the largest discon-
tinuity is exhibited by the strain u1. The disagreement could be
possibly removed by choosing different values for the param-
eters ψi and ψ ′

i . Experimental data for the lattice constants
behavior at the field-induced transition at line II would also
help to determine the values of the fitting parameters ψ ′

i .
(3) It should be remembered that the graphs in the Ap-

pendix illustrate the types of the system temperature behavior,
obtained for the adopted set of the model parameters. If the
values of the parameters are changed, the presented curves
may change quantitatively, or become irrelevant, or even en-
tirely different types of them may emerge.

[1] D. Semmingsen, Z. Tun, R. J. Nelmes, R. K. McMullan,
and T. F. Koetzle, On the temperature dependence of the
hydrogen bond order in squaric acid: Neutron diffraction stud-
ies at four different temperatures, Z. Kristallogr. 210, 934
(1995).

[2] D. Semmingsen, F. J. Hollander, and T. F. Koetzle, A neutron
diffraction study of squaric acid (3,4-dihydroxy-3-cyclobutene-
1,2-dione), J. Chem. Phys. 66, 4405 (1977).

[3] F. J. Hollander, D. Semmingsen, and T. F. Koetzle, The
molecular and crystal structure of squaric acid (3,4-dihydroxy-

3-cyclobutene-1,2-dione) at 121◦: A neutron diffraction study,
J. Chem. Phys. 67, 4825 (1977).

[4] Y. Moritomo, Y. Tokura, H. Takahashi, and N. Mōri,
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