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Pseudospin resonances reveal synthetic spin-orbit interaction
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We investigate a spinful double quantum dot coupled to leads in a pseudospin valve configuration. The
interplay of interaction and interference produces, in the stability diagram, a rich variety of current resonances
modulated by the system parameters. In the presence of ferromagnetic leads and pseudospin anisotropy, those
resonances split, turn into dips, and acquire a Fano shape, thus revealing a synthetic spin-orbit interaction induced
on the double quantum dot. A set of rate equations derived for a minimal model captures those features. The
model accurately matches the numerical results obtained for the full system in the framework of a generalized
master equation and calculated within the next to leading order approximation.
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I. INTRODUCTION

Quantum dots (QDs) are characterized by a charging en-
ergy and by a discrete energy spectrum, both originating from
the spatial confinement of their electronic wave functions.
The many-body spectrum of QDs is probed in great detail by
coupling them weakly to metallic leads and measuring their
transport characteristics as a function of bias and gate voltage.
The sequential tunneling of electrons, hopping from source
to drain through the dots, typically produces a differential
conductance with Coulomb diamonds decorated by parallel
resonant lines which are the spectroscopic signatures of the
charging energy and the discrete many-body spectrum.

Degeneracies [1] enrich the sequential tunneling dynamics
with interference effects. The latter originate from the coher-
ent superposition of the degenerate states which arise in this
coherent-sequential-tunneling (CST) regime and are modu-
lated by the external parameters like the bias and gate voltage.
For a spinful level coupled to noncollinearly polarized ferro-
magnetic leads (a QD spin valve), interference between the
degenerate spin states induces spin accumulation, precession,
and relaxation, with a resulting nonequilibrium spin polariza-
tion of the dot [2–9] and spin torque on the leads [10].

For a QD spin valve with almost antiparallel lead polariza-
tion, a novel spin resonance has been predicted in [11] within
the one-particle Coulomb diamond. A crucial role in this
phenomenon is played by the exchange magnetic field [2] gen-
erated by virtual electronic fluctuations between the dot and
the leads, i.e., the Lamb shift correction to the dot Hamilto-
nian. Orbitally degenerate states support as well interference if
combined with couplings to the leads which mix the tunneling
channels [12,13], as has been demonstrated for semiconductor
wires [14,15], QD molecules [16–22], single-molecule junc-
tions [20,23,24], and suspended carbon nanotubes (CNTs)
[25]. Moreover, exchange magnetic fields are able to alter the
symmetry of Kondo states [26].
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The control of a QD spin valve is a paradigmatic example
of spintronics. Valleytronics concerns instead the manipu-
lation of a state living in a twofold orbitally degenerate
space. Very recently, this concept has been further extended
to flavortronics [27], for interacting systems with n-fold
degeneracy.

In this article, we investigate the interplay between val-
leytronics and spintronics, between the pseudospin of a double
quantum dot (DQD) with orbital degeneracy and the spin
polarization of the ferromagnetic leads. The spatial decay of
the Coulomb interaction implies a pseudospin anisotropy on
the DQD. In the presence of ferromagnetic leads, synthetic
spin-orbit interaction (SOI) emerges. The synthetic SOI inter-
twines the spin and the pseudospin degrees of freedom and
is revealed by a set of current resonances which split, turn
into dips, and acquire a Fano shape by changing the spin
polarization of the leads.

The paper is organized as follows: In Sec. II the model for
the DQD single-electron transistor in Fig. 1 is introduced, with
particular emphasis on the form of the tunneling rate matrices
characterizing the coupling between the leads and the system.
Section III is dedicated to the quantum transport theory in
the Liouville approach which underlies the calculation of the
transport characteristics for the system. The numerical results
and their interpretation in terms of a minimal model are dis-
cussed in Sec. IV. A brief summary and concluding remarks
are given in Sec. V.

II. MODEL

The spinful DQD coupled to ferromagnetic leads, schemat-
ically shown in Fig. 1, is described by the system-bath
Hamiltonian

Ĥ = ĤDQD + Ĥleads + Ĥtun (1)

in which we distinguish, respectively, the DQD, the leads, and
the tunneling component. The DQD Hamiltonian is the one of
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FIG. 1. Schematic setup of a DQD in a pseudospin valve config-
uration: The left lead (L) is more strongly coupled to the bottom dot
(B), the right lead (R) to the top dot (T). The opening angle θ � π

between the pseudospin polarization of the leads ensures the mixing
of the pseudospin states during the tunneling event. The bias voltage
(Vb) applied to the leads and the gate voltage (Vg) control together
the transport characteristics of the DQD. The blue arrows indicate
the parallel spin polarization of the leads.

a spinful interacting double-level system

ĤDQD =
∑

i=T,B

[(eVg + ε0)n̂i + Un̂i↑n̂i↓] + V n̂Tn̂B, (2)

where n̂iσ = d̂†
iσ d̂iσ counts the number of electrons on the ith

dot with spin σ , being d̂iσ the corresponding electronic an-
nihilation operator, e the electronic charge, and n̂i = ∑

σ n̂iσ .
Moreover, ĤDQD contains the on-site energy ε0 shifted by a
gate voltage Vg, as well as U and V , respectively the local
and the interdot Coulomb interaction. In general, we expect
U > V as it is energetically more favorable to distribute elec-
trons on two separated dots, rather than to confine them on the
same one, due to the decay of the Coulomb interaction as a
function of the distance between the involved electrons.

For the understanding of the interference effects presented
later, it is convenient to express ĤDQD in terms of a pseudospin
associated with the orbital degree of freedom (i = T, B). We
introduce to this end the three components of the pseudospin
operator

T̂α = 1

2

∑
τ i j

d̂†
iτ σ

α
i j d̂ jτ , (3)

where α = x, y, z and σα are the Pauli matrices. The (total)
pseudospin operator is given by T̂ 2 = T̂ 2

x + T̂ 2
y + T̂ 2

z . We fur-
ther notice that the occupation numbers for the top and bottom
dot can be expressed as

n̂T,B = N̂

2
± T̂z, (4)

where N̂ = n̂T + n̂B is the total particle number operator of
the system. Hence, we can reformulate the Hamiltonian as

ĤDQD =
(

ε − U

2

)
N̂ + U + V

4
N̂2 + (U − V )T̂ 2

z , (5)

where ε = eVg + ε0. In this representation, the difference be-
tween the local and intersite Coulomb repulsion appears as an
easy-plane anisotropy of the pseudospin as seen in the last
term of Eq. (5). The latter vanishes in the zero- and four-
particle subspaces (both pseudospin singlets) while it reduces
to a constant energy shift when evaluated on the one- and the

three-particle subspaces (corresponding both to pseudospin
doublets).

Most importantly, we can classify the vectors of the two-
particle subspace according to their spin and pseudospin. The
spin-singlet, pseudospin-triplet states

|S = 0, Tz = +1〉 = d̂†
T↑d̂†

T↓|∅〉,

|S = 0, Tz = 0〉 = 1√
2

(d̂†
T↑d̂†

B↓ − d̂†
T↓d̂†

B↑)|∅〉,

|S = 0, Tz = −1〉 = d̂†
B↑d̂†

B↓|∅〉

(6)

are complemented by the spin-triplet, pseudospin-singlet ones

|Sz = +1, T = 0〉 = d̂†
T↑d̂†

B↑|∅〉,

|Sz = 0, T = 0〉 = 1√
2

(d̂†
T↑d̂†

B↓ + d̂†
T↓d̂†

B↑)|∅〉,

|Sz = −1, T = 0〉 = d̂†
T↓d̂†

B↓|∅〉.

(7)

It is only on the pseudospin-triplet component of the two-
particle subspace, spanned by the vectors in Eq. (6), that one
appreciates the anisotropy: It is energetically more favorable
for the pseudospin vector to be in the x-y plane rather than
to point toward the z direction as it costs additional energy to
localize both electrons on the same dot.

The DQD is tunnel-coupled to the leads, fermionic baths
described by the Hamiltonian Ĥleads = ∑

b εbĉ†
bĉb, where the

collective lead index b = {lkσl} comprises l = L, R labeling
the left or right lead, k the momentum vector, indicated in
boldface, as all other vectors in this work, and σl the spin
in the specific lead quantization axis (different, in general,
from the one of the system). The annihilation operator ĉb

destroys the lead electron with the corresponding energy εb.
We assume for the leads, in the spirit of the Stoner model for
itinerant ferromagnets, a spin-dependent dispersion relation
εlk↑l �= εlk↓l , yielding a different density of states at the Fermi
energy glσl (EF) for the majority and minority spin states. The
spin polarization for the lead l is thus obtained as

Pl
s = gl↑l (EF) − gl↓l (EF)

gl↑l (EF) + gl↓l (EF)
. (8)

The leads are kept at the same temperature T , with the
electrochemical potentials μl modulated by the external bias
μL,R = ±eVb/2.

The tunneling Hamiltonian

Ĥtun =
∑
biσ

tb,iσ ĉ†
b d̂iσ + t∗

b,iσ d̂†
iσ ĉb (9)

combines via the tunneling amplitudes tb,iσ the operators of
the leads with the four system operators {d̂T↑, d̂B↑, d̂T↓, d̂B↓}.
The tunneling amplitudes incorporate several aspects of the
tunneling process, related to the specific geometry of the tun-
nel barrier. For systems with negligible intrinsic SOI and very
localized dot-wave functions, the tunneling amplitudes tlkσl ,iσ

can be factorized into a spin and an orbital overlap:

tlkσl ,iσ ≈ ε0〈lkσl |iσ 〉 = ε0〈lk|i〉〈σl |σ 〉. (10)

The explicit derivation of the tunneling amplitudes for a spe-
cific microscopic model is given in Appendix A 1.
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The calculation of the CST dynamics of a system with a
quasidegenerate many-body spectrum requires the evaluation
of the tunneling rate matrices [28,29]. The latter are deduced
from Ĥtun and are defined on the single-particle space of the
system as

�l
iσ, jσ ′ (E ) = 2π

h̄

∑
kσl

t∗
lkσl ,iσ tlkσl , jσ ′ δ(E − εlkσl ). (11)

To proceed further in the analysis of the tunneling rate matri-
ces, we also assume the density of states for both spin species
to be rather smooth in the vicinity of the Fermi level. We thus
introduce the approximation

δ(E − εlkσl ) ≈ glσl (EF)

gl↑l (EF) + gl↓l (EF)

∑
τl

δ(E − εlkτl ). (12)

The sum over the lead spin index τl compensates, in the limit
E → EF, the denominator, and Eq. (12), integrated on the
momenta k, becomes exact.

By combining Eqs. (10)–(12), we obtain a tunneling rate
matrix of the form

�l
iσ, jσ ′ (E ) = 2π

h̄
ε2

0

∑
k

〈i|lk〉〈lk| j〉
∑
τl

δ(E − εlkτl )

×
∑
σl

glσl (EF)

gl↑l (EF) + gl↓l (EF)
〈σ |σl〉〈σl |σ ′〉, (13)

which can be factorized into a bare tunneling rate, an orbital
and a spin component

�l = �l
0Al ⊗ Bl , (14)

where we omit, for simplicity, the energy dependence. The
bare tunneling rate �l

0, and the generic elements of the orbital
Al

i j and of the spin matrix Bl
σσ ′ , are defined in terms of the

wave function overlaps and single-particle spectra:

�l
0 =2π

h̄
ε2

0

∑
ikσl

|〈i|lk〉|2δ(E − εlkσl ), (15)

Al
i j =

∑
kσl

〈i|lk〉〈lk| j〉δ(E − εlkσl )∑
aqτl

|〈a|lq〉|2δ(E − εlqτl )
, (16)

Bl
σσ ′ =

∑
σl

glσl (EF)

gl↑l (EF) + gl↓l (EF)
〈σ |σl〉〈σl |σ ′〉. (17)

Since both Al and Bl are Hermitian 2 × 2 matrices of trace 1,
they can be expanded in terms of Pauli matrices as

Al =
(
12

2
+ Pl

o

2
nl

o · σ

)
,

Bl =
(
12

2
+ Pl

s

2
nl

s · σ

)
,

(18)

where Pl
s is the spin polarization defined in Eq. (8), nl

s is the
direction of the spin quantization axis for the lead l , and σ

is the vector of the Pauli matrices. Analogously, we define
Pl

o and nl
o as the strength and the direction of the orbital

(pseudospin) polarization of the l lead.
The pseudospin polarization of the lead allows for a sim-

ple physical interpretation, in connection to the pseudospin

formulation of the system Hamiltonian. Full pseudospin po-
larization in the z direction indicates an exclusive coupling to
the top (or to the bottom) dot. Components in the x-y plane
describe instead coherent tunneling of one electron to both
orbitals.

It is thus understandable how such off-diagonal com-
ponents of the tunneling rate matrix are necessary for the
observation of interference effects. In particular, in complete
analogy to the spin valve [3], tunneling is forbidden from
a DQD with maximum expectation value of the pseudospin
in a given direction (i.e., 1/2 for the one- and three-particle
sector, 1 for the two-particle sector) and a lead fully polarized
in the opposite direction. Exemplarily, a state with double
occupation of the top dot cannot release any electron to a
lead which only couples to the bottom dot. The pseudospin
formulation allows us to capture on an equal footing also the
other polarization direction which, on the contrary, is not so
easily described within the position representation.

In the following, we choose parallel spin and almost an-
tiparallel pseudospin directions:

nL,R
o =

(
cos

θ

2
, 0,∓ sin

θ

2

)
(19)

with the opening angle θ = 0.95π (cf. Fig. 1). Moreover,
we will always use equal spin (orbital) polarization for both
leads in our calculations (Ps = PL

s = PR
s and Po = PL

o = PR
o ).

Furthermore, we assume that the axis of the lead spin σl and
the one of the system σ coincide so that we switch to σ as
the overall spin index. Finally, we consider high pseudospin
polarizations (Po ≈ 1) to achieve an essentially closed pseu-
dospin valve [11].

A concrete example of pseudospin description is given in
[25]. The angular momentum states of the CNT provide a
two-level system with symmetry-protected degeneracy. The
pseudospin polarization of the leads is there related to the
extent and position of the contact region between the lead and
the CNT. The localized contact provides an almost full polar-
ization. The control of the phase and strength of the tunneling
amplitudes can be achieved with the help of a longitudinal
magnetic field acting on the CNT, as recently proved in [30].

In Appendix A 1, we propose instead a microscopic model
based on the DQD geometry of Fig. 1. We explicitly relate the
position of the dots to the parametrization of the tunneling rate
matrices components Al and Bl and thus reproduce the desired
pseudospin valve parameters �l

0, Po, and θ . The specific setup
chosen in this paper would then correspond to a situation
where the left (right) lead is primarily coupled to the bottom
(top) dot. Additionally, the opening angle θ � π accounts
for a small component of coherent, simultaneous tunneling
through both dots.

Finally, it is interesting to notice how an asymmetry in the
on-site energy of the DQD as well as a top-bottom tunneling
amplitude t in the Hamiltonian could be seen in the framework
of pseudospin as a pseudo-magnetic-field:

ĤDQD =
(

ε̄ − U

2

)
N̂ + U + V

4
N̂2 + (U − V )T̂ 2

z + Bo · T̂

(20)
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with ε̄ = (εT + εB)/2 + eVg, Bo,x = 2Re t , Bo,y = 2Im t ,
and Bo,z = 
ε = εT − εB. The tunneling and the orbital
asymmetry would lift the orbital degeneracy of our system
and thus destroy the pseudospin resonances if the magnitude
of such Zeeman-like splitting is big enough. We argue
that a small hopping and asymmetry |t |,
ε < h̄�0 are not
detrimental as the coupling to the leads �0 cannot resolve the
lifted degeneracies. Therefore, one still expects interference
effects to appear. The pseudo-magnetic-field Bo would simply
add to the exchange one, that, as explained in the next section,
is generated by the virtual electron fluctuations between the
DQD and the leads.

III. TRANSPORT THEORY

We calculate the transport characteristics following two
complementary approaches. On the one side, we derive a
generalized master equation (GME) for the reduced density
matrix in a next to leading order expansion in the tunneling
coupling. We then evaluate the steady state current and differ-
ential conductance by numerical integration of the GME.

On the other side, in the appropriate range of parameters,
we deduce from the GME a minimal set of coupled rate equa-
tions involving a small number of relevant observables (i.e.,
the occupation probabilities of the empty and singly occupied
DQD supplemented by the spin-resolved components of the
pseudospin vector). The analytical solution of such equations
allows us for a clear interpretation of the numerical results in
terms of CST dynamics.

A. Generalized master equation

The starting point for the derivation of a GME is the
Liouville–von Neumann equation. The latter can be formu-
lated in terms of the Liouville superoperator L

˙̂ρ(t ) = − i

h̄
[Ĥ, ρ̂] =: Lρ̂(t ), (21)

where Ĥ is the Hamiltonian in Eq. (1) and ˙̂ρ(t ) is the time
derivative of the density matrix for the full system-bath model.
The Liouville superoperator is a linear operator acting on the
vector space of the Hermitian operators, themselves defined
on the Fock space of the system-bath model.

The aim of the GME is to focus on the dynamics of the
system. We thus integrate Eq. (21) over the leads’ degrees
of freedom and obtain an equation of motion for the reduced
density matrix ρ̂red = Trleads{ρ̂}. The GME, as compared to
the Pauli master equation, also retains the dynamics of the
coherences (i.e., the off-diagonal terms) of ρ̂red. This approach
is necessary for systems exhibiting a degenerate spectrum and
it allows us to capture interference effects even in interacting
systems weakly coupled to leads [3,6,15,24,25].

To this end, it is useful to split the full Liouvillian L
into the sum of three terms L = Lleads + LDQD + Ltun each
indicating, in analogy to Eq. (21), the commutator with the
corresponding component of the Hamiltonian in Eq. (1). The
equation of motion for ρ̂red is deduced within a perturbative
scheme for the tunneling Liouvillian Ltun. The method of
choice to derive a GME is the Nakajima-Zwanzig projection
operator technique [31,32]. The main idea behind this ap-

proach consists of splitting the total density operator into two
components: one in which the QD system and the leads are
separated (P ρ̂) and the other in which, on the contrary, the en-
tanglement of the QD system and the leads is captured (Qρ̂).
The projectors extracting these two components are defined
as P = Trleads{•} ⊗ ρ̂leads and Q = 1 − P , where ρ̂leads is the
reference equilibrium density matrix of the leads.

The Liouville–von Neumann equation transforms into a set
of coupled equation for the factorized and the nonfactorized
components, respectively P ρ̂ and Qρ̂. By formally solving
the equation for Qρ̂ and inserting the result into the equation
for P ρ̂, one obtains the Nakajima-Zwanzig equation for the
factorized component of the density operator P ρ̂ [33]:

P ˙̂ρ(t ) = LDQDP ρ̂(t ) +
∫ t

0
dsK(t − s)P ρ̂(s) (22)

with the kernel superoperator

K(t ) = PLtunḠQ(t )LtunP (23)

containing the propagator for the entangled part ḠQ(t )
defined as

ḠQ(t ) = e(LDQD+Lleads+QLtunQ)t . (24)

A final, formally trivial, trace over the leads of Eq. (22)
yields the desired equation of motion for the reduced density
operator.

Equation (22) is still exact since it contains all orders in the
tunneling Liouvillian Ltun as it is easily verified by inspection
of Eq. (24). Moreover, Eq. (22) also captures memory effects,
as the dynamics of the reduced density matrix at time t de-
pends on the state of the system at all previous times. In the
present work, we concentrate, though, only on the steady state
of the system, defined as ρ̂∞

red := Trleads{ρ̂(t → ∞)}.
With the help of the Laplace transformation, the convolu-

tive form of the kernel, and the final value theorem, we obtain
the following equation for the stationary reduced density op-
erator [34–37]:

Trleads
{
(LDQD + K̃)ρ̂∞

red ⊗ ρ̂leads
} = 0 (25)

with

K̃ = PLtun

∞∑
n=0

(G̃0QLtunQ)2nG̃0LtunP, (26)

where

G̃0 = lim
λ→0+

1

λ − LDQD − Lleads
(27)

is the Laplace transform of the free propagator, for the DQD
and the leads, in the absence of tunneling coupling. The
tunneling Hamiltonian does not conserve the leads’ particle
number, PL2n+1

tun P = 0 for n ∈ N; i.e., only an even number
of Ltun survives the trace over the bath degrees of freedom in
Eq. (26).

The Laplace transform of the propagation kernel calculated
at λ → 0 also serves for the formulation of the Markovian
limit of the GME:

P ˙̂ρ(t ) = (LDQD + K̃)P ρ̂(t ). (28)

Differently from Eq. (22), this equation is local in time.
Consequently, it does not contain memory effects and its
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derivation is only justified if the timescale of the evolution
of the reduced density matrix is much longer than the decay
time of the propagation kernel K(t − s) and, ultimately, of the
bath correlator functions [33].

For sufficiently small coupling to the leads (h̄�0 �
U, kBT ) also a perturbative expansion of the propagation
kernel in Eq. (26) in the tunneling Liouvillian is justified.
The first term of the sum in Eq. (26) reproduces the CST
regime

K̃(2) = PLtunG̃0LtunP . (29)

We consider here a truncation up to the next order, i.e., the co-
tunneling regime: K̃ ≈ K̃(2) + K̃(4). From Eq. (26), we obtain

K̃(4) = PLtunG̃0LtunG̃0LtunG̃0LtunP
−PLtunG̃0LtunPG̃0PLtunG̃0LtunP, (30)

where the second term compensates the reducible Wick’s con-
traction still contained in the first one [34]. A more detailed
evaluation for the CST and the cotunneling kernels is given in
Appendix A 2.

Any stationary expectation value of a system observable
can be obtained as O = TrDQD{Ôρ̂∞

red}. Moreover, from the
stationary density matrix ρ̂∞

red, also the stationary current at
lead l is evaluated,

Il = TrDQD+leads
{
KIl ρ̂

∞
red ⊗ ρ̂leads

}
, (31)

where the current kernel KIl is obtained from the propagator
kernel in Eq. (26) by changing the leftmost tunneling Liouvil-
lian with the current operator,

Îl = ie

h̄

∑
kσl aσ

tlkσl ,aσ ĉ†
lkσl

d̂aσ − t∗
lkσl ,aσ d̂†

aσ ĉlkσl , (32)

where e is the electronic charge.
Consistently, the same order in the perturbative expansion

has been kept in the propagator as well as in the current kernel.
With the help of a treatment of the cotunneling integrals
(cf. Appendix A 2) founded on the work of [34–36,38,39],
we have implemented a transport code which includes all
coherences necessary to capture the interference effects in
our system. Moreover, the next to leading order expansion
allowed for a systematic test of robustness of the interference
effects beyond the CST approximation.

B. Minimal rate model

In order to gain a clearer physical understanding of the
numerical results, we also set up a minimal model in the CST
regime [27]. To this purpose, we start from Eq. (28) and retain
only the CST kernel K̃(2) given in Eq. (29). The equation of
motion for the reduced density operator can be cast into the
simple form

˙̂ρred = − i

h̄
[ĤDQD + ĤLS, ρ̂red] + LTρ̂red, (33)

where LT describes the tunneling events among many-body
states with consecutive particle numbers and ĤLS is the Lamb
shift Hamiltonian, which renormalizes the coherent DQD
dynamics and is due to virtual charge fluctuations [20]. A
detailed derivation of Eq. (33) is given in Appendices A 2
and A 3.

We observe that, in general, Eq. (33) would yield, for
the system at hand, a set of 256 coupled equations for the
different matrix elements of ρ̂red calculated in an arbitrary
many-body basis. As we focus our interest on gate and bias
voltages corresponding to at most one particle in the DQD, we
restrict ourselves to the coupled dynamics of the populations
p0 and pσ (empty and singly occupied DQD with spin σ )
complemented each by one of the spin-resolved pseudospin
vectors T σ . These observables are obtained as the expectation
values of system operators:

p0 = 〈P̂0〉, pσ = 〈P̂σ 〉, Tσ,α = 〈P̂σ T̂αP̂σ 〉, (34)

where 〈•〉 = TrDQD{ρ̂red•}, P̂0 = |∅〉〈∅| is the projector on
the empty state, P̂σ = ∑

i d̂†
iσ P̂0d̂iσ , and T̂α is the α = x, y, z

component of the pseudospin operator defined in Eq. (3).
Due to the conservation of the particle number and z com-

ponent of the spin for parallel polarized leads, in the range
of bias and gate voltages relevant for our considerations, the
reduced density matrix is block diagonal and can be approxi-
mated with the expression

ρred ≈ p0 ⊕
(

p↑
2
12 + T↑ · σ

)
⊕

(
p↓
2
12 + T↓ · σ

)
, (35)

where ⊕ denotes a direct sum. By inserting Eq. (35) into
Eq. (28) with the kernel evaluated in the CST limit, we com-
pute the time derivatives of the expectation values of Eq. (34).
In analogy to the spin valve case discussed in [3], the follow-
ing set of coupled Bloch-like equations can be obtained:

ṗ0 = −4γ + p0 +
∑

σ

Dσ (γ − pσ + 2γ− · T σ ), (36)

ṗσ = Dσ (2γ + p0 − γ − pσ − 2γ− · T σ ), (37)

Ṫ σ = Dσ

(
−γ −T σ + p0γ

+ − pσ

2
γ−

)
+ Bσ × T σ , (38)

where we have introduced vector and scalar rates, respectively
γ± = ∑

l Po�
l
0 f ±

l (ε)nl
o and γ ± = ∑

l �l
0 f ±

l (ε). Moreover,
D↑,↓ = 1 ± Ps and, for the Fermi functions, we adopt the
notation f ±

l (ε) = [e±(ε−μl )/(kBT ) + 1]−1.
The conservation of probability imposes that ṗ0 + ṗ↑ +

ṗ↓ = 0. This relation is clearly satisfied by the differential
equations (36) and (37). Besides the gain-loss relations be-
tween the populations p0 and pσ , they contain the terms
±2Dσ γ− · T σ which ensure the coupling of the populations
to the dynamics of the spin-resolved pseudospin vectors T σ .

Three conceptually different mechanisms yield the time
evolution of the pseudospin described by such a Bloch-like
equation: the first term in Eq. (38) describes relaxation,
accumulation due to the tunneling from the zero- and to-
ward the two-particle states characterizes the following two
terms. The last term contains the spin-dependent pseudo-
exchange-field Bσ which, analogously to a magnetic field,
generates pseudospin precession. The spin-dependent pseudo-
exchange-field reads

Bσ =
∑

l

2Po�
l
0

{
Dσ [pl (E10) − pl (E2g1)]nl

o

+ Dσ̄ [pl (E2e1) − pl (E2g1)]
(
nl

o · ez
)
ez
}

(39)
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FIG. 2. Differential conductance of a DQD shows pseudospin resonances tuned by spin polarization Ps: The one-particle diamond is
highlighted by the dotted white lines in panel (a). The three vertical black lines (�,�, �) indicate the bias traces of Fig. 3. The dashed
magenta (black) line is the resonance condition of the ↑ (↓) electrons [cf. Eq. (41)]. The solid white line indicates the minimum of Bσ,⊥ which
matches perfectly a local minimum within the pseudospin resonance. The parameters are the following: U = 2V , kBT = 0.05V , Po = 0.99,
θ = 0.95π , �R

0 = 2.5 × 10−3V = 2�L
0 , ε0 = −2V , and W = 250V (bandwidth).

with

pl (x) = 1

2π
Re� (0)

(
1

2
+ i

x − μl

2πkBT

)
, (40)

where � (0)(z) is the digamma function. The subscript of the
energy Ess′ labels the energy difference between the state s
and s′ which can be the zero-particle state (0), the one-particle
state (1), and the two-particle excited/ground state (2e/2g).

Such a field arises due to virtual fluctuations of the system
to the neighboring empty and doubly occupied DQD states.
It is crucial to include in the exchange field the two-particle
states, even though we do not account explicitly for the dy-
namics of their populations. Also energy levels far from the
CST resonance do influence the exchange field due to the
logarithmic tails of the digamma functions.

The pseudo-exchange-fields associated with the majority
and the minority spins differ from each other both in strength
and orientation, thus giving raise to a SOI, which, due to the
complete absence of intrinsic spin-orbit in the system, we call
synthetic. As will become clear in Sec. IV, such synthetic SOI
determines the rich variety of phenomena decorating the first
Coulomb diamond.

It is the first line in Eq. (39) which gives the most relevant
contribution to B↑. The second line dominates, instead, B↓.
Especially for leads with a very high spin polarization, we
can conclude that the pseudo-exchange-field of minority spins
always points approximately toward the z direction, which
represents the hard axis of the pseudospin anisotropy. Instead,
the majority spin field B↑ oscillates, as a function of the bias
and gate voltage, between the two directions nL

o and nR
o .

Interestingly, for an isotropic system (U = V ) the two
fields would be collinear, with the difference in strength stem-
ming merely from the different spin-resolved density of states
in the leads. For normal metallic leads, the two fields even
coincide. It is thus clear that only the interplay of the spin
polarization in the leads and the pseudospin anisotropy can
explain the synthetic SOI.

IV. RESULTS

The stability diagram, i.e., the differential conductance dis-
played as a function of bias and gate voltage, of a DQD in the
cotunneling regime is shown, in Fig. 2, for several spin polar-
izations of the leads. We focus on the one-particle Coulomb
diamond, highlighted in panel (a) by the dotted white lines.
Here, we would normally expect a featureless exponentially
suppressed differential conductance, as the consequence of
an essentially fixed particle number and, due to Coulomb
repulsion, a smooth, exponentially suppressed current.

Contrary to the expectations, we can clearly see in panel
(a) a distinctive resonance, highlighted by the dashed black
line, cutting through the Coulomb diamond. Increasing the
spin polarization Ps [Figs. 2(b)–2(d)] leads to a splitting of
this resonance, marked by the dashed lines. In the upper right
corner of Fig. 2(d), a resonance can be observed even out-
side the diamond. Although introduced as current resonances,
the aforementioned transport features are more visible in the
differential conductance. The latter enhances, in fact, sharp
current modulations within the generally suppressed Coulomb
diamond background.

We rationalize those transport effects in terms of pseu-
dospin resonances, in analogy to the spin resonances reported
in [11]. The pseudospin is associated with the orbital degree
of freedom of the DQD. In our setup, the orbital polarizations
of the leads are almost antiparallel thus resulting in an almost
closed pseudospin valve. The latter is indicated in Fig. 1 by
the different sizes of the arrows connecting the leads and the
dots. Solely varying the coupling strength would correspond
to a sweep of the lead polarization along the z direction.

Pseudospin resonances require, instead, noncollinear or-
bital polarizations as well as an asymmetry in the bare
coupling strength �l

0 between the right and left lead. The
latter shifts the resonance away from the zero bias line [11].
The necessary σ x or, equivalently, σ y orbital polarization of
the leads translates into nondiagonal �l matrices, as seen in
Eqs. (11) and (18), which can be interpreted as tunneling to a
coherent superposition of two different orbitals. Experimental
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evidence of such coherent superpositions for QDs in the weak
tunneling regime has been reported in [14,25].

In the framework of Eqs. (36)–(38), vectorial resonance
conditions can be formulated similarly to the ansatz in
[11,27]:

Bσ · (nL
o − nR

o

) = 0. (41)

The spin-dependent exchange field generates two distinct con-
ditions, each determining the position of the corresponding
resonance in the Vg-Vb plane: the magenta (black) dashed line
in Fig. 2 for the ↑ (↓) electrons. The accuracy of Eq. (41) in
determining the resonance positions reduces as the angle θ is
chosen farther away from antiparallel alignment. In contrast
to the resonance conditions formulated in [11] and in [27],
we choose Eq. (41), where the drain and the source equally
participate, since it matches the numerical resonances on a
broader parameter range.

Despite the subtle differences, though, all three conditions
mentioned above can only predict the position of the reso-
nances, but not their character. The same resonance condition
corresponds to a dip in the current (� in Fig. 2), or to a
peak (�) and even to a Fano-like asymmetric peak-dip (�).
Finally, the current peak is strongly modulated along the
same resonance line and it can even disappear, as exemplarily
highlighted in panel (a) of Fig. 2 with the solid white line.
The discovery and explanation of such qualitative differences
in the pseudospin resonances, which originate from the in-
tertwining of spin and pseudospin, represent the main result
presented in this publication.

As a first step in the analytical understanding of the rich va-
riety of transport phenomena illustrated in Fig. 2, we calculate
the stationary current in the CST limit. The current through
the DQD can be expressed as the charge variation due to the
coupling to a specific lead. From Eq. (37), we readily obtain

IL = 4γ +
L p0 −

∑
σ

Dσ (γ −
L pσ + 2γ−

L · T σ ), (42)

where the vector and scalar rates for the left lead read,
respectively, γ−

L = �L
0 Po f −

L (ε)nL
o and γ ±

L = �0
L f ±

L (ε). The
stationary current is obtained by inserting in Eq. (42) the
populations p∞

0 , p∞
σ , and T∞

σ , i.e., the stationary solutions of
Eqs. (36)–(38).

Panels (a), (c), and (e) of Fig. 3 show a direct comparison
between the absolute value of the current as obtained from
the full numerical calculation (orange) and the analytical ap-
proach (blue) of Eq. (42). In all three cases, the analytical
result well reproduces the qualitative behavior of the current
and the position of its extrema.

For a deeper understanding of the resonances of Figs. 2 and
3, we further elaborate on the equations of motion, Eqs. (36)–
(38). To this end, we solve Eq. (38) in the stationary limit and
obtain, for the accumulated pseudospin,

T∞
σ = Fσ (bσ ), (43)

where we introduced the auxiliary function

Fσ (x) = aσ

a2
σ + |Bσ |2

(
x + Bσ · x

a2
σ

Bσ + Bσ × x
aσ

)
(44)

with aσ = Dσ γ −, together with the vector bσ =
Dσ (p0γ

+ − pσγ−/2).

FIG. 3. Effective rate analysis of the bias traces from Fig. 2(d):
The absolute value of the current shows (a) a dip at eVg = 1.9V ,
(c) a peak at eVg = 1.8V , and (e) a Fano-like shape at eVg = 1.58V .
The analytic solution of the effective CST model is depicted in blue
whereas the orange line shows the full cotunneling calculations. The
black (red) dashed lines indicate the position of the minimum of
Bσ,⊥ (Bσ,‖) and correspond to a minimum (maximum) of the current.
(b) The rate R↓↓ strongly correlates to the current. (d) The absolute
value of the z component of the spin of our system |Sz| is following
the trend of the current. (f) The logarithm of base 10 of the ratio
� = B2

↓,⊥/(a2
↓ + B2

↓,‖) highlights the two extrema of � that result in
a peak and a dip in the current.

By substituting T∞
σ into Eqs. (36) and (37), we obtain a set

of effective rate equations for the populations p0 and pσ :⎛
⎝ ṗ0

ṗ↑
ṗ↓

⎞
⎠ =

⎛
⎝−R00 R0↑ R0↓

R↑0 −R↑↑ 0
R↓0 0 −R↓↓

⎞
⎠

⎛
⎝ p0

p↑
p↓

⎞
⎠. (45)

The transition rates are schematically indicated in Fig. 4 and
defined as

R0↑ = D↑γ − − D2
↑γ− · F↑(γ−),

R0↓ = D↓γ − − D2
↓γ− · F↓(γ−),
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FIG. 4. Rate scheme of the three populations p0, p↑, and p↓: The
four arrows indicate the rates between the populations while their
size specifies the strength of them. The dashed rates for the minority
spin are furthermore lowered by the majority spin polarization of the
leads.

R↑0 = 2D↑γ + − 2D2
↑γ− · F↑(γ+),

R↓0 = 2D↓γ + − 2D2
↓γ− · F↓(γ+). (46)

Furthermore, the conservation of probability requires for the
depopulation rates Rii with i = 0,↑,↓

R00 = R↑0 + R↓0, Rσσ = R0σ . (47)

In a simple physical picture, we expect a peak in the current
whenever the pseudospin precession caused by the exchange
field releases the blockade induced by the pseudospin valve.
A dip arises, instead, whenever this mechanism is locally
suppressed. Both phenomena happen in close vicinity to the
aforementioned resonance condition Eq. (41). Only the anal-
ysis of the effective rates represented in Fig. 4 allows us,
though, to distinguish them.

In the gate and bias voltages corresponding to the one-
particle Coulomb diamond, the rates Rσ0 are much larger than
the depopulation rates Rσσ . In particular, R↓↓ is the smallest
rate, due to the additional small density of states of the minor-
ity spins.

The current is obtained by the incoherent superposition of
the minority and majority spin channels. Its modulation is
thus determined, within the one-particle Coulomb diamond,
by the depopulation rates R↑↑ and R↓↓. As confirmed by the
resemblance between panels (a) and (b) in Fig. 3, the shape of
a ↓ resonance is essentially given by the bottleneck rate

R↓↓ = D↓γ −

⎡
⎢⎣1 − |γ−|2

(γ −)2

1

1 + B2
↓,⊥

a2
↓+B2

↓,‖

⎤
⎥⎦ (48)

with B2
↓,‖ = (γ− · B↓)2

/|γ−|2 and B2
↓,⊥ = |B↓|2 − B2

↓,‖ the
exchange field components parallel and perpendicular to
γ−. In itself, R↓↓ is strongly influenced by the ratio � =
B2

↓,⊥/(a2
↓ + B2

↓,‖) in which the proposed physical explanation
based on the precession dynamics is encoded.

In the absence of the perpendicular pseudo-magnetic-field
component, no precession occurs and the bare pseudospin
valve factor |γ−|2/(γ −)2 reduces the rate. The other extreme
is reached when the ratio � peaks, therefore suppressing the
pseudospin valve factor. Such phenomenon only occurs if the
parallel component B↓,‖ is minimized since the dephasing rate
a↓ is proportional to a Fermi function, which varies smoothly
within the Coulomb diamond.

The dashed lines in Fig. 3 substantiate the accuracy of the
precession argument in determining the position of the current
extrema. The rate R↑↑, obtained by replacing ↓ with ↑ in all
the elements of Eq. (48), is used for panels (c) and (d) of
Fig. 3. In Fig. 3(e), both the suppression and the enhancing
of the current appear in close vicinity and form a Fano-like
line shape. In order to emphasize the rather weak dip, we
depicted in Fig. 3(f) the logarithm of base 10 of the ratio
�. The ratio � has two extrema which stem from minima of
the corresponding exchange field components B↓,⊥ and B↓,‖.
Despite its superficial resemblance to a Fano resonance, the
origin of this peak-dip current resonance cannot be ascribed
to the interference processes typical of Fano resonance, also
seen in QD setups [40–44].

Moreover, the relevance of � decreases if aσ � |Bσ |, i.e.,
when the dephasing rate exceeds the precession frequency and
the direction of the exchange field becomes irrelevant for the
transport. Thus, no resonances appear on the left upper corner
in correspondence to the black and magenta dashed lines of
panels (a)–(d) of Fig. 2 even if they would be predicted by the
resonance condition Eq. (41).

The analysis of the pseudospin resonances has revealed
the fundamental role played by the synthetic SOI in the un-
derstanding of the transport characteristics of our system.
The different orientations of the spin-resolved exchange fields
explain, via Eq. (41), the splitting of the resonances. Their
qualitatively different behavior as a function of the bias is
rationalized instead by the depopulation rates Rσσ and, ulti-
mately, again by the different orientation and strength of the
pseudo-exchange-fields Bσ .

V. CONCLUSIONS

A DQD weakly coupled to ferromagnetic leads in a pseu-
dospin valve configuration is characterized by a rich variety
of pseudospin current resonances. They decorate the Coulomb
diamonds with novel features which range from a peak to a dip
to a Fano shape in the current. These transport characteristics
reveal the synthetic SOI induced on the system by the inter-
play of the spin polarization of the leads and the pseudospin
anisotropy on the DQD.

Those current resonances mainly occur within the
Coulomb diamond. Despite their small amplitude, they are
rather sharp. Differential conductance measurements repre-
sent thus a preferential tool to highlight them, as shown in
Fig. 2.

We derive the tunneling rate matrices for a microscopic
model capable of reproducing the desired pseudospin polar-
ization. To this end, we gain also physical insight into the
role played by the DQD geometry in the realization of a
pseudospin valve.

The cotunneling calculations ensure the robustness of
the discussed effects also beyond the coherent-sequential-
tunneling regime. Moreover, with the help of a minimal
model, we give an accurate physical picture of the resonances
and relate their position and character to a precession dy-
namics which modulates the pseudospin valve effect. The
generality of the model allows for its applicability to the wide
class of nanoscale junctions with orbital degeneracy, includ-
ing, e.g., single-molecule junctions or CNT-QDs. Particularly,
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coherent population trapping and signatures of pseudospin
precession have been recently demonstrated in a suspended
CNT quantum dot [25] with a tunneling coupling similar to
the one proposed here.

The pseudospin precession underlying the rich variety of
the transport phenomena highlighted in this work shall leave
its fingerprints beyond the dc transport limit. To this end, we
envisage, for these systems, the investigation of current noise
as well as of the response to driven pump-probe protocols,
which would unravel the dynamics induced by the synthetic
SOI directly in the time domain.
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APPENDIX

1. Microscopic model of a pseudospin valve

In this section, we provide a microscopic model for the
coupling between a DQD and ferromagnetic leads which re-
sults in the desired pseudospin valve configuration. The wave
functions of the leads and of the dots are defined in real space
as

�lk(r)δτσl = 〈rτ |lkσl〉 and φi(r)δτσ = 〈rτ |iσ 〉. (A1)

If we assume the same spin quantization axis for the lead and
dot, the tunneling amplitude reads, accordingly,

tlkσ,iσ ′ =
∫

dr�∗
lk(r)

[
− h̄2∇2

2mel
+ vDQD(r)

+ vleads(r)

]
φi(r)δσσ ′ ≈ εi

∫
dr�∗

lk(r)φi(r)δσσ ′,

(A2)

where, due to the strong localization of the system wave
function, we neglect, in the approximation, the contribution
of the leads’ potential and εi is the energy of the localized dot
state.

The lead wave function is parametrized, in the tunneling
barrier separating the leads from the dots, in terms of ky and kz,
the components of the momentum parallel to the lead surface,
and κ , the inverse penetration length inside tunneling barrier:

�lk(r) = �⊥
lκ (x)�‖

lkykz
(y, z) = e−κx+i(kyy+kzz)

√
SLx

, (A3)

where Lx and S are, respectively, the width of the well and
the area of the lead surface perpendicular to the transport
direction. Along this direction the wave function decays expo-
nentially. It is useful, for the following, to express the inverse
penetration length κ in terms of the electron energy Eel and
the parallel momenta ky and kz:

κ =
√

k2
y + k2

z − 2mel

h̄2 Eel, (A4)

where mel is the (effective) electronic mass.

FIG. 5. Potential landscape of a lead coupled to a QD: The lead
is modeled as a (large) rectangular potential well of width Lx and is
separated by a distance xi from the QD. The work function of the
lead is denoted by φ0 and the Fermi energy by EF. The color coding
emphasizes that the bottom energy Eσ

b is bigger in its absolute value
for ↑ electrons than for ↓ electrons.

The potential landscape for one lead and one QD is
sketched in Fig. 5 and confines the electrons only along the x
direction. The bottom energy of the rectangular potential well
Eσ

b is spin dependent and the Fermi energy EF is separated
from the vacuum energy (E = 0) by the work function of the
metal φ0 [45].

With this ansatz, made in the spirit of the Stoner model for
itinerant ferromagnets, we assure a different density of states
at the Fermi energy for the different spin species, and obtain
the desired spin polarization.

The two QD’s are at distances xl
T and xl

B from the surface
of the lead l and they feature localized bound states which we
model as δ peaks centered at the position Ri of the dot. The
tunneling amplitude gets thus further simplified:

tlkσ,iσ ′ = εi〈lk|i〉 ≈ εi

∫
dr�∗

lk(r)a3/2δ(r − Ri )

= εia
3/2�∗

lk(Ri ) = a3/2

√
SLx

e−κxl
i −ik‖Ri , (A5)

where a is a normalization factor in units of length and where
we have introduced the parallel component of the momentum
k‖ = (0, ky, kz ).

In the following, we calculate the parameters �l
0, Po, and

θ starting from the definition of the tunneling rate matrix of
Eq. (11). We follow two different approaches. At first, we
employ the so called surface �-point approximation (SGPA)
[46]. Subsequently, we generalize our result by taking into
account the full dispersion relation of the ferromagnetic leads.

a. Surface �-point approximation

In a first approximation, we assume that only the state
at the surface � point, i.e., with ky = kz = 0, participates
in the transport. From Eq. (A4), we know that such a state
minimizes the inverse penetration length for a fixed electronic
energy and thus is expected to give the largest contribution
to the tunneling. Moreover, we calculate the tunneling density
matrix at the Fermi energy EF = −φ0. Under those two condi-
tions, the penetration length for the lead’s wave function reads
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λ =
√

h̄2/(2melφ0). Eventually, by inserting Eq. (A5) into the
definition of the bare tunneling rate �l

0 of Eq. (15), we obtain

�̃l
0(EF ) = 2π

h̄

ε2
0a3

SLx

∑
σ

glσ (EF)
∑

i

e− 2xl
i

λ , (A6)

where the tilde indicates the SGPA. The bare tunneling rate
is thus proportional to the total density of states of the lead
at the Fermi energy which scales as the volume in the ther-
modynamic limit and it is thus compensated by the factor
SLx at the denominator. Moreover, �̃l

0 decreases exponentially
upon increasing the distance between the dots and the lead.
For a typical work function φ0 = 5 eV, the penetration length
is approximately λ = 0.9 Å and the bare tunneling rate is
reduced roughly by an order of magnitude if one increases
the distance between the dots and the leads by 1 Å.

For the pseudospin component of the tunneling rate matrix,
one obtains

Ãl
i j = exp

( − xl
i +xl

j

λ

)
exp

(− 2xl
T

λ

) + exp
(− 2xl

B
λ

) . (A7)

From Ãl , we can deduce the polarization angle, calculated
within the same approximation:

θ̃l = arctan
[
sinh

(xB − xT

λ

)]
. (A8)

In our setup, we define the angle θ = θR − θL as the opening
angle between the two polarization vectors. Moreover, we
distribute the tilting symmetrically: θL,R = ∓θ/2. Thus, an
angle θ = 0 corresponds to a DQD connected in parallel, with
the state |T〉 − |B〉 completely decoupled from both leads.
Conversely, for θ = π the left (right) lead only couples to the
bottom (top) dot, i.e., a completely closed pseudospin valve
configuration.

From Eq. (A8), it is clear that the calibration of the
pseudospin polarization angle requires the control of the dot
position on the scale of the penetration length λ. Alternatively,
one should control with local gating the barrier height and thus
have access to penetration length itself.

Starting from Eq. (A7), it is straightforward to prove that,
within the SGPA, the strength of the pseudospin polarization
is always maximal, i.e., P̃l

o = 1. This fact is not so surprising
if one considers that only the tunneling amplitude to the state
at the surface � point is considered in the calculation of
the Ãl matrix. All the other states at the Fermi energy are
simply accounted for in the density of states. A more careful
evaluation of the tunneling amplitudes softens the condition of
full polarization. Such an evaluation offers more insight into
the dependence of the pseudospin polarization strength and
direction on the geometry of the junction.

b. Three-dimensional Stoner model

Relaxing the SGPA requires us to calculate the k-space
integrals in Eqs. (15) and (16). The fundamental integral

FIG. 6. Pseudospin valve parameters in variation of the relative
separation of the dots exemplarily shown for the left lead: (a) The
polarization angle θL and (b) the polarization strength PL

o depend on
the 
x and 
y separation of the dots. The values are obtained by a
numerical integration of Eq. (A9). The parameters which are used in
this publication (PL

o = 0.99 and θL = −0.95π/2) are highlighted by
the solid white lines. The dashed white lines, which coincide mostly
with the solid ones, indicate the contour lines obtained by using the
analytical Eqs. (A16) and (A17). The parameters are the following:
xL

T + xL
B = 5 Å, E↑

b = −16.4 eV, E↓
b = −5.0003 eV, φ0 = 5 eV. The

parameters correspond to a spin polarization of Ps = 0.99.

reads

Ii j =
∑
kσ

〈i|lk〉〈lk| j〉δ(EF − εlkσ )

= a3mel

2π2h̄2

∑
σ

∫ kσ
F

0
dk‖k‖

J0[k‖(yi − y j )]e
−(xl

i +xl
j )
√

λ−2+k2
‖√

2mel

h̄2

(
EF − Eσ

b

) − k2
‖

,

(A9)

where J0 is the Bessel function of the first kind, k‖ =√
k2

y + k2
z , and the upper integration limit

kσ
F =

√
2mel

h̄2

(
EF − Eσ

b

)
(A10)

is the Fermi momentum for the electrons of spin σ .
On the one side, we evaluated numerically the integral in

Eq. (A9), and extracted the tunneling rate parameters plotted
in Fig. 6. On the other side, further insight is gained from
analytical calculations carried out under specific conditions.
As we are interested in a DQD in weak tunneling coupling,
we assume xl

i + xl
j > 3λ. Moreover, we concentrate on the

two limiting cases of an almost vanishing and almost full spin
polarization. In the first case, we have, for a typical metallic
electron density, kσ

F � λ−1, for both spin species. Thus, the
numerator in Eq. (A9) is exponentially suppressed at the upper
integration limit and the latter can be shifted at no price to ∞.
We further neglect the k‖ dependence in the denominator and
Taylor-expand the exponent up to second order. Under these
simplifications the integral can thus be solved, to give

I0
i j = C exp

[
−xl

i + xl
j

λ
− (yi − y j )2

2λ
(
xl

i + xl
j

)
](

xl
i + xl

j

)−1
(A11)
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with

C = 2a3mel

h2

∑
σ

(
Eσ

b

EF
− 1

)− 1
2

. (A12)

Without any loss of generality, we chose the coordinate sys-
tem such that zT = zB = 0.

In the limit of almost full polarization, instead, E↓
b ≈ −φ0.

We can thus apply the SGPA for the minority spin and obtain

I fm
i j = g↑(EF)e− xl

i +xl
j

λ
φ0

EF − E↑
b

λ

xl
i + xl

j

e
− (yi−y j )2

2λ(xl
i +xl

j )

+ g↓(EF)e− xl
i −xl

j
λ , (A13)

where

gσ (EF) = 1

4π2

(
2mel

h̄2

)3/2√
EF − Eσ

b . (A14)

With the help of Eq. (A11) or Eq. (A13), we calculate the
bare tunneling coupling �l

0 at the Fermi energy and compare
it to the one obtained in the SGPA. One obtains in both cases
a reduction of the bare tunneling rate with the ratio being
proportional to (2λ)/(xl

T + xl
B) < 1 in the range of validity

of our analysis. The SGPA yields an upper limit for the bare
tunneling strength as the tunneling amplitude is smaller for
states with finite k‖ in comparison to the one at the � point.

Finally, the generic element of the pseudospin matrix reads,
independently of the spin polarization,

Al
i j (EF) =

exp
[− xl

i +xl
j

λ
− (yi−y j )2

2λ(xl
i +xl

j )

](
xl

i + xl
j

)−1

exp
( − 2xl

T
λ

)(
2xl

T

)−1 + exp
( − 2 xl

B
λ

)(
2xl

B

)−1
.

(A15)

This result is obtained in the limit of small polarization as the
constant C in Eq. (A12) factorizes both in the numerator as
well as in the denominator of the A matrix. At very high spin
polarizations the same simplification is obtained by neglecting
the minority spin contribution to the integral I fm

i j . The orbital
polarization strength and orientation angle follow as

Pl
o =

√
X 2 + Z2, (A16)

θl = arctan
( Z

X

)
, (A17)

where

X =
[
1 − (


x
2x̄l

)2]
exp

(− 
y2

4λx̄l

)
2 cosh

(

x
λ

) + 
x
x̄l sinh

(

x
λ

) (A18)

and

Z = − sinh
(


x
λ

) + 
x
2x̄l cosh

(

x
λ

)
2 cosh

(

x
λ

) + 
x
x̄l sinh

(

x
λ

) (A19)

are the components of Al multiplying, respectively, the σ x and
σ z Pauli matrices, while

x̄l = xl
T + xl

B

2
, 
x = xl

T − xl
B, and 
y = yT − yB. (A20)

In Fig. 6, we represent the pseudospin tunneling matrix pa-
rameters θL and PL

o , as obtained from the numerical evaluation

of Ii j combined with the definition of the pseudospin matrix
in Eqs. (16), (18), and (19), plotted as a function of the
relative position between the two dots measured in unit of
the penetration length λ. In accordance with the general trend
already observed in the SGPA, the polarization angle tends
to ±π/2 for a negative (positive) large 
x [cf. panel (a) in
Fig. 6]. The switch between the extreme orientation directions
becomes though smoother in the vicinity of 
y = 0, once the
contributions of finite k‖ are taken into account.

At the same time, we also notice that the strength of the
pseudospin polarization does assume values in the full range
between 0 and 1. In particular, well separated dots (
y ≈
4λ), kept though at similar distances from the leads, yield
an almost vanishing polarization strength (i.e., an incoherent
tunneling). Moving toward any other geometrical configura-
tion, the polarization strength rapidly increasing toward the
maximum value of Pl

o = 1.
In Fig. 6, we also indicate the contour lines corresponding

to the polarization strength and orientation angle assumed in
the main text. The full lines refer to the numerical calculation
of the parameters. The dashed lines correspond, instead, to the
analytical functions given in Eqs. (A16)–(A19). The crossing
points between such pairs of lines (symmetrically distributed
with respect to the axis 
y = 0) indicate microscopic realiza-
tions of the DQD junction with the desired parametrization for
the tunneling rate matrices.

2. Second- and fourth-order kernels

In this section, we discuss in greater detail how to evaluate
the second- and fourth-order perturbative contributions to the
propagation kernel, respectively K̃(2) and K̃(4) as formally
introduced in Eqs. (29) and (30) of the main text.

a. Coherent sequential tunneling

At first, we focus on the kernel describing the CST dy-
namics of interacting system with a degenerate spectrum.
According to Eq. (29), such kernel reads

K̃(2) = PLtun
1

0+ − LDQD − Lleads
LtunP, (A21)

with the two tunneling Liouvillians Ltun defining the per-
turbative order. The expression 0+ refers to the limit
G̃0 = limλ→0+ G̃0(λ) = limλ→0+ (λ − LDQD − Lleads)−1 which
should be performed at the very end of the calculation rather
than in the free propagator alone.

Within the notation for a superoperator X , it is useful to
introduce a Liouville index defined as

X+ρ̂ := X̂ ρ̂, X−ρ̂ := ρ̂X̂ , (A22)

which allows us to reformulate a commutator as [X̂ , ρ̂] =∑
α αX αρ̂. Using this notation for Ltun yields

LtunX̂ = − i

h̄

∑
p=±

∑
α=±

∑
b n

p t p̄
b,n C

p,α
b D p̄,α

n X̂ (A23)

with n running over the four different single-particle DQD
states. Beyond the α index for the different Liouville space
superoperators, we further introduced in Eq. (A23) the in-
dices p = ± and p̄ = −p which distinguish creators (p = +)
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from annihilator (p = −) and, for the tunneling amplitudes,
t+
b,n := t∗

b,n from t−
b,n := tb,n. Applying this on the second-order

kernel of Eq. (A21) and using the Wick contraction for lead
operators, we obtain the expression

K̃(2) = −i

2π

∑
nmp
lαα′

∫
dε �l,p

n,mD p̄,α2
n

α1α2 f (pα1 )
l (ε)

i0+ + pε − ih̄LDQD
Dp,α1

m P

(A24)

in which, first, we add an index p also to the tunneling rate
matrix �

l,p
n,m and �l

n,m = �l,−
n,m = �l,+

m,n.
The energy integration can be solved with the help of the

Y n
m function with its dimensionless variables μ and x, the di-

mensionless Fermi function f (n)(x), and the Lorentzian cutoff
function L(W̃ , x) = W̃ 2/(x2 + W̃ 2):

Y n
m (μ) := − i

2π

∫
dx

f (n)(x)L(W̃ , x)

m(x − μ) + i0+ . (A25)

The Lorentzian cutoff function stems from the applied
wideband limit with the dimensionless wideband constant
W̃ = W/(kBT ) to ensure the convergence of the inte-
gration which is needed especially for the cotunneling
integrals. Applying the residuum theorem, one gets for

Y n
+(μ) [38]

Y n
+(μ) = −1

2
f n(μ) − in

2π

[
Re� (0)

(
1

2
+ iμ

2π

)
− C

]

= −1

4
− in

2π

[
� (0)

(
1

2
+ iμ

2π

)
− C

]
(A26)

with the constant C = � (0)[1/2 + W̃ /(2π )]. We furthermore
introduced the digamma function

� (0)(z) := −
∞∑

n=0

1

n + z
+

∞∑
n=1

ln

(
1 + 1

n

)
, z ∈ C.

(A27)

The constant C always disappears when summing over the
α indices. Therefore, we can drop C from the CST kernel
calculation. The CST Liouvillian LT and the commutator with
the Lamb shift Hamiltonian introduced in Eq. (33) are the con-
tributions of K(2) stemming from the real and the imaginary
part of the function Y n

+, respectively.

b. Cotunneling

By including the next to leading order in the expansion
of the kernel, we get a kernel which is valid up to fourth
order: K̃ = K̃(2) + K̃(4) + O(H6

tun). This regime of tunneling
events up to fourth order in Ltun is better known as the co-
tunneling transport regime. In this regime, two new processes
are included, namely the cotunneling ones and pair tunneling
ones. The fourth-order kernel can be formally split into the
contributions K̃(4,D), respectively K̃(4,X ):

K̃(4,D) = ih̄

(4π )2

∑
{l}{m}
{n}{p}
{αi}

∫
dε

∫
dε′D p̄,α4

n

f (p′α2 )
l ′ (ε′)

i0+ + pε − ih̄LDQD
D p̄′,α3

n′
−α1α4�

l,p
n,m�

l ′,p′
n′,m′

i0+ + pε + p′ε′ − ih̄LDQD
Dp′,α2

m′
f (pα1 )
l (ε)

i0++pε−ih̄LDQD
Dp,α1

m P,

(A28)

K̃(4,X ) = ih̄

(4π )2

∑
{l}{m}
{n}{p}
{αi}

∫
dε

∫
dε′D p̄,α4

n

f (p′α2 )
l ′ (ε′)

i0+ + pε − ih̄LDQD
D p̄′,α3

n′
α1α4�

l,p
n,m�

l ′,p′
n′,m′

i0+ + pε + p′ε′−ih̄LDQD
Dp′,α2

m′
f (pα1 )
l (ε)

i0++p′ε′−ih̄LDQD
Dp,α1

m P .

(A29)

Equations (A28) and (A29) involve double energy integrals which can be solved by applying of the residual theorem. The
generic element of the cotunneling kernel in the energy eigenbasis of the system can thus be expressed in terms of two types of
functions, respectively the D and X functions, defined as

Dnn′
pp′ (μ,μ′,
) = − ih̄

4π2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′ f (n′ )(x)

i0+ + p(x − μ)

1

i0+ + px + p′x′ − 


f (n)(x′)
i0+ + p(x − μ′)

= 2π2n(iπ + 2Cn′)
ih̄(μ − μ′)

[
� (0)

(
1

2
+ iμ

2π

)
− � (0)

(
1

2
+ iμ′

2π

)]
− 2πnn′

h̄

∞∑
k=0

� (0)
(
1 + k + i


2π

)
(
k + 1

2 + iμ
2π

)(
k + 1

2 + iμ′
2π

) (A30)
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and

X nn′
pp′ (μ,μ′,
) = − ih̄

4π2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′ f (n′ )(x)

i0+ + p(x − μ)

1

i0+ + px + p′x′ − 


f (n)(x′)
i0+ + p′(x′ − μ′)

= −4π2

ih̄

nn′

μ + μ′ − 

� (0)

(
1

2
+ iμ

2π

)[
� (0)

(
1

2
+ iμ′

2π

)
− � (0)

(
1

2
+ i(
 − μ)

2π

)]

+ 2πnn′

h̄

∞∑
k=0

� (0)
(
1 + k + i


2π

)
(
k + 1

2 + iμ′
2π

)(
k + 1

2 + i(
−μ)
2π

) . (A31)

There are several special cases (e.g., 
 = 0) where the D and
X functions can be written in closed form. Nevertheless, we
refrain from elaborating all these different cases. They do not
provide more physical insight, even if they can yield a speedup
of the numerical calculations. The expressions for the energy
integrals Eqs. (A30) and (A31) of the fourth-order kernel
include both the real and the imaginary part. The latter are
crucial for the calculation of the time evolution of coherences
in fourth-order perturbation theory.

3. Lamb shift Hamiltonian

In this section, we derive the Lamb shift Hamiltonian for
the one-particle subspace which enables us to readout the
spin-resolved pseudo-exchange-field Bσ given in Eq. (39).

We start from the definition of the Lamb shift Hamiltonian
for the one-particle subspace:

ĤLS,1 =
∑

liσ jσ ′
h̄�l

iσ, jσ ′ P̂1[d̂†
iσ pl (E1 − HDQD)d̂ jσ ′

+ d̂ jσ ′ pl (ĤDQD − E1)d̂†
iσ ]P̂1. (A32)

Its commutator with the reduced density matrix expresses the
contributions of K̃ (2) proportional to the imaginary part of the
Y n

+ function, as defined in the previous section. Moreover, the
projector on the one-particle space in Eq. (A32) reads P̂1 =∑

iσ d̂†
iσ |∅〉〈∅|d̂iσ , being |∅〉 the vacuum state vector.

We further proceed by inserting into Eq. (A32) the DQD
Hamiltonian written in the pseudospin formulation, as given
in Eq. (5), and perform a complete Taylor expansion with
respect to the anisotropy component proportional to the op-
erator T̂ 2

z . The two-particle subspace consists of a singlet
and a triplet pseudospin sector; thus the relation P̂2T̂ 2

z P̂2 =
(P̂2T̂ 2

z P̂2)
n

for n � 1 holds, where P̂2 is the projector operator
on the two-particle subspace. We can thus simplify the Taylor
expansion:

P̂2 pl
[
ε + V + (U − V )T̂ 2

z

]
P̂2

= P̂2 pl (ε + V ) + P̂2T̂ 2
z P̂2

∞∑
n=1

(U − V )n

n!
p(n)

l (ε + V )

= P̂2
{

pl (ε + V ) + T̂ 2
z [pl (ε + U ) − pl (ε + V )]

}
P̂2

= P̂2
{

pl (E2g1) + T̂ 2
z [pl (E2e1) − pl (E2g1)]

}
P̂2.

(A33)

At this stage, the operator identity is useful:

P̂1d̂ jσ ′ T̂ 2
z d̂†

iσ P̂1 = 1

2
P̂1d̂ jσ ′ d̂†

iσ P̂1 +
∑

k

σ z
kiP̂1d̂ jσ ′ d̂†

kσ
T̂zP̂1.

(A34)

Some algebra leads, eventually, to the formulation of the
Lamb shift Hamiltonian, obtained under the additional as-
sumption of parallel spin polarization of the leads:

ĤLS,1 =
∑

l

h̄�l
0[pl (E10) + 2pl (E2g1) + pl (E2e1)]P̂1

+
∑

l

h̄�l
0(D↑ − D↓)[pl (E10) − pl (E2e1)]nl

s · P̂1ŜP̂1

+
∑

lσ

2h̄�l
0Dσ [pl (E10) − pl (E2g1)]Ponl

o · P̂σ T̂ P̂σ

+
∑

lσ

2h̄�l
0Dσ̄ [pl (E2e1)−pl (E2g1)]Po

(
nl

o · ez
)
P̂σ T̂zP̂σ ,

(A35)

FIG. 7. Differential conductance for Ps = 0.99 and constant in-
teraction (U = V ): The stability diagram of a DQD shows only
one pseudospin resonance in comparison with Fig. 2(d) where two
resonances for the different spin species appear. Changing the spin
polarization at constant interaction does not alter the differential
conductance in agreement with Eq. (39). The parameters are the fol-
lowing: U = 1V , kBT = 0.05V , Po = 0.99, θ = 0.95π , �R

0 = 2.5 ×
10−3 V = 2�L

0 , ε0 = −2V , and W = 250V (bandwidth).

205420-13



CHRISTOPH ROHRMEIER AND ANDREA DONARINI PHYSICAL REVIEW B 103, 205420 (2021)

where the spin operator Ŝ, similarly to the pseudospin one
defined in Eq. (3), reads, in components,

Ŝα = 1

2

∑
iττ ′

d̂†
iτ σ

α
ττ ′ d̂iτ ′ . (A36)

The first and the second term in Eq. (A35) do not contribute
to the time evolution of the reduced density matrix, which
is block diagonal in spin as the parallel spin polarization of
the leads defines a common quantization axis for the entire
DQD junction. Thus, the Lamb shift Hamiltonian reduces,
effectively, to a pseudospin Zeeman term:

˜̂HLS,1 =
∑

σ

h̄Bσ · T̂ σ , (A37)

where we have introduced the spin-resolved pseudo-
exchange-field

Bσ =
∑

l

2Po�
l
0

{
Dσ [pl (E10) − pl (E2g1)]nl

o

+ Dσ̄ [pl (E2e1) − pl (E2g1)]
(
nl

o · ez
)
ez
}

(A38)

and the pseudospin operator

T̂ σ = P̂σ T̂ P̂σ . (A39)

It is now straightforward to demonstrate that, in the equa-
tion of motion for the expectation value of the pseudospin,
the commutator with the Lamb shift Hamiltonian contributes
with the precession dynamics captured by the last term
in Eq. (38):

− i

h̄
[ĤLS,1ρ̂red,1] ⇐⇒ Bσ × T σ . (A40)

By assuming a constant interaction (U = V ), the energy dif-
ferences E2e1 and E2g1 coincide. This implies that also the last
term of Eq. (A35) vanishes and the spin-resolved exchange
fields are collinear. Consequently, only one pseudospin res-
onance is present in the stability diagram (cf. Fig. 7),
independently of the spin polarization of the leads. The
figure clearly indicates that the pseudospin anisotropy is
a necessary condition of the emergence of the synthetic
SOI.
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