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Strong confinement-induced nonlinear terahertz response in semiconductor nanostructures
revealed by Monte Carlo calculations

Jiří Kuchařík and Hynek Němec *
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Nonlinear terahertz conductivity spectra of charges confined in semiconductor nanostructures were calculated
using a semiclassical Monte Carlo method. The confinement-induced nonlinear response per charge carrier is
much stronger than the intrinsic nonlinearity of common bulk semiconductors and more than 20 times stronger
than in graphene, which has been considered as a material with one of the highest terahertz nonlinearities.
Moderate intensities of the terahertz radiation are thus sufficient to achieve efficient frequency mixing or
high-harmonics generation. Enclosing the nanostructures into metallic nanoslits concentrates the electric field
into the semiconductor and thus easily provides nonlinear terahertz signal strength comparable to the linear
one.
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I. INTRODUCTION

Nonlinear response of solids to radio waves has been
known for more than a century; for example, the rectifying
properties of a contact between a mineral and a metal have
been utilized in crystal radios. The development of laser
technologies has led to the investigation and exploitation
of nonlinear processes at optical and infrared frequencies,
including generation of harmonic frequencies, frequency mix-
ing, or parametric amplification [1]. While linear response of
materials is well understood in a broad spectral range includ-
ing the terahertz (THz) range [2–5], nonlinear properties of
solids are less known, and their knowledge in the THz range
is particularly limited.

The new sources (including table-top devices based on
tilted-wavefront optical rectification in LiNbO3 [6] or large-
scale facilities such as free electron lasers [7]) generate THz
pulses intense enough to control material properties—the in-
duced changes are typically monitored using optical pulses
[8]. However, investigations of nonlinear THz properties have
been mostly limited to band transport in bulk semiconduc-
tors [9]; these include THz-pulse-induced intervalley electron
scattering and intravalley dynamics [10] and THz-induced in-
terband tunneling of electrons [11]. Band transport is also the
basis of high-harmonic generation by hot Dirac fermions in
graphene [12]. Although quantum confinement proved useful
for enhancing the nonlinearities at optical frequencies and for
the discovery of new physical effects [13], almost no attention
has been devoted to high-field transport and nonlinear conduc-
tivity of charges confined in semiconductor nanostructures in
the THz frequency range. Strong nonlinearities are essential
for application of nonlinear phenomena in table top devices,
where only moderate intensities of terahertz radiation are
available.

*Corresponding author: nemec@fzu.cz

Here we develop a closed formalism enabling calculation
of the experimentally observable signal from microscopic
parameters. The key element is a semiclassical theory of
nonlinear THz response of photogenerated confined charges.
We first analyze the current induced by a THz electric field
locally applied to a semiconductor nano-object: We show
that a strong nonlinear response is associated with the charge
confinement. Subsequently, effective medium theory is for-
mulated to determine the effective nonlinear THz response
of an ensemble of nano-objects in a macroscopic sample;
more specifically, we investigate the photoconductivity of a
periodic array of GaAs nanobars [Fig. 1(a)]. Since nano-
objects in most structures are separated by air gaps or by
a low-permittivity vehicle, there is a high dielectric contrast
between the constituents, which is responsible for depolariza-
tion fields screening the applied THz field. We demonstrate
that the field reduction inside the nano-objects suppresses the
nonlinear effects so severely that it impedes a direct exper-
imental observation of the output nonlinear signal. The full
potential of the strong confinement-induced nonlinearity can
be exploited using metallic nanoslits: These concentrate the
THz field into the semiconductor nanostructure and therefore
a strong nonlinear signal with intensity comparable to that of
the linear signal is generated.

II. MONTE CARLO CALCULATIONS AND THEIR
ANALYSIS

We implemented calculations based on a semiclassical
Monte Carlo method simulating the thermal motion of photo-
generated charges, following the scheme described in detail in
Ref. [14]. In brief, charges undergo a Newtonian motion under
the influence of a monochromatic electric field E cos(ωt ) (E
is the field amplitude inside the nanobars). Within the applied
Drude approximation, this motion is interrupted by scatter-
ing events occurring randomly with the mean time τs; the
scattered velocity follows the Maxwell-Boltzmann statistical
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FIG. 1. (a) Scheme of the investigated nanostructure consisting
of nanobars (dark gray) attached to a substrate. The THz field E inc

incident on the structure from the top is polarized perpendicularly
to the nanobar axis; the filling factor s equals a/L. (b) Using a
brick-wall effective medium approximation, the layer containing the
nanobars separated by a material with permittivity εh is transformed
into an equivalent homogeneous layer with effective properties.

distribution. We assume that charges are reflected back coher-
ently when they reach the nanobar boundary.

The principal output is a time-dependent carrier mean ve-
locity v(t ):

v(t ) = 1

M

M∑
j=1

v j (t ), (1)

where v j (t ) is the set of M simulated velocities of individual
charges (typically we simulate up to M = 4 × 106 trajecto-
ries for lower electric fields). Since the mean velocity in the
thermal equilibrium and without an electric field is zero, the
calculated mean velocity v(t ) in the presence of an electric
field coincides with the mean drift velocity of charges. Unlike
the Kubo-formula-based calculations [15], this method inher-
ently accepts arbitrary electric field strengths and it is thus
suitable also for the investigation for nonlinear phenomena.

The principal challenge associated with the nonlinear re-
sponse consists in the analysis of the mean drift velocity
v(t ), which no longer oscillates solely on the single driv-
ing frequency ω. In the stationary regime, higher harmonic
frequencies may emerge, and a complex dependence on the
electric field amplitude may be observed. In order to capture
these two aspects, we will introduce two representations of the
carrier mobility:

(i) A generalized field-dependent carrier mobility μ[α](E )
describing the generation of the αth-harmonic frequency αω

(α is an integer).
(ii) A nonlinear mobility μ(n) [analogical to nonlinear sus-

ceptibility χ (n) in optics] describing the nth-order nonlinear
process (velocity scaling with En).

In this paper, we prefer to concentrate on the single-carrier
response (the mobility) of charges since it—in our opinion—
best illustrates the potential for a strong nonlinear response.
The collective response in the developed formalism scales
with the carrier density and formulas analogical to the linear
response remain valid. In particular, the nonlinear and har-
monic conductivities read

�σ (n) = e0Nμ(n) and �σ [α] = e0Nμ[α], (2)

where N is the (photoexcited) carrier density and e0 is the
elementary charge. Important are also the nonlinear and har-
monic susceptibilities which directly connect the developed
calculations to the nonlinear polarization commonly em-
ployed in the field of nonlinear optics:

χ [α] = �σ [α]

αωε0
= e0Nμ[α]

αωε0
, (3)

and

χ (n)(. . . ) = �σ (n)(. . . )

αωε0
= e0Nμ(n)(. . . )

αωε0
, (4)

where “. . . ” abbreviate the argument ±ω ± ω ± . . .︸ ︷︷ ︸
n×

→ αω.

A. Generalized mobility μ[α]

The carrier drift velocity v(t ) in the stationary regime can
be decomposed into the harmonic series

v(t ) = Re
∞∑

α=0

μ[α](αω, E )Eeiαωt , (5)

which expresses that an electric field with frequency ω

produces oscillations at harmonic frequencies αω. The coef-
ficients μ[α](αω) represent the (complex) amplitudes of the
velocity of charge oscillations at frequencies αω normalized
by the electric field amplitude. These generalized mobilities
are analogous to the charge mobility (including the same
physical dimension) and they generally depend on the driving
field E (for brevity, we will omit this dependence in the nota-
tion). In purely linear materials, no frequency mixing occurs
and the series (5) contains a single term μ[1](ω) coinciding
with the standard linear mobility spectrum.

The generalized mobilities can be calculated straightfor-
wardly, either using a Fourier analysis, or by linear regression.
Since the basis functions are orthogonal, the procedure is
stable, insensitive to numerical errors, and the retrieved co-
efficients are not influenced by the number of terms taken into
account.

B. Nonlinear mobility μ(n)

To assess the nonlinearity strength, we decompose the car-
rier drift velocity v into a linear and a nonlinear component:

v = vL + vNL = μLE + μ(3)E3 + μ(5)E5 + . . .︸ ︷︷ ︸
μNL(E )·E

. (6)

Here μL is the linear charge carrier mobility, and μNL(E )
is the nonlinear field-dependent contribution to the mobility
which can be expanded into powers of the field amplitude
for weaker fields (even powers are symmetry forbidden in
the investigated structure). The nonlinear mobilities μ(n) are
analogous to the nth-order susceptibilities χ (n) representing
nonlinear polarization in optics [Eq. (4)].

Each nonlinear mobility μ(n) involves several pro-
cesses; for example, μ(3) involves third-harmonics generation
μ(3)(ω + ω + ω → 3ω) as well as the parametric process
μ(3)(ω + ω − ω → ω). Precisely speaking, the symbolic
Eq. (6) thus represents a set of equations for distinct frequency
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components:

v(ω) = μLE + 3
4μ(3)(ω + ω − ω → ω)E3 + 10

16μ(5)(ω + ω + ω − ω − ω → ω)E5 + . . .≡μ[1](ω, E )E

v(3ω) = 1
4μ(3)(ω + ω + ω → 3ω)E3 + 5

16μ(5)(ω + ω + ω + ω − ω → 3ω)E5+ . . .≡μ[3](3ω, E )E

v(5ω) = 1
16μ(5)(ω + ω + ω + ω + ω → 5ω)E5+ . . .≡μ[5](5ω, E )E

...
...

...

v(αω) = ∑∞
n=α Cα,nμ

(n)En ≡μ[α](αω, E )E .

(7)

These equations describe the transformation between the
harmonic mobilities μ[α] and nonlinear mobilities μ(n). The
coefficients Cα,n reflect the degeneracy of the corresponding
nonlinear processes [1]; in our case, only odd α and n con-
tribute for which

Cα,n = 1

2n−1

(
n

n−α
2

)
. (8)

In principle, the coefficients μ(n) in each line of Eq. (7)
(i.e., for each harmonic frequency) can be determined using
a linear regression. However, for weaker electric fields, the
corresponding design matrix is inevitably ill conditioned. Us-
ing higher electric fields is not an option, since higher-order
nonlinear processes then become important, thus inflating the
size of the design matrix leading to worse ill conditioning.
In practice, third- or fifth-order nonlinear mobilities can be
determined reliably, but higher-order effects require excessive
amount of computation time to reduce the inherent statistical
errors in the Monte Carlo method.

C. Calculated generalized mobility spectra

Examples of the generalized mobility spectra μ[α](αω) are
shown in Fig. 2 (see also Fig. 7 in Appendix A). For all
fields, the mobility amplitude at the fundamental frequency
|μ[1]| increases with frequency and reaches a broad maxi-
mum; then it decreases back toward zero due to the inertia
of charges, analogically to the Drude formula. For the lowest
fields (E � 3 kV/cm), the spectrum coincides with the linear
mobility spectrum of confined charges [14,15]: The maximum
at frequency f0 reflects bouncing of the charges moving with
the mean thermal velocity [15] and the broadness of the maxi-
mum stems from the broad distribution of thermal velocities in
the Maxwell-Boltzmann statistics [16]. With increasing driv-
ing field amplitude, the mean velocity of charges increases;
this increases also their bouncing frequency, thus causing the
observed blue-shift of the peak frequency (inset in Fig. 2).
Since the thermal and drift velocities are uncorrelated, squares
of their mean values add together, therefore the peak po-
sition f peak approximately follows f0

√
1 + (E/E therm )2 [the

characteristic electric field E therm is of the order of the field
kBT/(e0a) providing charges with the kinetic energy equal
to their thermal energy]. The amplitude of the spectrum de-
creases with increasing E due to the transfer of energy into
higher harmonics.

According to the Miller’s rule [17], the αth-harmonic fre-
quency generation can be viewed as a sequence of α first-order
processes, and therefore the generalized mobility |μ[α](αω)|
should be proportional to |μ[1](ω)|α . The spectra of |μ[α](αω)|
(Fig. 2) indeed resemble this rough approximation: They ex-

hibit a single broad band which narrows with increasing α as a
consequence of the αth power, and their peak also blue-shifts
with increasing field due to the increasing mean velocity. The
amplitudes |μ[α](αω)| initially increase as Eα−1 indicating
the dominance of the αth-order nonlinear process. For more
intense fields, higher-order processes (like ω + ω − ω → ω

or ω + ω + ω − ω − ω → ω for α = 1) become important,
causing the peak value to saturate and finally even decrease
(see also Fig. 3). The early onset of these higher-order pro-
cesses indicates that the motion of charges in a rectangular
potential is a strongly field-dependent phenomenon even for
moderate field amplitudes, thus allowing an efficient high-
harmonics generation (Fig. 3). For example, as estimated from
the ratio |μ[15](15ω)/μ[1](1ω)|, the 15th harmonic reaches
almost 1% of the linear response at only 50 kV/cm. Har-

FIG. 2. [(a)–(c)] Examples of the spectra of amplitudes of gen-
eralized mobilities μ[α] for 100 nm wide GaAs nanobars (meff =
0.07me, τs = 100 fs) at room temperature. Inset: Frequency of the
maximum in |μ[1]| (symbols) and the trend discussed in the main
text (dashed line).
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FIG. 3. Peak values of amplitudes of generalized mobilities spec-
tra describing the generation of harmonics. For graphical clarity, only
two selected high harmonics (α = 39 and α = 119) are included in
the plot.

monics as high as 119 have been resolved in our Monte Carlo
calculations for an extreme field of E = 200 kV/cm.

For intense electric fields, distinct shoulders start to de-
velop in the spectra of |μ[α](αω)| below the main peak.
These represent the contributions of the higher-order non-
linear processes. For example, the generalized mobility μ[3]

describes the third-harmonic generation through any nonlin-
ear process. Its spectrum thus involves a superposition of
nonlinear mobilities μ(3)(ω + ω + ω → 3ω), μ(5)(ω + ω +
ω + ω − ω → 3ω), and higher. For low fields, the μ(3)(ω +
ω + ω → 3ω) process dominates and the resulting response
thus resembles [μ(1)(ω/3)]3 according to the Miller’s rule.
Indeed, a single peak is observed and it blue-shifts in the
same way as the broad peak in μ(1). For stronger fields,
the contribution of the μ(5)(ω + ω + ω + ω − ω → 3ω) pro-
cess becomes important; according to the Miller’s rule, the
spectrum of this contribution is proportional to [μ(1)(ω/5)]5.
It is the different scaling of the frequency argument which
causes the presence of the prominent shoulder in the |μ[3]|
spectrum. Similar arguments apply also for other general-
ized mobilities μ[α]. Note that also the generalized mobility
μ[1] representing the response at the fundamental frequency
involves linear mobility μ(1)(ω) as well as higher-order non-
linear processes μ(3)(ω + ω − ω → 1ω), μ(5)(ω + ω + ω −
ω − ω → 1ω), etc.; indeed, small waves indicating the pres-
ence of these further processes can be resolved in the spectrum
of μ[1] for the highest field of 100 kV/cm [Fig. 2(a)].

D. Calculated nonlinear mobility spectra

Examples of decomposition of the calculated trajectory
into the nonlinear mobility spectra are shown in Fig. 4. The
first-order mobility spectrum μ(1) coincides with the linear
response of the structure, which can be (at least for narrower

FIG. 4. Examples of complex (a) first- and (b) third-order non-
linear mobility spectra for the 100-nm-wide GaAs nanobars.

nanobars) well described using a simple oscillator model,
μ(1)(ω) ∝ iω/D(ω), where D(ω) = ω2

osc − ω2 − iωγ [15].
The spectral shape becomes more complex for higher-order

mobilities; notably, new lobes develop with the increasing
nonlinear order n. This behavior can be qualitatively under-
stood in the framework of the anharmonic oscillator model
described in detail in Ref. [1]. For a weak anharmonicitiy
[described by the potential V (x) ∝ ω2

oscx2 + bx4] and not-
too-strong electric fields, the nonlinear mobilities can be
determined using the perturbation calculus:

μ(3)(ω + ω + ω → 3ω) ∝ iω

D(3ω)D3(ω)
, (9)

μ(3)(ω + ω − ω → ω) ∝ iω

D3(ω)D(−ω)
. (10)

Although a minor adjustment of the oscillator eigenfrequency
ωosc is needed, this extraordinarily simple model is still ca-
pable to well reproduce the shape of the nonlinear mobility
spectra. We verified that similar procedure works also for
the fifth-order mobility and we assume that applicability is
preserved also for higher orders.

For simplicity, we now focus on the third-harmonic gen-
eration and particularly on the behavior of the nonlinear
mobility μ(3)(ω + ω + ω → 3ω). The nonlinear part μNL

of the mobility initially increases quadratically with the
field [Fig. 5(a)], due to the dominance of the canonical
third-order nonlinear process μ(3)(ω + ω + ω → 3ω). The
departure from the parabola becomes important already for
low fields (<10 kV/cm), indicating a significant role of
higher-order nonlinear processes such as the μ(5)-process ω +
ω + ω + ω − ω → 3ω [notice the contrast with the harmonic
series (5) where the coefficients μ[α] represent a mixture of
processes of the order μ(α) and higher]. Finally, the nonlinear
mobility saturates at a value exceeding even that of the linear
component.
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FIG. 5. (a) Amplitude of linear and nonlinear mobility compo-
nents of charges confined in 500 nm wide GaAs nanobars (response
to the local electric field). Dashed line: Quadratic fit of the nonlinear
mobility at the three lowest electric fields, serving for the determi-
nation of the nonlinear mobility coefficient μ(3). (b) Amplitude of
the linear mobility and of the nonlinear mobility coefficient μ(3)

as a function of confinement length. Parameters of Monte Carlo
calculations: meff = 0.07me, τs = 270 fs (high-quality GaAs at room
temperature), driving frequency 0.5 THz. For convenience, the mag-
nitude of the Drude mobility in bulk GaAs is indicated together
with the nonlinear mobility coefficients associated with intervalley
scattering in GaAs and with electronic response of graphene, as
estimated in the main text.

At a fixed frequency, the linear mobility amplitude |μL|
increases with increasing confinement length [Fig. 5(b)]:
Charges interact less with the nanobar boundaries, thus re-
ducing the effective scattering [15]. For the same reason,
the nonlinear mobility increases for narrow nanobars, too.
However, the nonlinearities are induced solely by the charge
confinement in our model, therefore the nonlinear response
vanishes for infinite confinement length. The maximum in
between is broad, reaching |μ(3)(ω + ω + ω → 3ω)| ≈ 35 ×
10−6 cm4 V−3 s−1.

We now compare this value to nonlinearities originating
from other physical mechanisms (these levels are also indi-
cated in Fig. 5).

Hebling et al. investigated absorption bleaching due to
scattering of electrons into side valleys with smaller mobility
[10]. Since absorption coefficient α is connected to the con-
ductivity as σ = nε0cα (c is the light velocity in vacuum and
n = 3.56 is the THz refractive index of GaAs), we get from
Eq. (2) the field-dependent mobility μ(E ) [the concentration
N in Eq. (2) is the doping density in this case]. A quadratic
fit of the μ(E ) dependence then provides the estimate for the
third-order nonlinear coefficient |μ(3)(ω + ω + ω → 3ω)| ≈
1 × 10−6 cm4 V−3 s−1.

Graphene has been found to be one of the materi-
als with the highest THz nonlinearity [12]. Since Hafez
et al. reported directly the third-order nonlinear suscep-
tibility χ (3)(ω + ω + ω → 3ω), Eq. (4) immediately pro-
vides the nonlinear mobility |μ(3)(ω + ω + ω → 3ω)| ≈
1.7 × 10−6 cm4 V−3 s−1. The carrier density N due to doping
was estimated as the ratio of graphene sheet carrier density
and graphene thickness, these values being both indicated in
Ref. [12].

The maximum nonlinear mobility (a measure of nonlinear-
ity per unit charge) due to charge confinement is thus more
than 20 times stronger than that in graphene, and ∼40 times
stronger than the nonlinearity caused by intervalley scattering

in GaAs. Since only the nanobar width has been optimized so
far, there is a large potential for a further improvement of the
strength of the confinement induced nonlinearity.

III. THZ WAVE INTERACTION WITH NONLINEAR
MEDIUM

It is experimentally easy to probe the effective conduc-
tivity or photoconductivity of semiconductor nanostructures
by free-space propagating THz radiation. However, the actual
interpretation of such measurements is complicated due to the
presence of depolarization fields which screen the incident
THz pulse: These imply that the measured (effective) response
differs from the microscopic response of the nanostructures.
For the description of the linear response, several equiva-
lent approaches (description in terms of plasmon formation,
local field effects or effective medium approach) have been
developed [18–20]; these currently constitute a well-known
basis for the description of the propagation of electromagnetic
waves in inhomogeneous media, which enables interpretation
of the measured signals. However, the relation between the
nonlinear response and nonlinear signals measured by THz
spectroscopy in inhomogeneous systems has not been exam-
ined so far.

Here we will employ the effective medium approach
based on the brick-wall effective medium approximation
which allows a straightforward illustrative interpretation of
the obtained formulas. Similarly as in the case of the linear
inhomogeneous media, the task is split into two parts:

(i) Homogenization of the (nonlinear) inhomogeneous
medium. This means replacing the nanobar array [Fig. 1(a)]
by a homogeneous layer with equivalent (effective) properties
[Fig. 1(b)].

(ii) Solution of the (nonlinear) wave equation in the ho-
mogenized layer.

These two steps are tightly interconnected in nonlinear
inhomogenous media: the interaction of the electromagnetic
wave depends on its intensity inside the nanobars while the
determination of this intensity requires knowledge of both
wave propagation through the structure and the homogeniza-
tion procedure.

To simplify the task as much as possible, we will always
consider a small signal limit. By this we man that:

(i) The electric field resulting from any nonlinear interac-
tion is weak compared to the amplitude of the incident wave.

(ii) The nonlinear interactions do not deplete the driving
wave.

These conditions assure that the nonlinearities do not cause
a significant redistribution of the driving electric field, and
therefore it is legitimate to decouple the description of the
propagation of the incident wave (which is thus governed
solely by the linear wave equation combined with linear ef-
fective medium theory) from the generation of the nonlinear
signal.

In the following paragraphs, we will thus describe how
the incident driving wave with electric field Einc propagates
in the sample. Using linear theories, we will determine the
effective field Eeff in the equivalent homogenized layer, which
then provides the driving electric field E inside the nanobars
(Fig. 1). Subsequently, nonlinear effective medium theory will

205426-5
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be adapted to link the effective conductivity �σ
(3)
eff of the

equivalent homogenized layer to the nonlinear conductivity of
the nanobars �σ (3). Next, we will describe the propagation of
the third-harmonic frequency generated in this homogenized
nonlinear layer. The calculated intensity of the third harmon-
ics leaving the sample will finally constitute the signal which
can be directly compared with experiments.

In the calculations, we will additionally assume that the
nanobar layer is optically thin (compared to the THz wave-
lengths of ∼0.3 mm) so that all internal reflections sum up
without any significant phase shift. The calculations also aim
to reproduce optical pump-THz probe experiments in which
the linear and nonlinear conductivity �σ is induced by the
excitation pulse. In order to reduce excessive math, we present
only the most important formulas in the main text while de-
tailed derivations are moved to appendices.

A. Propagation of the driving wave

When a wave with amplitude Einc irradiates an optically
thin homogeneous layer on a substrate at normal incidence
[Fig. 1(b)], a standing wave with amplitude

Eeff (ω) = E inc(ω)
2

1 + nsub(ω)
= ET (11)

is generated in the thin layer (Appendix B). The fraction
accounts for Fresnel reflection losses and interferences in-
side the optically thin sample attached to the substrate. In
the following illustrations we will assume a sapphire sub-
strate, which has refractive index nsub ≈ 3; the fraction thus
becomes ∼ 1

2 . This order of magnitude is representative for
most substrates transparent in the THz range. Note also that
the amplitude ET of the wave transmitted through the thin film
is equal to Eeff [Eqs. (B1) and (B2)].

We introduce a factor Q which describes how the field E
inside the individual nanobars is enhanced compared to the
field Eeff in the equivalent homogenized layer,

E (ω) = Q(ω)Eeff (ω). (12)

Within the brick-wall model [21–23] it is easy to show (Ap-
pendix C) that

Q(ω) = εh

sεh + (1 − s)
(
ε + i�σ L

ωε0

) , (13)

where s = a/L is the volume filling factor of nanobars, and
εh is the (linear) permittivity of the material which embeds
the nanobars with (linear) permittivity ε and linear photo-
conductivity �σ L = e0NμL. Altogether, supplying the linear
mobility μL from the Monte Carlo calculations and combining
these three equations provides the amplitude E of the driving
field in the individual nanobars and the intensity of the trans-
mitted fundamental harmonics.

B. Nonlinear effective medium approximation

As discussed in Appendix D, the effective conductivity
�σ

(3)
eff (ω + ω + ω → 3ω) describing the generation of the

third harmonics via the canonical process reads

�σ
(3)
eff (ω + ω + ω → 3ω)

= sQ3(ω)Q(3ω)�σ (3)(ω + ω + ω → 3ω). (14)

The Q3(ω) term describes the enhancement of the driving THz
field inside the nanobars, whereas the Q(3ω) term reflects
the propagation of the resulting third harmonics through the
heterogeneous structure.

While the effective nonlinear photoconductivity is directly
proportional to the nonlinear mobility [Eq. (2)], one should
keep in mind that the dependence on the excitation density N
is more complex as it appears also in the field enhancement
factors Q(ω) and Q(3ω). In the linear case, this dependence
of Q(ω) leads to the blue shift of the plasmons [18].

C. THz wave propagation in nonlinear medium

The amplitude of the electric field �E of a wave generated
by a surface current density �Jeff in a homogeneous optically
thin layer at an interface between air and a substrate with
refractive index nsub reads (e.g., the Appendix in Ref. [18])

�E = − Z0

1 + nsub
�Jeff , (15)

where Z0 is the vacuum impedance.
In our case, the surface current density �Jeff is an integral

of the nonlinear effective current density over the thickness of
the nanostructure,

�Jeff (3ω) =
∫

� jeff (3ω)dz

=
∫

3

4
�σ

(3)
eff (ω + ω + ω → 3ω)E3

eff (ω)dz. (16)

The only quantity which is potentially dependent on the
depth z inside the layer is the carrier density N entering
through Eqs. (14) and (2) and also through the field en-
hancement factors Q. In order to avoid a heavy mathematical
analysis (leading to complex expressions even in linear inho-
mogeneous media [24]), we adopt here the approximation that
carriers are distributed in the nanobar layer homogeneously.
If each photon is absorbed and generates an electron-hole
pair, the integral

∫
N (z)dz reduces to the excitation photon

fluence F (number of photons in a laser pulse per unit area).
The assumption of a homogeneous distribution is well justi-
fied in high-mobility semiconductors like GaAs or InP where
diffusion homogenizes the initially inhomogeneous carrier
population on the picosecond timescale [25].

Altogether, the sheet current density responsible for the
generation of the third harmonics reads

�Jeff (3ω) = s

4
Q3(ω)Q(3ω)e0Fμ(3)

× (ω + ω + ω → 3ω)E3
eff (ω). (17)

In the experiments, the spectra �E are usually normalized
by the complex amplitude ET of the wave transmitted through
the nonphotoexcited sample. This relative strength of the
third-harmonic generation in the small signal limit constitutes
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an important output of this paper:

�ENL(3ω)

ET(ω)
= − Z0e0F

[1 + nsub(ω)]3
sQ3(ω)Q(3ω)

× E2
inc(ω)μ(3)(ω + ω + ω → 3ω), (18)

which can be compared with experimental results.

D. Discussion

The relative signal strength [Eq. (18)] is controlled by the
morphology of the structure, which is encoded in the filling
factor s and in the magnitude of the Q factors: These merge
into s|Q4| when the dispersion of material properties is neg-
ligible. For low excitation fluences F , the photoconductivity
does not alter the dielectric contrast between the nanobars
and the host medium significantly (i.e., | �σ

ωε0
| � ε ≈ 12 in

GaAs), which means that Q is almost independent of F and
the third-harmonic signal [Eq. (18)] thus increases linearly
with the excitation fluence F (Fig. 6). For high excitation
fluences (i.e., | �σ

ωε0
| 	 ε), the enhanced photoconductivity of

the nanobars screens more the incident electric field; |Q| is
then proportional to 1/F and therefore the measurable sig-
nal (18) decreases with increasing excitation fluence as F−3.
The relative strength of the third-harmonic signal for incident
field amplitude E inc = 10 kV/cm (Fig. 6) reaches at most 2 ×
10−7 (−134 dB). Although this signal could be enhanced by
increasing the incident field, it would still remain close to the
sensitivity limit of common optical pump-THz probe setups
(for illustration, a dynamic range of 100 dB was reached in
Ref. [26] after 14 hours of data acquisition). The low value of
the measurable signal essentially stems from Eq. (13), which
reduces to 1/[(1 − s)(ε + i�σ

ωε0
)] for |ε| 	 |εh|; the amplitude

of Q is thus very low (�1) as a result of the high permittivity

FIG. 6. Solid lines: The relative strength of the third-harmonic
generation produced by a fundamental wave with frequency 0.5
THz with amplitude E inc = 10 kV/cm incident on the GaAs nanobar
layer (a = 250 nm, meff = 0.07me, τs = 270 fs, room temperature)
as a function of the excitation fluence, calculated using Eq. (18). The
dashed style of the orange line emphasizes that Eq. (18) ceases to be
valid for signals exceeding 10%.

of semiconductors and it further decreases with increasing
photoconductivity.

A fundamental improvement of the measurable signal can
be achieved using metallic nanoslits concentrating the electric
field into the semiconductor [27,28]. In the presented for-
malism, the metal then plays the role of the host medium:
its high conductivity implies a high permittivity magnitude
(e.g., |εh| ≈ | iσh

ωε0
| in gold at 1 THz). As long as s|εh| 	

(1 − s)|ε + i�σ/(ωε0)| (i.e., not an extremely low filling
fraction or extremely high photoconductivity �σ ), the en-
hancement factor Q reduces to 1/s and the electric field E
inside nanobars thus easily exceeds the incident one Einc for
low filling factors [27,28]. The third-harmonic signal is thus
considerably enhanced and it remains proportional to the ex-
citation fluence for a broad range of parameters (Fig. 6). The
photoinduced nonlinear transmittance exceeds 10% (this level
is the limit for which our theory built on the small signal
limit is expected to remain valid) for excitation fluence F =
3 × 1010 photons/cm2, which can be generated even by a
femtosecond laser oscillator. There is no principal obstacle for
generating stronger nonlinear signals; a reasonable theoretical
description (like finite-difference time-domain numerical cal-
culations [29]) should additionally include namely the deple-
tion of the driving field on conversion into higher harmonics.

The observed excitation fluence dependence (Fig. 6) for
nanobars embedded in a dielectric material is analogous to
the linear response of photoexcited inhomogeneous systems
[20]. The nanobars in the dielectric structure do not form
a percolation pathway, therefore the photoinduced effective
response becomes limited by the capacitive reactance of the
dielectric host medium above a certain level of nanobar pho-
toconductivity. Conversely, the nanobars in metallic nanoslits
are effectively percolated by the conducting metallic parts,
therefore their effective photoconductivity scales linearly
with the photoconductivity of the nanobars under common
conditions.

E. Limitations

Semiclassical calculations of linear response of charges
confined in semiconductor nanostructures accurately capture
the physics for nano-object sizes exceeding tens of nanome-
ters; quantum effects such as discrete quantum transitions
start to play role only for smaller sizes or lower tempera-
tures [30]. Since nanobars optimized for a strong nonlinear
terahertz response are much wider, we believe that the semi-
classical approach should be safely valid. We also neglected
the THz-field-induced intervalley scattering which decreases
the mobility of charges due to their scattering into side valleys
with higher effective mass [10]. Nevertheless, this influence
should be minor as the corresponding nonlinearity is much
weaker than that due to the confinement (Sec. II D).

For practical realization, an additional insulating layer
should separate the semiconductor nanobars from the metal
to keep the charges confined in the nanobars and to suppress
a band bending. We verified that even a 5-nm-thick insulating
layer of a high-permittivity material such as TiO2 does not
compromise the outcome of the effective medium approxima-
tion employed in this letter and the response of the structure
is thus still described by Eq. (18).
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Strictly speaking, Eq. (18) provides the signal just after
thin photoconducting layer. The fields on the left-hand side of
Eq. (18) involve different frequency ranges and therefore the
instrumental functions do not cancel out from the measured
signals as in the case of linear spectroscopy [31]. A quan-
titative analysis of the experimentally measured signals thus
should consider the detector response function together with
spectral reshaping due to spatiotemporal transformations on
propagation through focusing optics [32,33] or other disper-
sive elements. Furthermore, the signal [Eq. (18)] still involves
the profile of the incident wave Einc, which should also be
determined to permit quantitative analysis.

IV. SUMMARY

Monte Carlo calculations of charge motion driven by an
intense oscillating electric field have been developed to cal-
culate the generalized nonlinear mobility spectra μ[α](αω)
(representing the normalized amplitude of the charge velocity
oscillations at frequency αω induced by a frequency ω) and
the nonlinear mobility spectra μ(n) analogical to the nonlin-
ear susceptibility χ (n) in optics. The nonlinear response of
confined charges including efficient high-harmonic generation
occurs even for moderate driving electric fields. Although the
third-order nonlinear coefficient in optimum-sized nanobars
is more than 20 times stronger than in graphene (one of the
most nonlinear terahertz materials known so far), the non-
linear terahertz signal produced by isolated nano-objects is
fundamentally suppressed due to the screening of the incident
electric field by depolarization fields, and it is thus too weak
to be observed experimentally. The full potential of the strong
confinement-induced nonlinearity can be fully exploited on
embedding the nano-objects into metallic nanoslits: the con-
centration of the field into the semiconductor easily generates
a nonlinear photoinduced terahertz signal comparable with the
linear-response signal. This paves a way toward exploitation
of terahertz nonlinearities using existing sources delivering
only moderate intensities of the terahertz radiation.
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APPENDIX A: COMPLEX SPECTRA OF GENERALIZED
MOBILITIES

In Fig. 7 we illustrate the real and imaginary parts of the
generalized mobilities μ[α] corresponding to the amplitudes
shown previously in Fig. 2. These spectra are linear combi-
nations [Eq. (7)] of nonlinear mobilities μ(n), which exhibit a
rather complex shape themselves (Sec. II D).

APPENDIX B: ELECTRIC FIELD INSIDE AN OPTICALLY
THIN LAYER

Wave propagation inside a multilayered stack can be
generally described using a transfer matrix method. The ho-
mogenized nanobar structure is optically thin, therefore the
phases of the waves acquired during the propagation through
this thin layer can be neglected. The conditions of continuity
of tangential components of electric and magnetic fields (E
and H , respectively) at both interfaces thus reduce to

Einc + ER = EF + EB = ET

Hinc − HR = HF − HB = HT,
(B1)

where the subscripts inc, R, and T refer to the incident, re-
flected and transmitted waves, respectively. The indices F
and B represent the waves propagating forward and backward
inside the thin film (Fig. 8). Since H = n

Z0
E , where n is the

refractive index of the pertinent layer and Z0 is the vacuum
impedance, the set of Eqs. (B1) yields the total electric field

FIG. 7. Examples of the real and imaginary part of generalized mobilities μ[α] for 100-nm-wide GaAs nanobars (meff = 0.07me, τs =
100 fs) at room temperature.
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FIG. 8. Scheme of the propagation of the electromagnetic waves
in a layered structure.

inside the thin layer (which is the field Eeff from Fig. 1)

EF + EB = 2Einc

1 + nsub
. (B2)

Note that the electric field inside the thin layer is indepen-
dent of its refractive index, which is a direct consequence of
neglecting the propagator terms. An important implication is
that the electric field inside the layer will remain the same
when the layer is photoexcited.

APPENDIX C: LINEAR EFFECTIVE MEDIUM
APPROXIMATION: BRICK-WALL MODEL

For THz electric field polarized perpendicularly to the
nanobars (Fig. 1), the investigated nanobar array approxi-
mately behaves as an array of planar capacitors connected in
series (e.g., Refs. [21–23]). Its effective permittivity without
photoexcitation then follows the textbook formula

εeff = εhε

sεh + (1 − s)ε
, (C1)

where ε is the (linear) permittivity of the nanobars and εh

is the permittivity of the material between the nanobars. On
photoexcitation, the response of the nanobars changes due to
the photoinduced conductivity to ε + i�σ L/(ωε0). The effec-
tive permittivity then changes from εeff to εeff + i�σ L

eff/(ωε0),
where the photoinduced effective conductivity can be evalu-
ated using (C1):

�σ L
eff = �σ L εh

sεh + (1 − s)ε

εh

sεh + (1 − s)
(
ε + i�σ L

ωε0

) . (C2)

The normal component of the displacement vector is pre-
served throughout the entire structure, i.e., εeffEeff,0 = εE0

where Eeff,0 is the (effective) electric field inside the homoge-
nized layer and E0 is the electric field inside the nanobar. We
thus immediately obtain

E0

Eeff,0
= εh

sεh + (1 − s)ε
. (C3)

Analogically, the normal component of the displacement vec-
tor is preserved also on photoexcitation, i.e.,(

εeff + i�σ L
eff

ωε0

)
Eeff =

(
ε + i�σ L

ωε0

)
E . (C4)

The field E inside a photoexcited nanobar thus becomes

E

Eeff
= εh

sεh + (1 − s)
(
ε + i�σ L

ωε0

) ≡ Q(ω). (C5)

We denote this expression as Q and its physical meaning
is the enhancement of the electric field inside the nanobars,
compared to the effective electric field in the homogenized
layer.

For a later comparison between the linear and nonlinear
effective response, it is interesting to notice that the transient
effective conductivity can be elegantly expressed using the
enhancement factors:

�σ L
eff (ω) = sQ0(ω)Q(ω)�σ L(ω), (C6)

where Q0 is the enhancement factor without photoexcitation
(�σ L = 0).

APPENDIX D: NONLINEAR EFFECTIVE MEDIUM
APPROXIMATION

Recalling the linear Maxwell-Garnett mixing formula (e.g.,
Ref. [34])

εeff − εh

εeff + Kεh
= s

ε − εh

ε + Kεh
, (D1)

we realize that it coincides with the brick-wall model when we
set K = 0. Nonlinear effective response within the Maxwell-
Garnett approximation has been investigated extensively, e.g.,
in Refs. [35–37]. The key formula for our particular structure
is Eq. (38) in Ref. [37], which was derived for dilute spherical
inclusions (i.e., depolarization factor K = 2 and filling factor
s � 1) and where we can ignore the second-order term due
to the centrosymmetric character of our structure. In our nota-
tion, we thus start from the expression

�σ
(3)
eff (ω + ω + ω → 3ω)

= s
3εh(3ω)

ε(3ω) + 2εh(3ω)

[
3εh(ω)

ε(ω) + 2εh(ω)

]3

×�σ (3)(ω + ω + ω → 3ω), (D2)

which links the third-order nonlinear effective conductivity
of the composite �σ

(3)
eff and the third-order conductivity of the

nanobars �σ (3). We need to generalize this relation for the
nondilute limit and for a general depolarization factor K . This
was to a large extent done in Eq. (5.8) in Ref. [35], which
permits us to rewrite (D2) as

�σ
(3)
eff (ω + ω + ω → 3ω)

= s
εeff (3ω) + Kεh(3ω)

ε(3ω) + Kεh(3ω)

[
εeff (ω) + Kεh(ω)

ε(ω) + Kεh(ω)

]3

×�σ (3)(ω + ω + ω → 3ω). (D3)

Substituting for εeff from (D1), replacing the nanobar permit-
tivity ε by the value on photoexcitation ε + i�σ L

ωε0
and using the
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definition of the field enhancement factor [Eq. (C5)], we thus
obtain

�σ
(3)
eff (ω + ω + ω → 3ω)

= sQ3(ω)Q(3ω)�σ (3)(ω + ω + ω → 3ω). (D4)

Unlike in (C2), all enhancement factors entering this equa-
tion correspond to the photoexcited state. The Q3(ω) term

describes the enhancement of the incident THz field inside
the nanobars, whereas the Q(3ω) term reflects the propagation
of the resulting third harmonics through the heterogeneous
structure.

The development of nonlinear effective medium theories
still remains an abundant field itself. The approach adapted
here is thus inevitably highly simplified and we try to empha-
size here just the most important behavior.
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[15] H. Němec, P. Kužel, and V. Sundström, Phys. Rev. B 79, 115309
(2009).
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