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Quantum gates for Majoranas zero modes in topological superconductors
in one-dimensional geometry
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We propose and analyze a physical system capable of performing topological quantum computation with
Majorana zero modes (MZMs) in a one-dimensional topological superconductor (1DTS). One of the leading
methods to realize quantum gates in a 1DTS is to use T junctions, which allows one to maneuver MZMs in
such a manner as to achieve braiding. In this paper, we propose a scheme for implementing quantum logical
gates in a purely one-dimensional geometry without T junctions, instead replacing it with an auxiliary qubit.
This has the additional benefit of introducing a non-Clifford gate, corresponding to one- and two-logical-qubit Z
rotations. We first design a topologically protected logical Z gate based entirely on local interactions within
the 1DTS. Using an auxiliary qubit coupled to the topological superconductors, we extend the Z gate to
non-Clifford single- and multiqubit arbitrary rotations with partial topological protection. Finally, to perform
universal quantum computing, we introduce a scheme for performing arbitrary unitary rotations, albeit without
topological protection. We develop a formalism based on unitary braids which creates transitions between
different topological phases of the 1DTS system. The unitary formalism can be simply converted to an equivalent
adiabatic scheme, which we numerically simulate, and we show that high-fidelity operations should be possible
with reasonable parameters.
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I. INTRODUCTION

Topological states of matter are an attractive medium
for achieving a fault-tolerant model of quantum computa-
tion, based on the topological properties of anyons [1–7].
This paradigm of quantum computing is a natural form of
implementing quantum error correction [2,7], making the
system—as it scales up—resistant to small perturbations and
errors. The interchange of anyons is commonly referred as
braiding [6,8–12], and it remains immune to errors as long
as the topology of the braiding path is not changed. If the
particles that are being interchanged are non-Abelian anyons,
such as Majorana zero modes (MZMs), then their interchange
can be used for performing quantum computation. Numerous
proposals for topological quantum computing using Abelian
anyons also exist, based on methods such as introducing dis-
locations in lattices [13]. One of the sources of error protection
is the energy gap between the subspaces for the logical states
and the error states. In this sense, the topological description
of quantum information becomes a particular way of storing
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and manipulating quantum information in a fault-tolerant way
[14–22].

Numerous platforms for observing and manipulating
anyons with non-Abelian statistics have been proposed. Many
possible implementations are based upon fractional quantum
Hall effect (FQHE) systems which have already been exper-
imentally observed [23–27], although the direct observation
of anyons remains elusive. Moreover, FQHE in alternative
materials such as quantum magnets potentially opens the
possibility of topological quantum computing at relatively
high temperatures [28–30]. Experimental proposals for qubits
based on FQHE have also been suggested [31] as well as
theoretical studies for achieving FQHE without superconduc-
tivity [32]. Another promising candidate for a physical system
that could implement topological quantum computation is
one-dimensional topological superconductors (1DTSs) such
as nanowire semiconductor-superconductor heterostructures
[33–36] or carbon nanotubes [37–39]. Recently, experi-
mental evidence for zero-energy delocalized states on the
wire ends was reported [40]. A detailed description of
semiconductor-superconductor heterostructures is provided in
Refs. [12,41–43].

One of the most important considerations in designing
a quantum computer is having a robust way to perform
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FIG. 1. An example of a controllable one-dimensional topolog-
ical superconductor (1DTS) system that is considered in this paper.
A superconducting strip is placed on a semiconductor wire, which
has regions in the topological phase (T phase) and a normal phase
(N phase). Keyboard gates locally adjust the chemical potential,
which changes the phase of the fermions in the superconducting strip.
Junction gates are used to break the strips into regions, which at the
end points have Majorana zero modes (MZMs), encoding the logical
states. A coupler, which consists of a qubit coupled to two local sites,
allows for braiding operations to be performed (see Sec. IV). Oper-
ations to control the local site are present to perform universal qubit
gates (see Sec. V). See Refs. [42] for an experimentally implemented
scheme with a similar configuration.

quantum gates. In the case of topological quantum computing,
this means designing a method of performing braiding of
one or more anyons storing the quantum information. One
of the best-known methods that has been proposed based
on the T-junction geometry [44] consists of assembling a
system of three 1DTSs with controllable coupling forming
the characteristic shape of the letter “T.” Such a system has
been shown to be able to swap any two MZMs by a suit-
able sequence of operations and is able to maintain their
delocalized nature. Numerous ways of connecting wires into
wire networks to achieve such effects have been proposed
[45,46]. A disadvantage of such approaches is the difficulty
of growing heterostructures which implement such networks.
Furthermore, the anyons in 1DTSs are of the Ising anyon type,
where only Clifford operations are possible using braiding. In
the case of T-junction-based braiding, a method of replacing it
with an auxiliary qubit was proposed in Ref. [47]. The auxil-
iary qubit, referred to as the coupler, is capable of performing
a non-Clifford arbitrary single-qubit Z rotation in the logical
space. The coupling-induced quantum logical operation was
only provided for a single strip of 1DTS, interacting with the
MZMs on the edges. This corresponds to a logical single-qubit
gate encoded by the MZMs, and no two-logical-qubit braiding
was provided. Additionally, the single-qubit gate only per-
formed a rotation about the Z axis, and no other types of gates
were given.

In this paper, we propose and analyze protocols for achiev-
ing braiding gates for MZMs in a purely one-dimensional
topology, extending the protocol of Ref. [47] to multiple log-
ical qubits, allowing for an entangling gate. In Fig. 1, we
provide an overall sketch of the one-dimensional quantum
system considered in this paper. In our approach, the logical
qubits are represented by separated regions of the 1DTS in
the topological phases. Braiding operations are achieved by
moving the topological regimes in the chain, with the aid of an

auxiliary qubit (the coupler), which allows for control of the
logical states. Control gates such as the keyboard and junction
gates allow for moving and manipulating the topological re-
gions within the 1DTS, which results in logical operations. We
introduce protocols allowing one to perform a topologically
protected logical Z gate and partially protected non-Clifford
arbitrary unitary rotations around the Z axis for any number
of topological qubits. We also provide another nontopological
braiding scheme for logical space rotation around a different
axis making the braiding protocol capable of performing a
universal quantum computation. One of the features of our
work is that we introduce a unitary formalism describing the
phase transitions between the topologically trivial and topo-
logical regimes. Understanding the unitary description of the
phase transition can potentially help design new logical gates,
and that is also how we used it in this paper.

II. MAJORANAS IN ONE-DIMENSIONAL TOPOLOGICAL
SUPERCONDUCTORS

Before introducing our protocols for braiding MZMs in
a 1DTS, we describe the basics of the physical system. We
start by reviewing fermion and Majorana operators and their
properties and introducing the Kitaev chain Hamiltonian mod-
eling the 1DTS system. We will distinguish its phases and
the transitions between them and describe them using the uni-
tary conversion operator. Finally, we will explain how unitary
braiding is performed and explain how the logical space is
defined in terms of the topological states that represent the
quantum information.

A. Majorana and quasifermion operators

We start by describing the operators that describe the
particles that comprise the system. Our system is a chain
of mobile fermions that interact with a Bardeen-Cooper-
Schrieffer (BCS) pairing interaction. The bare underlying
fermions have fermionic creation and annihilation operators
a†

n and an that satisfy the following properties:

{an, am} = 0, (1)

{an, a†
m} = δnm. (2)

Fermion operators a†
n and an can be equally written in terms

of the Majorana operators γ(n,l ) and γ(n,r) as

a†
n = 1

2 (γ(n,l ) − iγ(n,r) ), (3)

an = 1
2 (γ(n,l ) + iγ(n,r) ). (4)

Using simple algebra, we can demonstrate that we can also
easily transform them the other way around as follows:

γ(n,l ) = an + a†
n, (5)

γ(n,r) = −ian + ia†
n. (6)

Each Majorana operator is described by an index (n, σ ) com-
posed of two values: n, the one-dimensional (1D) lattice site
index, and σ , the Majorana species where σ ∈ {l, r}. The l and
r labels denote the “left” and “right” Majorana species. Thus
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FIG. 2. (a) The normal phase N ; (b) the topological phase T .

each fermion can be represented by a box with two compart-
ments, as shown in Fig. 2(a). A Majorana can occupy or not
occupy each box. While the l and r Majoranas correspond to
the left and right boxes, we emphasize that these have nothing
to do with spatial degrees of freedom (much as spin “up” and
“down” are not spatial). Operators for MZMs also satisfy

γk = γ
†
k , (7)

{γ(n,σ ), γ(n′,σ ′ )} = 2δnn′δσσ ′ , (8)

where (7) can be interpreted as a Majorana fermion being
its own antiparticle. Since Majoranas are fermions, any two
distinct MZMs must anticommute (8).

The transformation (3) and (4) can be considered merely
a change of variables between a bare fermion and a pair of
underlying MZMs. A more nontrivial transformation results
by taking two MZMs from non-neighboring pairs α = (n, σ ),
β = (m, ν) and constructing a new kind of fermion f †

αβ and
fαβ , corresponding to

f †
αβ = 1

2 (γα − iγβ ), (9)

fαβ = 1
2 (γα + iγβ ). (10)

From now on we will refer to the delocalized fermions
as “quasifermions.” As for the localized fermions, we will
simply refer to them as regular fermions. When we write
“fermions,” we mean a general particle which satisfies the
fermionic properties without specifying whether it is local-
ized or not. We can formally state it by defining pairs αβ =
(n, σ )(m, ν) and α′β ′ = (n′, σ ′)(m′, ν ′), and then the anti-
commutation relations can be evaluated as

{ fαβ, fα′β ′ } = 1
2δαα′ − 1

2δββ ′ + i 1
2δαβ ′ + i 1

2δβα′ (11)

{ fαβ, f †
α′β ′ } = 1

2δαα′ + 1
2δββ ′ − i 1

2δαβ ′ + i 1
2δβα′ . (12)

Here, we introduce an assumption that any two valid
quasifermions fαβ and fα′β ′ have no Majoranas in com-
mon, i.e., {α, β} ∩ {α′, β ′} = ∅. Under this nonoverlapping
assumption, commutation relations (11) and (12) reduce to

{ fαβ, fα′β ′ } = 0, (13)

{ fαβ, f †
α′β ′ } = δαα′δββ ′ , (14)

making the quasifermions equivalent to regular fermions. Us-
ing (9) and (10), we can derive the phase factor exchange of

Majoranas in such quasifermions

fαβ = −i f †
βα. (15)

B. Nanowire Hamiltonian

Up to this point we have not been specific about which
physical system is used to realize the 1DTS. Some exam-
ples of systems that can realize a 1DTS include nanowire
semiconductor-superconductor heterostructures [33–36] and
carbon nanotubes [37–39]. For the sake of concreteness we
henceforth consider semiconductor nanowires, and describe
physical quantities in reference to this system. We emphasize
that this is for readability and the formalism should be equally
applicable to any 1DTS system.

We model the semiconductor nanowire using the Kitaev
chain [8], which has the following form:

H = −
M∑

j=1

μ ja
†
j a j −

M−1∑
j=1

t j (a
†
j+1a j + a†

j a j+1)

+
M−1∑
j=1

� j (a ja j+1 + a†
j+1a†

j ). (16)

The above Hamiltonian possesses different phases depending
on the choice of parameters: μ j is the on-site energy on site
j, t j is the coefficient of the electron hopping terms between
neighboring lattice sites j and j + 1, and � j is the BCS
coupling describing Cooper pairing between the sites j and
j + 1.

For our purposes we will only consider the regime where
� j = −t j and reduce the number of parameters leading to a
slightly simpler form [47]

H = −
M∑

j=1

μ ja
†
j a j

−
M−1∑
j=1

t j (a
†
j+1a j + a†

j a j+1 + a ja j+1 + a†
j+1a†

j ). (17)

We can use the variable change described by (3) and (4)
to rewrite the Hamiltonian (17) in terms of γ(n,l ) and γ(n,r)

operators

H = −1

2

M∑
j=1

μ j (1 + iγ( j,l )γ( j,r) ) − i
M−1∑
j=1

t jγ( j,r)γ( j+1,l ).

(18)

We assume that the parameters μ j and t j from (17) and (18)
can be individually tuned. Specifically, the chemical potential
μ j is controlled by the keyboard gates, and the couplings t j

can be broken in particular places by the junction gates in
Fig. 1.

C. Phases of the nanowire system

There are two important physical phases of the Hamilto-
nian (17): a topologically trivial regime, which we will also
refer to as the normal phase (or N phase), and the topological
regime (or T phase). The T phase is present under condition
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μ < 2|t j |, and otherwise the system enters the N phase [8]. To
better illustrate the difference between these phases, we will
focus on the limiting cases of those parameters where it is
possible to write a simple expression for the eigenspectrum of
the Hamiltonian (17). The limiting cases that we consider are
μ j > 0, t j = 0 for the N phase and μ j = 0, t j > 0 for the T
phase. While we consider these limiting cases for simplicity
in this section, the operations that we consider in this paper
are effective as long as the system remains in the required
physical phase.

1. Normal phase

For the parameters μ j > 0, t j = 0, the nanowire reaches
the limiting case of the N phase characterized by the on-site
pairing between the Majoranas, meaning that the paired Majo-
rana fermions lie on the lattice sites. Such pairing is the default
pairing most commonly occurring in nonsuperconducting
systems. A Hamiltonian term representing the jth on-site
pairing is

H (N )
j = 1 + iγ( j,l )γ( j,r). (19)

A complete N-phase Hamiltonian can be decomposed into
a sum of terms of the form (23) parametrized by their corre-
sponding on-site energy μ j values

H (N ) = −
M∑

j=1

μ ja
†
j a j (20)

= −
M∑

j=1

μ j f †
( j,l )( j,r) f( j,l )( j,r) (21)

= −1

2

M∑
j=1

μ j (1 + iγ( j,l )γ( j,r) ) (22)

= −
M∑

j=1

μ jH
(N )
j . (23)

Let us label the eigenstates of (22) as all the possible place-
ments of fermions in the nanowire. We denote |0〉N to be the
N-phase vacuum state defined as the state such that an |0〉N =
0. An arbitrary eigenstate can be written as

|l1 · · · lM−1lM〉N =
∏

n

( f †
(n,l )(n,r) )

ln |0〉N (24)

=
∏

n

(a†
n)ln |0〉N . (25)

Here, the presence or absence of a fermion at a particular site
n is indicated by the value ln ∈ {0, 1}.

The energy spectrum of H (N ) is

EN = 〈l1 · · · lM−1lM |H (N )|l1 · · · lM−1lM〉N

=
M∑

j=1

μ j l j, (26)

which falls in the range 0 � EN � Mμ and is characterized by
the number of fermions in the nanowire. The types of fermions
that build this kind of spectrum have a Majorana pairing as

in Fig. 2(a). Under this regime the paired Majorana fermions
correspond to regular fermions.

2. Topological phase

The T phase is a phase in which the quasifermions under-
lying Majorana pairs originate from different sites. The jth
intersite pairing term is defined as

H (T )
j = iγ( j,r)γ( j+1,l ), (27)

and in the limiting case μ j = 0, t j > 0, the Hamiltonian (18)
can be decomposed into a sum of terms (30) parametrized by
their corresponding electron hopping t j values

H (T ) = −2
M−1∑
j=1

t j f †
( j,r)( j+1,l ) f( j,r)( j+1,l ) (28)

= i
M−1∑
j=1

t jγ( j,r)γ( j+1,l ) (29)

=
M−1∑
j=1

t jH
(T )
j . (30)

The above Hamiltonian takes the form of a sum of terms
representing a fermionic number operator capable of detecting
a particular pairing of Majoranas by taking the expectation
value of

Nαβ = f †
αβ fαβ. (31)

The T -phase Hamiltonian has an off-site pairing between sites
and leaves two remaining Majoranas paired between the first
and last site on the outer edges as shown in Fig. 2(b). To
indicate the topological pairing of the Majoranas, we use a
T superscript on the Hamiltonian. The form (28) is obtained
from (29) by applying the inverse transformation (9) and (10).
The diagonal form (28) is more suitable for studying the
energy spectrum of the T phase. The T phase eigenstates are
built from the T phase vacuum state

f(n,r)(n+1,l ) |0〉T = 0, (32)

f(1,l )(M,r) |0〉T = 0 (33)

and are defined as

|l1 · · · lM−1lM〉T =( f †
(1,l )(M,r) )

lM
∏

1� j<M

( f †
( j,r)( j+1,l ) )

l j |0〉T .

(34)

The energy spectrum of the T -phase Hamiltonian is

ET = 〈l1 · · · lM−1lM |H (T )|l1 · · · lM−1lM〉T

= −2
M−1∑
j=1

t j l j . (35)

The T -phase states are characterized by a quasifermion
pairing that is highly delocalized between the farthermost
lattice sites. The occupation of this highly delocalized
quasifermion is by convention represented by the last in-
dex lM . To visualize this, we illustrate the pairing of
the quasifermions in Fig. 2(b). The highly delocalized
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FIG. 3. Visual notation in which rows are topological quan-
tum states characterized by a particular pairing and transitions
between rows are braids. In this example we can see the effect of
U(1,l )(2,l ) |001〉T = |0〉N ⊗ |01〉T .

quasifermion is composed of the zero-energy Majoranas
as can be seen from (35), and these highly delocalized
quasifermions are henceforth called the Majorana zero modes
(MZMs). The MZMs do not contribute to the energy level
of the nanowire system and can be thought of as having
a zero coefficient on the delocalized pairing terms in (35).
The remaining indices represent the off-site pairing as seen
in Fig. 2(b). Topological states and normal phase states are
eigenstates of different Hamiltonians, and they are inherently
not compatible. Thus the operator a†

n cannot be used to create
eigenstates of the Hamiltonian H (N ) by application on |0〉T ,
for example.

D. Braiding operators

Changing the arrangements of Majoranas is achieved using
a braiding operator [48,49]

Uαβ = exp
π

4
γαγβ

= 1√
2

(1 + γαγβ ). (36)

The above operator has the effect of changing a Majorana
fermion into another Majorana fermion

UαβγαU †
αβ = −γβ, (37)

UαβγβU †
αβ = γα. (38)

An example of such interchange between the two Majorana
modes γ(2,r) and γ(3,r) is shown in Fig. 3. The swapping effect
of braiding can be summarized by showing how the braiding
operator acts on the annihilation operator of a quasifermion

Uαβ fαβU †
αβ = i fβα, (39)

Uβα f †
αβU †

βα = −i f †
βα. (40)

Finding a particular sequence of swaps can lead to changing
one topological configuration into another. This is how quan-
tum information is processed using MZMs.

FIG. 4. A step-by-step procedure of the converting T -phase state
into the N-phase state by conversion operator Uc.

E. Conversion of ground states by braiding

One way to change the state between the two phases is to
perform an adiabatic variation of the parameters of the Hamil-
tonian, such that the phase transition μ j = 2t j is crossed. An
alternative way is to directly apply braiding operations to the
ground state to convert the normal state into a topological state
and vice versa. Being able to convert N phase into T phase is
important because those phases are inherently incompatible
in the way that a†

j cannot act on |0 · · · 0〉T and f †
nm cannot act

on |0 · · · 0〉N to produce an eigenstate of the corresponding
Hamiltonians.

A braiding sequence turning the N phase into the T phase
can be achieved by applying the conversion operator

Uc = U(1,l )(2,l )U(2,l )(3,l ) · · ·U(M−1,l )(M,l )

=
M−1∏
j=1

U( j,l )( j+1,l ). (41)

A visualization of how a sequence of local braids equivalent
to Uc can turn the T phase into the N phase and vice versa
is provided in Fig. 4. The product notation in (41) is ambigu-
ous, so we assume the convention that the product should be
always expanded from left to right, in order from the lower
index to the upper index of the product sign. Such a product
of braiding operations is a sequence of braids which can be
visually represented by a sequence of swapping of paired
lattice sites (Fig. 3). First note that Uc only involves braiding
of l-type Majoranas and hence the r Majoranas are unaffected

Ucγ(n,r)U
†
c = γ(n,r). (42)

Now with the exception of the γL,l Majorana, the effect of Uc

is to shift to one site to the right of the existing site

Ucγ(n,l )U
†
c = −γ(n+1,l ). (43)

The exception to this is the l Majorana on the rightmost site,
which gets transported all the way to the leftmost site

Ucγ(M,l )U
†
c = γ(1,l ). (44)
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Using these relations, one may deduce the effect of Uc on the
fermions as

UcanU
†
c =

{− f(n,l )(n+1,l ) if n < M
f(1,l )(M,r) otherwise. (45)

Therefore Uc acting on a normal state induces a phase transi-
tion delocalizing the rightmost fermion placed at index n = M
into a quasifermion delocalized between the first and last sites
of the chain

UcH (N )U †
c = Uc

(
−

M∑
j=1

μ ja
†
j a j

)
U †

c (46)

= −
M∑

j=1

μ jUca†
jU

†
c Uca jU

†
c (47)

= −μM f †
(1,l )(M,r) f(1,l )(M,r)

−
M−1∑
j=1

μ j f †
( j,l )( j+1,l ) f( j,l )( j+1,l ). (48)

Expression (47) is obtained by injecting the identity I = U †
c Uc

in the middle. Next, we apply (45) to convert fermions into
quasifermions. We recognize the resulting term (48) as equiv-
alent to the T -phase Hamiltonian (29) up to transformation
t j → μ j . Therefore (48) shares the same eigenstates as the
T -phase Hamiltonian

UcH (N )U †
c |l1 · · · lM〉T = Ec

N |l1 · · · lM〉T , (49)

where

Ec
N = −μMlM −

M−1∑
j=1

μ j l j . (50)

The rightmost site energy μM is the MZM’s energy, which
in the topological Hamiltonian H (T ) is zero. Our convention
is that it is the rightmost site that is being delocalized into a
quasifermion representing MZMs.

Ground states of the N phase and T phase are ground
states of different Hamiltonians and thus are not compatible,
also making their operators incompatible, in the general case.
However, since we have the Uc conversion operator, we can
use it to cause a phase transition between those phases

Uc |0〉N ∝ |0〉T , (51)

which makes it possible to convert delocalized fermions into
regular fermions, process them, and delocalize again. The
above expression is equal up to global phase. We will use this
idea later to develop quantum gates.

F. Logical states

The logical states are defined by the pairing of MZMs on
the domain edges

|0L〉 = |0〉T , (52)

|1L〉 = f †
(1,l )(M,r) |0〉T . (53)

As the logic states are eigenstates of (28)–(30), from now on
we assume that the system is in the T phase. If more than a

single logical qubit is involved in the computation, these are
stored on separate nanowires. An example of a topological
quantum gate on such a qubit is the logical

√
Z-gate operation

which is achieved by performing a braid of the MZMs on the
same chain

U(1,l )(M,r) =
√

Z (54)

which follows from

U(1,l )(M,r) f(1,l )(M,r)U
†
(1,l )(M,r) = i f(1,l )(M,r), (55)

U(1,l )(M,r) f †
(1,l )(M,r)U

†
(1,l )(M,r) = −i f †

(1,l )(M,r). (56)

One may easily verify that the appropriate phase factor corre-
sponding to a Z operation is realized for the logical states |0L〉
and |1L〉.

Suppose that the only operations that can be performed are
to exchange the MZMs on the edge of each domain, using the
braiding operators (36). In this case, if we assume two chains,
there are only six possible gates that can be implemented [50].
This follows from the fact that for two domains there are
four edges, and it leads to six possible pairings and thus six
possible braids. In terms of the logical space operations those
six gates can be summarized as follows [50]:

Ul1r1 = √
Z1, (57)

Ul1l2 = √
Y1X2, (58)

Ul1r2 = √
Y1Y2, (59)

Ur1l2 = √
X1X2, (60)

Ur1r2 = √
X1Y2, (61)

Ul2r2 = √
Z2, (62)

where we indicate the left edge of the first topological qubit to
be γl1 and its right edge to be γr1 and the edges of the second
topological qubit are γl2 and γr2 .

III. LOGICAL Z OPERATION

We now examine the protocol of Ref. [47] and show how
it is possible to produce an effective Z quantum gate with
the addition of an auxiliary qubit. This allows for a way of
producing braiding gates without fabricating T junctions. In
Ref. [47] an adiabatic sequence was used, but we shall red-
erive the protocol in a unitary language. This not only allows
for a clearer description of the scheme but also allows us to
generalize the scheme to multiple logical qubit gates.

A. Local double-braid sequence

We first describe a scheme where the logical Z operation
is performed by a sequence of local braids that are applied
in sequence through the lattice. While this is obviously more
complex than directly performing a braid between only the
MZMs such as in (57)–(62), this will elucidate an equivalent
scheme shown in the next section, where an auxiliary spin can
achieve the same effect. This will be the basis for the full Z-
rotation scheme described later.
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Equations (57)–(62) showed examples of logical opera-
tions that can be performed by directly performing braiding
operations on the MZMs. Since the MZMs are on either end
of the topological domains, these braiding operations require
nonlocal operations. Such an operation is not simple to per-
form in a purely one-dimensional geometry as we consider in
Fig. 1. The nonlocal nature of the operation is part of why
the encoded information is resilient under decoherence, since
such operations do not happen easily naturally.

Here, we introduce a sequence of completely local braiding
operations which produces a logical Z operation. The braiding
sequence is applied to the entire chain; hence it is still consis-
tent with the notion that a topological operation is required to
perform a logical operation. However, each operation is a local
operation and occurs in a specified ordering, which makes it
more accessible to a realistic gate operation.

Let us consider the operation

UZ =
M∏

j=1

U 2
( j,l )( j,r). (63)

Writing UZ in terms of Majorana operators, we have

UZ =
M∏

j=1

γ( j,l )γ( j,r). (64)

The logical space is defined in terms of MZMs; isolating them
from remaining Majoranas, we have

UZ = γ(1,l )

(
M−1∏
j=2

γ( j,r)γ( j+1,l )

)
γ(M,r) (65)

= γ(1,l )γ(M,r)

M−1∏
j=2

γ( j,r)γ( j+1,l ). (66)

The above can be rewritten using quasifermion number oper-
ators

UZ =i(1 − 2N(1,l )(M,r) )
M−1∏
j=2

i(1 − 2N( j,r)( j+1,l ) ). (67)

Note that each of the terms of this product gives a factor of ±1
for a quasifermion number state. Applying (67) to an arbitrary
topological state of the form (34) gives

UZ |l1 · · · lM−1lM〉T (68)

= iM−1(−1)lM
M−1∏
j=2

(−1)l j |l1 · · · lM−1lM〉T . (69)

The logical space as defined in (52) and (53) is characterized
by lk = 0 for 2 � k � M − 1. This is a special case of (69)
which gives

UZ |0 · · · 0lM〉T =iM−1(−1)lM |0 · · · 0lM〉T . (70)

Logical space states differ only by the configuration of MZMs,
i.e., the value of lM . It only affects the sign of the overall

expression pulling out the eigenstates equivalent to Z .

UZ |0L〉 = iM−1 |0L〉 , (71)

UZ |1L〉 = −iM−1 |1L〉 . (72)

The sequence of braids (63) is equivalent to the protocol
in Ref. [47] because every time the topological domain moves
through the coupler a bit flip operation is applied to the site
which is adjacent to the coupler after the move. Generalizing
this operation and transforming back from the spin- 1

2 lan-
guage to the fermion language leads to the U 2

( j,l )( j,r) operators
applied sequentially.

The UZ gate implemented in this way is topologically
protected because the overall distance M between the MZMs
is not affected throughout the protocol. This ensures that the
bulk energy gap remains open. The entire protocol consists
only of local interactions within the nanowire ensuring that
the energy gap does not close. In Sec. VI we explicitly demon-
strate this for our protocol. Another possible way of seeing
this is that during every single step of UZ the system remains
an eigenstate of the T -phase Hamiltonian, Eq. (29).

We note that generally braids have an intrinsic notion of
chirality, i.e., whether the braid is performed clockwise or
counterclockwise. As can be seen from (36), reversing a braid
corresponds to U †

αβ , which is not the same operation as Uαβ .
The final effect of the UZ gate is in fact to produce a double
braid of the MZMs, since Z1 = U 2

l1r1
according to (57). The

double braid is in fact a specific type of braid where there is
no chirality, since U 2

l1r1
= (U †

l1r1
)2 up to global phases. The fact

that the effective gate is nonchiral is as expected since our ge-
ometry is purely one dimensional [45]. While this appears to
be a limitation of being in a purely one-dimensional geometry,
we will show in the following sections that with the addition
of an additional qubit, it is possible to produce more general
quantum gates using the UZ gate.

B. Effect of UZ on the Hamiltonian

The previous section showed how to perform a logical Z
operation using a sequence of local braids. Our final aim for
this section is to perform this gate entirely using adiabatic
operations. To this end, we deduce in this section the effect
of the local braids on the Hamiltonian. As a starting point
let us use the Hamiltonian (29) and transform it under UZ ,
according to UZ HU †

Z . To evaluate this, first let us find the
effect of U 2

( j,l )( j,r) = γ( j,l )γ( j,r) on one of the terms within
the T -phase Hamiltonian (27). Let us start with the effect of
the double-braid operator on the Majoranas of both species l
and r

U 2
( j,l )( j,r)γ( j,l )

(
U 2

( j,l )( j,r)

)† = −γ( j,l ), (73)

U 2
( j,l )( j,r)γ( j,r)

(
U 2

( j,l )( j,r)

)† = −γ( j,r). (74)

We see that the double braid preserves the species of the
Majorana and only puts a minus sign on it. Then this naturally
leads to the result that

U 2
( j,l )( j,r)H

(T )
j

(
U 2

( j,l )( j,r)

)† = −H (T )
j (75)

since it contains only one Majorana on index j.
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(a) (b)

FIG. 5. Performing a double-braid operation (63) by (a) reversing the sign of the coupling sequentially in a chain and (b) moving a domain
through a region in which the coupling parameter is reversed. The process of moving is controlled by adjusting the potential μ j on particular
sites indicated using circles. The level of the potential is indicated by vertical position of the curved line. The topological domains are indicated
by the shaded regions and are spread over four sites indicating their current positions.

Applying the UZ operator to H (T )
j leaves all the terms

invariant as it interchanges the sign of Hj twice, once each
for the two adjacent sites on each term. We thus have

UZ H (T )
j U †

Z = H (T )
j , (76)

and hence it follows that

UZH (T )U †
Z = H (T ); (77)

thus the T -phase Hamiltonian (29) remains invariant under
UZ . When applied term by term, each double-braid term
U 2

( j,l )( j,r) flips the sign of the t j parameter. This suggests a way
of applying UZ adiabatically by changing the sign of t j twice
consecutively throughout the chain. This is visually described
in Fig. 5(a).

C. Equivalent adiabatic scheme

We now describe an equivalent adiabatic sequence for ap-
plying the UZ operator. The basic idea is shown in Fig. 5. Since
the effect of the sequence of U 2

( j,l )( j,r) is equivalent to locally
changing the sign of the t j (and � j , as we assumed earlier
that � j = t j), we consider a situation where there is a region
of +t j , adjacent to the chain. Then the chain is moved through
the region of +t j . Moving the chain through this +t j region
is equivalent to applying the UZ sequence. We also note that
the +t j has a reversed sign which by default was assumed to
be −t j .

In order to move the chain, we must first describe some
elementary moves which can be combined to perform the
whole sequence. Specifically, we show the steps required for

(i) moving a topological domain and (ii) performing a double
braid while moving.

1. Moving topological domains

In the sequence shown in Fig. 5(a), the chain in the active
topological region is moved through a region of +t j , which
allows one to apply the UZ operation. In order to move the
chain by one lattice site to the right, we need to create an extra
site on the right side of the chain that is in the topological
configuration and remove one site on the left side and convert
it to a normal phase region. We thus require operations for
converting regions of the chain from a normal phase configu-
ration to a topological phase configuration and vice versa. The
conversion operator Uc (41) we introduced earlier performs a
phase transition of an entire chain between N phase and T
phase. By applying an equivalent approach of local braiding,
we can derive operators which create a local phase transition
in the vicinity of the ends of the topological domain. For that
we introduce

U (e)
j = U( j+1,r)( j,r), (78)

U (r)
j = U( j,l )( j+1,l ), (79)

U (m)
jk = U (r)

j U (e)
k , (80)

where U (e)
j is the extension operator, which extends the do-

main by a single site j by making it join the T phase on its
left. The operator U (r)

j is the retraction operator which retracts
the domain making the site j leave the T phase and become
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FIG. 6. A process of moving the domain by a single site to the
right. The extension operator U (e)

j extends the domain by one site,

and then the retraction operator U (r)
j−1 retracts the domain by one

site from left to right. The overall effect is the moving operator
U (m)

( j−1)( j) = U (r)
j−1U

(e)
j , which moves the entire domain by one site.

an N-phase site. The moving operator U (m)
j,k is the combination

of the above two causing the overall effect of moving the
domain of length k − j by one site to the right. This effect
is shown in Fig. 6. The corresponding adiabatic protocol can
be derived by studying the effect of those local phase transi-
tion braiding operators on the terms of the N-phase (23) and
T -phase Hamiltonians (30). We examine the relevant case of
those terms at the boundaries of the topological domain inside
of the nanowire

U (e)
k H (N )

k+1

(
U (e)

k

)† = H (T )
k , (81)

U (e)
k H (T )

k−1

(
U (e)

l

)† = H (T )
k−1, (82)

U (r)
j H (T )

j

(
U (r)

j

)† = H (N )
j , (83)

U (r)
j H (T )

j+1

(
U (r)

j

)† = H (T )
j+1, (84)

and we find how to manipulate the coefficients of (18) to
implement operator (80). From (81) we can deduce that to
extend the right boundary of the domain from site k to site
k + 1 according to (78), we need to adiabatically reduce the
local chemical potential μk+1 and increase tk . For retraction of
the domain from site j to site j + 1 we adiabatically reduce
the hopping t j and increase μ j , which achieves the equivalent
of the U (r)

j operator.
We now show a simple example of the moving operator

defined as above. Let us consider a nanowire of length M
encoding an arbitrary logical state

|ψ jk〉 = |0102 · · · 0 j−1〉N ⊗ (α |00 · · · 0〉T + β |0 · · · 01〉T )

⊗ |0k+10k+2 · · · 0M〉N , (85)

where |α|2 + |β|2 = 1. Here, there is a T phase connecting
sites j and k, and the remaining sites are in the N phase. We
assume k < M; then applying the U (m)

j operator moves the

domain by a single site

U (m)
j,k |ψ jk〉 = |ψ( j+1)(k+1)〉 . (86)

As described above, the same effect can be achieved by ma-
nipulating the coefficients of Hamiltonian (18), by decreasing
μk+1, t j and increasing μ j, tk . Hence applying U (m)

j consists
of changing the edges of the domain between topologically
trivial and T phase, and the overall effect of it is shifting the
domain to the right by one site. Applying it the other way
around, i.e., increasing μk+1, t j and decreasing μ j, tk , results
in shifting the domain to the left by one site.

2. Performing an on-site braid while moving

As we explained in the previous section, manipulating the
coefficients μ j and t j can be used to move the topological
domain inside of the nanowire. It has also been shown in
Sec. III B that changing the sign of t j terms is equivalent to
performing a double on-site braid. In this section we will
explain how such a double on-site braid can be performed
along the entire chain by moving it through a region that has
reversed signs of t j .

Let us consider a chain of total length 2M. The doubled
length is required to move the entire domain through the
region of +t j . The process of moving involves M steps; at
step k = 0 the first M sites are in the T phase and the last M
sites are in the N phase

H(step 0) =
M−1∑
j=1

t jH
(T )
j +

2M∑
j=M+1

μ jH
(N )
j . (87)

For steps 1 < k < M, the T phase is moved from the left to
the right. Note that at site k = M, the sign of t j is reversed
representing the special region, as shown in Fig. 5(b),

H(step k) =
k∑

j=1

μ jH
(N )
j +

M+k∑
j=k+1
j �=M

t jH
(T )
j

− tMH (T )
M +

2M∑
j=M+k

μ jH
(N )
j . (88)

At any step of this process, the sites between k and k + M
are in the T phase; from the perspective of the domain that is
being moved the process could be interpreted as a sequential
change of the sign of t j from right to left site by site as shown
in Fig. 5(a). The final form of the Hamiltonian after the entire
domain is moved through the region of +t j is

H(step M ) =
M∑

j=1

μ jH
(N )
j +

2M−1∑
j=M+1

t jH
(T )
j . (89)

This completes the adiabatic version of applying a UZ

gate, where double braids are performed on each site. One
might attempt to implement the UZ -gate operation using a
nanowire of length M instead of 2M and just reverse the sign
of t j sequentially site by site. This would be an equivalent
approach with the same effect using a shorter nanowire, but a
disadvantage is the requirement that the sign of t j would need
to be controlled on every site of the chain instead of just a
single site.
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FIG. 7. The Hamiltonian terms associated with the four-nanowire system, where each nanowire has a length of M sites. There are two
topological domains present in the system indicated by the shaded regions and stored on the two leftmost nanowires. The sites are represented
by circles. The vertical position of the curved line represents the level of μ j potential on each site. Between the regions we indicate breakable
couplings by the open or closed links, for s1 and s2, respectively.

IV. ARBITRARY Z ROTATION AND EXTENSION TO
MULTIPLE CHAINS

In the previous section we introduced a logical Z operation
that is performed by applying a sequence of local on-site
braids. We described the protocol in both the unitary and adi-
abatic framework by modifying the coefficients of the Kitaev
model Hamiltonian (18). In this section we extend this theory
to implement a non-Clifford Z rotation by an arbitrary angle
φ and extend it to act on multiple topological qubits.

A. The coupler spin

We demonstrated earlier that moving the domain through
regions of the same sign of t j does not affect the topological
state yet moving it through a region with reversed sign of t j

is equivalent to performing a UZ operation. In order to control
the sign of the special region, in Ref. [47] it was proposed
to introduce an extra degree of freedom called the coupler.
Assuming that the controlled region is coupling sites M and
M + 1 (in a system bigger than M), the coupling term takes
the following form:

Hc = −itMσ z
c γ(M,r)γ(M+1,l ). (90)

The term mentioned above corresponds to the central region
in Fig. 7 and the region labeled as the “coupler” in Fig. 1.
Potential candidates for the physical implementation of the
coupler qubit are either semiconductor quantum dots [51–53]
or superconducting qubits [47,54,55].

Given a topological state |ψ〉, we can control the UZ opera-
tion in the following way using the coupler degree of freedom.
Denoting the state of the coupler by |0〉c or |1〉c, moving the
state |0〉c ⊗ |ψ〉 does not affect the state because the sign of
the coupling term in (90) is unchanged. On the other hand,
moving the state |1〉c ⊗ |ψ〉 through the coupler region leads
to |1〉c ⊗ (−UZ ) |ψ〉 since the sign of the coupling region
(90) is reversed due to σ z

c |1〉c = − |1〉c. Since UZ is applied
only when the coupler is in the |1〉c state, this effectively
implements a controlled-Z operation, where the control qubit
is the coupler and the target qubit is encoded by the MZMs of
the chain. The UZ controlled by the coupler will be denoted as

U c
Z = |0〉〈0|c + UZ |1〉〈1|c. (91)

B. Arbitrary Z rotation using the coupler

So far we have introduced a controlled UZ gate that is able
to process topological qubits built out of topological domain

nanowires dependent on the state of the coupler. In addition to
being able to control the application of the UZ operation (91),
this in fact makes it possible to implement a non-Clifford ar-
bitrary Z-rotation gate according to the following expression:

UZ (φ) = eiσ x
c π/2U c

Z e−iσ y
c φ/2U c

Z e−iσ x
c π/2, (92)

which is the unitary expression equivalent of the quantum
circuit in Fig. 8(a). Consider an arbitrary topological state

|ψ (0)〉L = α |0L〉 + β |1L〉 , (93)

where |α|2 + |β|2 = 1. Applying the first two coupler gates
and the UZ , we obtain

e−iσ y
c φ/2U c

Z e−iσ x
c π/2 |0〉c (α |0L〉 + β |1L〉)

=
[

1√
2

(
cos

φ

2
|0〉c + sin

φ

2
|1〉c

)
(α |0L〉 + β |1L〉)

+ i√
2

(
cos

φ

2
|1〉c − sin

φ

2
|0〉c

)
(α |0L〉 − β |1L〉)

]
.

(94)

(a)

(b)

FIG. 8. (a) Quantum circuit implementing a ZL rotation by an
arbitrary angle φ by acting on a coupler which controls the nanowire
state |ψ〉 through controlled-ZL operation. (b) Extension to multiple
logical qubits constructed using the same principles by adding addi-
tional controlled-ZL operations.
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Performing another controlled UZ will disentangle the coupler
from the domain, and the final unitary of the coupler returns it
to the initial state. We thus have

eiσ x
c π/2U c

Z e−iσ y
c φ/2U c

Z e−iσ x
c π/2

∣∣ψ (0)
L

〉
= |0〉c (αe−iφ/2 |0L〉 + βeiφ/2 |1L〉). (95)

We thus see that the logical state has been rotated by an angle
φ around the Z axis. We note that this step only has partial
topological protection. The part of the circuit involving UZ is
topologically protected since it involves a nonlocal operation
throughout the topological chain. However, as can be seen
from (94), the coupler qubit involves a rotation about an
angle φ, which is eventually applied to the qubit. Hence, if
an error occurs during the operation on the coupler qubit, it is
susceptible to errors.

We may expect that this operation does not have full topo-
logical protection since a rotation about an arbitrary angle
corresponds to a non-Clifford gate—there is no equivalent
braiding operation to the Z12

L (φ) gate. Since only Clifford
gates are implementable using braids in this model, the lack of
topological protection is the price to be paid for extending the
gates beyond the Clifford set. Since the anyons in this model
are of the Ising type, introducing such non-topologically-
protected gates is always a necessity in order to be able to
perform universal quantum computing. Thus the addition of
the coupler spin allows one to not only avoid the T-junction
configuration but also perform non-Clifford gates. These steps
provide a foundation for constructing the multiqubit entan-
gling gate Z12

L (φ).

C. Adiabatic scheme for arbitrary Z rotation

The purpose of this section is to demonstrate how to per-
form the operation described in Sec. IV B by adiabatically

changing the coefficients of the Hamiltonian (17) thereby
implementing an adiabatic protocol equivalent to (92). At
each step of the protocol the Hamiltonian is partially in the
N phase (22) and partially in the T phase (29). The overall
approach is the same as that described in Sec. III C except
for incorporating the coupler unitaries that appear in (92).
Initially, the Hamiltonian takes the form

H(step 0) =
M−1∑
j=1

t jH
(T )
j +

2M∑
j=M

μ jH
(N )
j . (96)

Consecutive steps of the protocol sequence can be derived by
following the steps from (94) to (95). The protocol will consist
of 2M adiabatic steps and three unitary steps, so in total there
would be 2M + 3 states and also 2M Hamiltonians of the form
H(step k)

H(step k) =
k∑

j=1

μ jH
(N )
j +

M+k∑
j = k + 1

j �= M

t jH
(T )
j

− tMσ z
c H (T )

M +
2M∑

j=M+k

μ jH
(N )
j . (97)

The system consists of two nanowires coupled with the region
controlled by the coupler spin based on (90) (see Fig. 9). At
each step of the protocol, the state is a ground state of the
Hamiltonian and matches the corresponding state from the
unitary protocol described by (94) and (95). As the controlled
UZ is applied twice in (92), the domain moves near the cou-
pler twice. The first time is during the initial sequence when
we adiabatically sweep H(step k) to H(step k+1) until k = M is
reached. The second time is during the returning sequence
when we adiabatically sweep H(step k) into H(step k−1) until
k = 1 is reached. The three unitary steps are the operations

(a) (b)

FIG. 9. Moving the topological domains (shaded regions spread over sites) through the three-spin coupling (three connected circles).
Shown are the corresponding sequences for the (a) adiabatic and (b) braiding formulations. In both cases the logical Z gate is controlled by the
coupler spin. The curved horizontal line indicates the level of μ j for each site.
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applied to the coupler spin—putting it in the superposition
state, rotating it about the Y axis by an angle φ, and bringing
it back to its initial |0〉c state. Adiabatic transitions introduce
global phase errors, so the states resulting from those adiabatic
transitions are equal to (94) and (95) up to a global phase
factor.

D. Extension to multiple chains

The form (92) can be generalized to a non-Clifford
entangling-Z1Z2 gate involving two nanowires U 12

Z (φ). The
entangling gate constructed in this way can even be scaled up
to an arbitrary number of qubits. The unitary (92) generalized
from a single T -phase region up to two T -phase regions takes
the form

U 12
Z (φ) = eiσ x

c π/2U c
Z1

U c
Z2

e−iσ y
c φ/2U c

Z2
U c

Z1
e−iσ x

c π/2. (98)

The equivalent quantum circuit for the two-qubit case is
shown in Fig. 8(b). It is straightforward to extend (92) and
(98) to involve more topological qubits since the only role
of the coupler qubit is to transfer the phase of the rotation
to the logical qubits. The overall process follows the steps
equivalent to (94) and (95), but this time more logical qubits
get entangled with the coupler. Let us consider an arbitrary
state involving two logical qubits∣∣ψ (0)

L

〉 = (α |0L〉1 + β |1L〉1)(α′ |0L〉2 + β ′ |1L〉2). (99)

Preparing the coupler and applying both controlled operations
from (98) on state (99) yields

U c
Z2

U c
Z1

e−iσ x
c π/2 |0〉c

∣∣ψ (0)
L

〉
= |+i〉c (αα′ |00L〉12 + ββ ′ |11L〉12)

+ |−i〉c (αβ ′ |01L〉12 + βα′ |10L〉12). (100)

Then we apply the coupler rotation about the Y axis, which
creates phase factors under terms entangled with the coupler.
Finally, applying the remaining operators of (98) disentangles
the logical qubits from the coupler and brings the coupler back
to its initial state

U 12
Z (φ) |0〉c

∣∣ψ (0)
L

〉
= |0〉c [e−iφ/2(αα′ |00L〉12 + ββ ′ |11L〉12)

+ eiφ/2(αβ ′ |01L〉12 + βα′ |10L〉12)], (101)

which is the form we would expect to get after applying a
logical-Z1Z2 effective Hamiltonian on two logical qubits. This
is an entangling gate and can create entanglement between the
topological chains.

The above entangling gate has partial topological protec-
tion, in the same way as the Z rotation of the previous section,
where the coupler acts as the source of the errors. The effect
of logical Z1Z2 is another non-Clifford gate operation and thus
cannot be described using Ising anyon braids. This is possible
only due to the addition of the coupler spin, which is topo-
logically unprotected. The price of the additional operation is
partial topological protection and is limited by the coherence
of the additional qubit. If completed within the coherence time
of the coupler qubit, we expect that the gate can be achieved
with high fidelity.

E. Adiabatic scheme for ZZ rotation

We now describe an adiabatic version of the operation
introduced in the previous section. Implementing (98) is
equivalent to how we implemented (92), but we must ensure
that the nanowires storing the topological domains are never
in contact so that the logical qubits remain distinct at all
times. We introduce modified versions of (96) and (97) which
connect four nanowires of lengths M. Unlike the unitary de-
scription, for which the order of applying the controlled ZL

is arbitrary due to the fact that they commute, in the case of
the adiabatic protocol even for commuting terms the order of
operations needs to be considered. As the T -phase regions
are inside of the 1D geometry, we cannot entangle them with
the coupler in any order; they must pass through the regions
involving the coupler one by one and return in reverse or-
der. This is much like a first-in–last-out (FILO) queue. The
entire process is summarized in four steps, each being a se-
quence of M adiabatic transitions characterized by the index
1 � k � 2M.

We provide a diagram showing the the sequence of adi-
abatic steps for the case of N = 2 and M = 2 in Fig. 10.
Step 1 shows us the initial configuration of the system and
performs the unitary operation preparing the coupler in the
superposition state. As shown in the diagram, at step 1 both
T -phase domains are located on the left relative to the coupler.
Step 2 consists of moving the right topological domain to the
other side of the coupler. In step 3, the couplings are changed
to ensure separation between the domains before we move the
leftmost domain, which is done in step 4. Step 5 consists of
unitary coupler rotation. Steps 6–8 are the same operations
as steps 2–4 but applied in reverse order. The final step, step
9, is a unitary operation that brings the coupler back to its
initial state, reversing the operation performed in step 1. This
completes the entire protocol for two logical qubits.

We provide two Hamiltonians, one for each topological
region that is moved through the coupler. The first step is
to move the topological region on the immediate left of the
coupler to the right, as can be seen in Fig. 10. This is achieved
by the Hamiltonian

H (1)
(step k) =

M−1∑
j=1

t jH
(T )
j +

M+k∑
j=M

μ jH
(N )
j − tMσ z

c H (T )
2M

+
2M+k∑

j = M + k
j �= 2M

t jH
(T )
j +

4M∑
j=2M+k

μ jH
(N )
j , (102)

which moves the rightmost domain through the coupler. The
coupler is coupled to sites 2M, 2M + 1 as two domains in
the system are present. The second Hamiltonian moves the
topological domain on the far left to the right side of the
coupler (Fig. 10) and is written

H (2)
k =

k∑
j=1

μ jH
(N )
j +

3M−2∑
j = k

j �= 2M

t jH
(T )
j − tMσ z

c H (T )
2M

+
3M∑

j=2M+k

μ jH
(N )
j +

4M−1∑
j=3M

t jH
(T )
j . (103)

205429-12



QUANTUM GATES FOR MAJORANAS ZERO MODES IN … PHYSICAL REVIEW B 103, 205429 (2021)

FIG. 10. Adiabatic scheme to entangle two topological qubits.
Each chain is of length M = 2, and at the end of the sequence a
Z1Z2 Hamiltonian is implemented. Steps 1, 5, and 6 represent the
unitary operations applied to the coupler. Steps 2–4 and 6–8 represent
moving the topological regions between the chains. Open circles
denote fermion sites, the circle with a center dot is the coupler, the
switch denotes a region with suppressed t j and � j such that the tun-
neling between the sites is decreased, the shaded ovals denote the
topological regions, and the curved line gives the value of μ j for the
site.

The way Hamiltonians (102) and (103) are constructed pre-
vents the domains from interacting as the topological domains
are always stored on separate uncoupled nanowires. Whether
neighboring nanowires are coupled or not is represented by
the value s j ∈ {0, 1}; for a four-nanowire system, coupling is
controlled by two such parameters: s1 for the nanowires on the
left side of the coupler and s2 for the nanowires on the right
side of the coupler as labeled in the top row of Fig. 10.

V. ARBITRARY QUBIT ROTATION

Until now we have developed the theoretical tools for
performing effective Z and Z1Z2 Hamiltonians. In order to per-
form universal quantum computing, we additionally require
single-logical-qubit rotations around another axis in addition
to Z . In this section we discuss how the conversion operator
Uc (41) can be used to implement a rotation about an arbitrary
axis on a topological qubit. The general idea of the approach
will be to unbraid the state of a single chain such that the
logical information is on a single site, marked as the “local

gate”in Fig. 1. The arbitrary rotation is applied on this site,
and then the information is put back in the MZMs by rebraid-
ing the information. This breaks the topological protection
of the state. However, this allows us to perform an arbitrary
single-qubit logical gate which may be useful to perform more
general quantum operations in combination with topologically
protected gates. The scheme also serves to explain how local
braids can be used to achieve global effects on the topological
quantum state.

A. Unitary formulation

Let U T
u (φ) be a general qubit rotation of the topological

qubit acting on logical space state of the form α |0L〉 + β |1L〉,
where |0L〉 and |1L〉 are states describing logical space of the T
phase of length M. Now let Uu(φ) be an equivalent operation
to U T

u (φ) but acting on an equivalent state of a single site in
the N phase which takes the general form α |0〉N + β |1〉N . A
general form of such rotation can be constructed using the
three rotations about each of the Bloch sphere axes. Our goal
here is to relate U T

u (φ) and Uu(φ) operations. This is achieved
using the conversion operator Uc (41) in the following way:

U T
u (φ) = UcUu(φ)U †

c . (104)

An arbitrary rotation can be defined using the above operators
and parametrized by a unit vector u = (ux, uy, uz ). This helps
us define a general form of Uu(φ) to be

Uu(φ) = exp

[
−i

φ

2
(uxXn + uyYn + uzZM )

]
, (105)

where Xn, Yn, and ZM are Pauli operators acting on site n.
We can demonstrate how U T

u (φ) works by expanding it and
applying property (51) of the Uc conversion operator

U T
u (α |0L〉 + β |1L〉) = UcUu(φ)(α |0〉N + β |1〉N ) (106)

= Uc(α′ |0〉N + β ′ |1〉N ) (107)

= α′ |0L〉 + β ′ |1L〉 , (108)

where α′, β ′ are the rotated coefficients of α, β. This shows
that U T

u (φ) implements a rotation about an arbitrary axis
parametrized by unit vector u and acts on the topological
space.

The advantage of using the phase transition is that it allows
us to perform any logical operation on the topological do-
main. It could also be potentially scaled up to two topological
domains if we localize the quasifermions into fermions that
are physically close to each other allowing them to create an
interaction between them. The disadvantage is lack of topo-
logical protection as the domain is almost entirely destroyed
and recreated during the protocol.

B. Adiabatic scheme

The adiabatic protocol associated with U T
u (φ) (104) fol-

lows directly from its unitary counterpart. As U T
u (φ) is defined

in terms of the Uc conversion operator and the single-site
gate operation Uu(φ), the protocol requires us to define those
operations in a way that applies to the nanowire system Hamil-
tonian (18). The adiabatic protocol for the Uc operation has
been described in Sec. II E. We do not describe physically
how the single-qubit rotation (105) would be performed, since
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(a) (b)

FIG. 11. (a) The adiabatic protocol and (b) the sequence of local
braids or a unitary protocol, both implementing the U T

u (φ) operation.

this depends upon the choice of the physical qubit, and these
are well developed. An arbitrary single-qubit operation can be
executed in a suitable way depending on the implementation
of the qubit in the region labeled as “local gate” in Fig. 1.

We also show how the adiabatic protocol and its braiding
counterpart compare in Fig. 11(a) for the case of M = 3. Step
1 shows the initial configuration of the nanowire, which is
entirely in the T phase. Steps 2 and 3 destroy the T phase by
creating an N phase from the left side. This shrinks the topo-
logical qubit changing the quasifermion into a regular fermion
localized on the rightmost site. Step 4 applies the required
rotation to the rightmost site. Steps 5–9 turn the N-phase
sites back into the T -phase sites extending the domain until
it spreads over the entire nanowire again. Figure 11(b) shows
the corresponding steps by visualizing the unitary braids.

VI. NUMERICAL SIMULATION

We performed a series of numerical tests of the proto-
cols described earlier. Using the Quantum Toolbox (QUTIP)
library [56,57], we implemented the Hamiltonian (18) and
numerically simulated adiabatic transitions corresponding to
protocols associated with quantum gates described in this
paper.

0.0τ 1.0τ 2.0τ 3.0τ 4.0τ

t

−2.013μ

−2.008μ

−2.002μ

E

M = 2, μj = 64.0tj, UZ(π), |ψ0 = |+L

0.0τ 1.0τ 2.0τ 3.0τ 4.0τ

t

−1.0

−0.5

0.0

0.5

1.0

<
X

>

FIG. 12. Energy (upper graph) and the spin expectation value
(lower graph) of the state plots for the UZ (π ) gate.

A. Energy fluctuation study

The motivation for studying fluctuations in energy is to
confirm topological protection of our gate operations. Such
a study is relevant to evaluate gate sensitivities to errors
as topological states are protected by the bulk energy gap
as demonstrated in Ref. [8]. In particular, we numerically
compare UZ (π ) and U T

ux
(π ). Neither of those operations are

topologically protected, yet we would expect the energy to
fluctuate to a much larger extent in the case of U T

ux
(π ) as this

operation is destroying the the T phase completely localizing
the quasifermion.

We performed a numerical study simulating the adiabatic
protocols associated with the UZ (φ) gate initialized in the
|+L〉 state as shown in Fig. 12 and with the U T

ux
(π ) gate

initialized in the |0L〉 state as shown in Fig. 13. Each of the
figures contains two plots; the upper plot shows the overall
energy of the system measured by numerically computing the
expectation value of the Hamiltonian H (t ) at time step t of the

0.0τ 2.0τ 4.0τ 6.0τ 8.0τ

t

−5.0μ

−4.51μ

−4.02μ

−3.52μ

−3.03μ

E

M = 3, μj = 64.0tj, U
T
u (π), |ψ0 = |0L

0.0τ 2.0τ 4.0τ 6.0τ 8.0τ

t

−1.0

−0.5

0.0

0.5

1.0

<
Z

>

FIG. 13. Energy and the spin expectation value of the state plots
for the U T

ux
(π ) gate.
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FIG. 14. Fidelity plots vs adiabatic time constant obtained after numerically simulating the entire protocol for all three gates U 12
Z (φ),

UZ (φ), and U T
u (π ) with u = ux. Fidelity is calculated for a series of angles φ ranging over 16 evenly distributed angles φ from the unit circle.

state |ψt 〉. The lower plot demonstrates the correctness of the
performed operation, by numerically taking the expectation
value of the relevant operator such that the initial state of
the system is a +1 eigenvalue eigenstate of that operator.
For the energy study of the UZ (φ) gate with |+L〉 as the
initial state, we measure X = |+L〉〈+L| − |−L〉〈−L|, and for
the U T

ux
(π ) gate with |0L〉 as the initial state we measure Z =

|0L〉〈0L| − |1L〉〈1L|. While performing the numerical simula-
tions shown in Figs. 12 and 13 we set the adiabatic sweep
τ = 16π , and adiabatic errors are the only source of errors
considered in the simulation. No noise or decoherence model
has been implemented.

Our results show that the energy of the U T
ux

(π ) gate fluc-
tuates by an order of (M − 1)μ, which is as expected as the
topological domain shortens by M − 1 sites transforming the
chain into the N phase with each site of energy μ. This can
be observed in Fig. 13. The edge modes become localized on
the same site at the time t = 2τ . The case of the UZ (φ) gate
shows the energy variations of a much smaller magnitude, of
order t . This is as expected due to the fact that whenever a
T phase gets destroyed on one site, it also becomes extended
on another while moving. The overall length M remains the
same, the magnitude of μ, which indicates the spectral gap,
remains open, and error protection is not affected. Both cases
show that the gate gets applied correctly by changing the
initial state from the +1 eigenstate into the −1 eigenstate.

B. Fidelity study

A more direct measure of the success of the adiabatic
gates is to study the fidelity of the state as a function of the
adiabatic sweep time τ . We considered T -phase regions of
length M = 3 and parametrized the topological phase of our
system as μ = 64tH . For each of the gates U 12

Z (φ), U 12
Z (φ),

and U T
ux

(φ) the system was initialized in states |+L〉, |++L〉,
and |0L〉, respectively. We varied the adiabatic sweep time τ

from π up to 16π observing all gates approaching a fidelity of
1, indicating that the tested gates perform their computation
correctly once the adiabatic regime is achieved. The results are
shown in Fig. 14. Performing adiabatic transitions too rapidly
will lead the system to populate one of the excited states,
which is visible in our fidelity plots by the curves not reaching
a value of 1 for lower values of the adiabatic sweep τ . The
curves in each plot differ in the angle of the qubit rotation. The

fidelity study was performed for the gates U 12
Z (φ), U 12

Z (φ),
and U T

ux
(φ), where the angle φ = 2π/16, where n ∈ {0, 15}.

In our current simulations no decoherence was included, and
the only source of imperfect fidelities is from diabatic excita-
tions. In a realistic system including decoherence we expect
that having longer chains would improve the fidelity due to
a larger topological gap, which would protect logical states
from errors.

VII. SUMMARY AND CONCLUSIONS

We have proposed and analyzed methods for performing
quantum gates in a 1DTS in a purely one-dimensional ge-
ometry. We provided schemes for performing a Z operation
(UZ ), arbitrary Z rotations [UZ (φ)], and two-qubit Z rotations
[U 12

Z (φ)] on MZM-encoded logical qubits. The UZ gate is a
fully topological gate that is logically equivalent to a double
braiding of the edge modes. UZ (φ) and U 12

Z (φ) only provide
partial topological protection, since the coupler qubit is not
protected against errors. These gates implement non-Clifford
gates, which are not available using purely braiding operations
for the Ising anyons in the Kitaev chain. The more general
single-qubit logical gate does not offer any topological pro-
tection, but it is required for universal quantum computation.
Each of the logical quantum gates proposed is described
in both the unitary language based on sequences of topo-
logical braids and adiabatic variations of the Kitaev model
Hamiltonian.

We also described the phase transition between the topo-
logical T phase and normal N phase in terms of sequences
of braids within the nanowire and successfully associated the
result with the expected variation of Kitaev model parameters.
The unitary formalism provides a more intuitive framework
to understand the nature of the gates and map them to the
associated adiabatic Hamiltonians. We have confirmed the
correctness of this work by performing a series of numerical
simulations which studied the energy fluctuation of the entire
nanowire while particular gates are performed. This showed
the expected energy variation during the process of phase
transition between the topologically trivial and topological
regimes. The adiabatic scheme was verified to have a high
fidelity for parameters sufficiently in the adiabatic regime.

One of the challenges of this platform is the limited set
of operations that are present using topologically protected
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MAREK NAROŻNIAK et al. PHYSICAL REVIEW B 103, 205429 (2021)

operations. A fundamental limitation is that the type of anyon
in the Kitaev chain is of the Ising type, which means that only
Clifford gates can be produced by braiding. This means that
additional, non-topologically-protected operations must nec-
essarily be included to perform universal quantum computing.
In this paper, we used a coupler-based approach, which
not only was motivated as an alternative to the T-junction
approach but also provides a natural way of introducing non-
Clifford gates.

Recently, performing high-fidelity single-qubit quantum
gates has become feasible in numerous systems [58,59]. As
a hybrid system, the role of the topologically protected qubits
could be to serve as a storage medium, taking a role similar to
that of quantum memories, where quantum information can
be stably stored for relatively long times. When the quantum
information needs to be manipulated, it can be done using
topologically unprotected or partially topologically protected

methods, as introduced in this paper. Using such a hybrid
approach may be an effective way of combining the expected
stability of topological quantum state encodings with the con-
trollability of existing qubit systems.
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