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Twisted bilayer graphene. I11. Interacting Hamiltonian and exact symmetries

B. Andrei Bernevig,':" Zhi-Da Song,' Nicolas Regnault,"? and Biao Lian'-
' Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Laboratoire de Physique de I’Ecole normale superieure, ENS, Université PSL, CNRS, Sorbonne Université,
Université Paris-Diderot, Sorbonne Paris Cité, Paris, France

® (Received 28 October 2020; accepted 16 April 2021; published 11 May 2021)

We derive the explicit Hamiltonian of twisted bilayer graphene (TBG) with Coulomb interaction projected into
the flat bands and study the symmetries of the Hamiltonian. First, we show that all projected TBG Hamiltonians
can be written as positive semidefinite Hamiltonians, an example of which was found in work by Kang and
Vafek [Phys. Rev. Lett. 122, 246401 (2019)]. We then prove that the interacting TBG Hamiltonian exhibits an
exact U(4) symmetry in the exactly flat band (nonchiral-flat) limit. We further define, besides a first chiral limit
where the AA stacking hopping is zero, a second chiral limit where the AB/BA stacking hopping is zero. In the
first chiral-flat limit (or second chiral-flat limit) with exactly flat bands, the TBG is enhanced to have an exact
U(4)xU(4) symmetry, whose generators are different between the two chiral limits. While in the first chiral limit
and in the nonchiral case these symmetries have been found in work by Bultinck et al. [Phys. Rev. X 10, 031034
(2020)], for the eight lowest bands, we here prove that they are valid for projection into any 8nn,, particle-
hole symmetric TBG bands, with n,,x > 1 being the practical case for small twist angles <1°. Furthermore,
in the first or second chiral-nonflat limit without flat bands, an exact U(4) symmetry still remains. We also
elucidate the link between the U(4) symmetry presented here and the similar but different U(4) of Kang and
Vafek [Phys. Rev. Lett. 122, 246401 (2019)]. Furthermore, we show that our projected Hamiltonian can be
viewed as the normal-ordered Coulomb interaction plus a Hartree-Fock term from passive bands, and exhibits
a many-body particle-hole symmetry which renders the physics symmetric around charge neutrality. We also
provide an efficient parametrization of the interacting Hamiltonian. The existence of two chiral limits with an

enlarged symmetry suggests a possible duality of the model yet undiscovered.

DOLI: 10.1103/PhysRevB.103.205413

I. INTRODUCTION

Twisted bilayer graphene (TBG) near the magic angle
0 ~1.1° hosts flat electron bands and exhibits remarkable
interacting phases including correlated insulators, Chern in-
sulators, and superconductors [1-111]. Both transport [2—17]
and scanning tunneling microscope [18-25] experiments
show the correlated insulators and Chern insulators originate
from strong many-body interactions. Extensive theoretical
studies have been devoted to understanding the electron inter-
actions in TBG [51-104]. Kang and Vafek [71] proposed that,
by projecting in a non-maximally-symmetric Wannier basis, a
non-negative interaction Hamiltonian can be obtained, whose
ground state at v = =£2 electrons per unit cell (with respect to
charge neutrality) is an exactly solvable insulator with some
mild approximation. A U(4) symmetry was also identified for
the TBG interaction [71-73] (both Refs. [71,72] identified a
U(4), which we show here to be similar but different), which
was shown to enlarge into a U(4) x U(4) symmetry in the chiral
limit wy = 0 [72]. However, these symmetries were proposed
only for the eight lowest bands (two bands per valley-spin)
around the charge neutrality point, which applies for the first
magic angle, while the TBG theoretically and experimentally
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exhibits, for example, 32 low-energy “active” bands (eight
bands per valley-spin) around charge neutrality at lower an-
gles 6 = 0.45° [28].

In this paper, we derive the explicit TBG Hamiltonian
Coulomb Hamiltonian projected within any number of 87«
(2nmax per spin per valley, np,, > 1) particle-hole symmetric
low-lying moiré bands. For the first magic angle, the number
of bands where the projection makes sense is eight (two per
spin-valley) moiré bands in momentum space; for smaller
angles, the number increases. We show the exact projected
Coulomb interaction Hamiltonian can always be written into
a Kang-Vafek type [71] non-negative form, which we hereby
call positive semidefinite Hamiltonian (PSDH). The projected
Hamiltonian we derived can be understood as the normal-
ordered Coulomb interaction in the active bands plus a
Hartree-Fock potential from the passive bands. Furthermore,
the projected Hamiltonian has a many-body particle-hole
symmetry, which ensures that all the physics are particle-
hole symmetric about charge neutrality, in agreement with
the overall picture of the experimental observations. We then
study the TBG symmetries in the flat band limit. We prove the
existence of not one but two (first and second) chiral limits de-
fined by zero hopping at either AA or AB/BA stackings. We
prove that the projected TBG Hamiltonian in the nonchiral-
flat limit has an exact U(4) symmetry, which breaks to a
U(2) x U(2) when kinetic energy is added (nonchiral-nonflat
case). This symmetry is enhanced into an exact U(4)xU(4)
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FIG. 1. Illustration of the relation between the graphene BZs of
two layers and the moiré BZ (MBZ). Blue solid and red empty circles
represent Q, and Q_, respectively.

symmetry in either the first chiral-flat limit or the second
chiral-flat limit. The U(4)xU(4) symmetry for the first chiral
limit, and for projection into two low-lying active bands was
obtained in Ref. [72], but we here extend it to any number of
projected bands as well as to a second chiral limit. In the first
chiral-nonflat limit or the second chiral-nonflat limit, a kinetic
term is also considered, and the bands are not flat; however,
we show that an exact U(4) symmetry still remains. All these
symmetries, in all limits, are shown to be not only valid for
the eight active bands at the first magic angle [72] but also for
the projected Hamiltonian within any number of particle-hole
symmetric bands. This is relevant at smaller twist angles:
In Ref. [28], it was experimentally and theoretically found
that 32 bands (eight bands per valley/spin) contribute to the
low-energy physics. Besides, for Hamiltonian projected in the
lowest eight bands (two bands per spin per valley), we reveal
that the Hamiltonian in the first or second chiral limit can
be enhanced into a stabilizer code Hamiltonian under certain
assumptions. Furthermore, we elucidate the similarities and
differences between the U(4) symmetry of Kang and Vafek
[71] and the U(4) in the current paper. The explicit form and
symmetries of Hamiltonian here greatly simplify the study of
TBG many-body states, as we will discuss in Refs. [109] and
[110].

II. BISTRITZER-MACDONALD MODEL AND
COULOMB INTERACTION

We first present a short overview of the Bistritzer-
MacDonald (BM) model [1] to define our notations. The
reader might refer to Refs. [107,108] for a in-depth discus-
sion. For convenience, we also provide a detailed summary
in Appendix A. To begin, we assume CTM , denotes the
creation operator of the spin s =1, | electron at momentum
p in the graphene sublattice « = A, B and layer [ = £ (de-
noting top and bottom) of TBG, where p is measured from
the I point of the graphene Brillouin zone (BZ) of layer /.
The low-energy physics of TBG is concentrated at the two
graphene valleys K, K’ (which we denote as valleys n = %)
at momenta p = +Kj in layer ¢, respectively [1]. We further
define q; = Cé;l(K_ —K,) (j=1,2,3), where (3, is the
three-fold rotation about z axis [see Fig. 1(a)]. The kinetic
Hamiltonian of TBG is then given by the continuum model

[1,108] as

=D 2.2 [hgo®],

keMBZ naBs QQ’

Ck,Q.n,a,.vcka’,n,ﬁ,s, )

where n = £ and s =1, | are the valley and spin indices,
and the momentum K is measured from the center (I'y; point)
of the moiré BZ (MBZ). The momenta Q, Q" € {Q., Q_}is
shown in Fig. 1(b), where we have defined Q. = Qy + q,
and Q is the moiré reciprocal lattice generated by recip-
rocal vectors by; = q3 q; (j =1,2). The electron basis

ClZQnas 7K, +k— anlierQ,.Thedetailed
kinetic term h(") (k) at valley n = % is given in Appendix
A. In part1cular there are two parameters wy and w; in the
single-particle Hamiltonian hg,)Q,(k) which correspond to the
interlayer hoppings at AA and AB/BA stacking centers, re-
spectively [see Eq. (A7)]:

is defined as ¢!

wo = 0: AA hopping,
w; = 0: AB/BA hopping. 2)
Generically, wyg < w; due to the lattice relaxation and corru-
gation [108,112-115].
The Coulomb interaction term in TBG takes the form (for
details, see Appendix Cl)

A

1=

Y. D Va+6)38pg-adogic.  (3)

ZQIOt GeQp qeMBZ
where
¥ 1
3pq+G = Z Ck1q,Q—G,n,0,sCk.Qun.as — §8q.08G.0
n,,5,k,QeQ

“
is the total electron density at momentum q + G relative
to the charge neutral point (CNP) of the uncoupled twisted
bilayer graphene without interlayer couplings (which has a
density (C) 4 0—G.p.asChQnas) = 304.006.0), and Qi is the
total area of TBG. The interaction coefficient

V(@) = ey, 12 )
£lql/2
is the Fourier transform of the Coulomb potential with dielec-
tric constant € screened by top and bottom gates at distance
& away, where U; = ¢ /e£ (see Appendix C). Typical TBG
experiments have a screening length £ ~ 10 nm [7,8] and di-
electric constant € ~ 6 as estimated from the hBN substrates.
This yields Ug ~ 24 meV.
Due to the absence of spin-orbit coupling, the total Hamil-
tonian

H=H+H (6)

of TBG has the spinless symmetries

[Cse, A1 = [Co, H] = [T.H] =0, @)
where C3, is the threefold z-axis rotation symmetry
satisfying C3ch Qe YC3_Z] (e /3)50(%z K.C.Q.1.B.5°

Gy, is the twofold z- ax1s rotation symmetry satlsfymg
C27can“ 2z (Ux)ﬁa k—Q—n.pos’ and T is the
antiunitary time-reversal symmetry satisfying 7TiT~ l=
and TcanMT ! _ch _Q.—n.«s Besides, each graphene
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FIG. 2. The single-valley TBG band structure at 6 = 1.05° (with
exact ph symmetry P) for (a) the nonchiral-nonflat limit with wy =
0.8wgy and w; = wgy, (b) the first chiral limit with wy = 0 and
w; = wpy, and (c) the second chiral limit wy = wgy and w; = 0,
where wgy = 110 meV is the hopping in the original Bistritzer-
MacDonald TBG model [1]. In particular, in the second chiral limit,
the band structure is a perfect metal where all bands are connected
(proof given in Ref. [108]).

valley exhibits a charge U(1) symmetry and a spin rotational
SU(2) symmetry, leading to a global U(2) xU(2) symmetry of
two valleys (see Appendix A 3).

There also exists a unitary single-particle particle-hole (ph)
transformation P [43,108], which anticommutes with Hp in
Eq. (1) (see Appendix A 3) and commutes with H; in Eq. (3):

{P,Hy}) =0, [P,H]=0, ®)

where P is defined by Pcf o, o P~ =20c \ g, .q.s With

lo = %1 for Q € Q.. In particular, [P, H;] = 0 can be seen
by noting that §pgic in Eq. (3) satisfies PSpgicP ™! =
8p_q—c. We note that an antiunitary ph transformation P =
PC,,T can also be defined, which is adopted in some literature
[72,108].

III. PROJECTED HAMILTONIAN

We denote the eigenstates and eigenvectors of hg’)Q,(k) in
Eq. (1) as €,,,(k) and uqany, (k) (Which are spin independent),
where the integer n # 0 is the band index so defined thatn > 0
(n < 0) labels the |n|th conduction (valence) band of valley 7.

Near the first magic angle 6 ~ 1.1°, the lowest conduction
and valence bands (n = 1) of two spins and two valleys of
TBG form eight extremely flat bands which are energetically
isolated from the higher bands [Fig. 2(a)]. Therefore, it is
appropriate to project the Hamiltonian into the eight flat bands
for low-energy physics at the first magic angle. At higher
magic angles, the number of low-energy bands increase; for
instance, around the second magic angle 6 = 0.5° [1], the
lowest conduction and valence bands form 32 (eight per spin
or valley, |n| < 4) low-energy bands [28]. In this case, the
projection of Hamiltonian into more ph symmetric bands is
needed for studying low-energy physics. Therefore, to keep
our discussions generic, we consider the projection into a set
of 8npax number of ph symmetric low-energy bands |n| <
Nmax With any np.x > 1. As we will show, since the symme-
tries Cy,, T, P which we will study are closed within each pair
of bands =+n, it is sufficient to focus on the two-dimensional

band space of each pair of bands £n when examining the
symmetries of the projected Hamiltonian.

The projection of the kinetic Hamiltonian Hj in the set of
bands |n| < nmax 1S thus (which we denote by H, without hat)

Ho = Z ZEnvn(k)cli,n,n,sckvnvﬂqﬁ (9)

In|<nmax kans

where c]t,n’nqx = ZQ’a UQann (k)cf(’Q,n,a’x gives the band basis
of electrons and =4np,, are the highest and lowest bands we
project into. Meanwhile, the projection of Coulomb interac-
tion A; in the flat bands can be written as (denoted by H;
without hat; see Appendix C 2)

! > ) 0.4 60y (10)

2le qeMBZ GeQ,

H =

where

Oac =2, D,

kns |m|,|n|<nmax

r] 1
x 'Ok,q,m,n,s - quﬁ‘sm,n . (1)

Here we have defined the coefficient called the form factors
(overlaps):

MDKQ+G) = Y 1y G amy &+ Quigam k), (12)
@,QeQy

VV@+6M Kk, q+G)

and Py ¢ s = Ckiqumn,sChona.s 18 the density operator. The

form factors (overlaps) M{" (k, q + G) were shown to ex-
hibit properties such as exponential decay in the magnitude
of G in Ref. [107]. As such, only |G| =0 and |G| = [byy,|
momentum vectors will contribute to Og.g, with all other G
leading to exponentially smaller form factors (overlaps). We
now note that O_q _g = OT’G, such that O_q _gOq,G is a pos-
itive semidefinite operator %or any q, G. Thus, the interaction
Hamiltonian Hj, being a sum of positive semidefinite opera-
tors, is also positive semidefinite. We call such Hamiltonians
positive semidefinite Hamiltonians (PSDH).

Below, we investigate the symmetries of the projected
Hamiltonian H = Hy + H; in various different limits. Without
loss of generality, we will consider the subspace of a particular
pair of ph symmetric bands n = £ng with 1 < ng < npax,
since all the single-particle symmetries we will be discussing
are closed within the band pair n = +£ng.

Hereafter, we shall use ¢¢, t¢, s* to denote the identity
matrix (a = 0) and Pauli matrices (a = x, y, z) in the energy
band n = £ng, valley n = &+, and spin s =7, |, bases, respec-
tively. In particular, when ng = 1, our discussion applies to
the projected Hamiltonian in the lowest eight flat bands near
the first magic angle.

IV. SYMMETRIES IN THE GENERIC
NONCHIRAL-NONFLAT CASE

The projected Hamiltonian H = Hy+ H; preserves
all the discrete TBG symmetries Cs,, C,, T (see
Appendix C). Moreover, the projected Hamiltonian
respects the global U(2)xU(2) spin-charge rotational
symmetry of two valleys, which has eight group generators
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Sab Zk(s )mn?nn fcl-imnsck”n? (a:O,z .and
b=0,x,y,z; repeated indices are summed automatically
hereafter). Within each band pair n = £ng, the matrices R
are given by

SO c 0 T 0 Sb Szb

=%, (b=0,x,y2. (13)
We note that s has no nonzero matrix elements between
different pairs of ph symmetric bands ng # ng. Also, note that
the operators S*’ preserve the electron momentum K.
Another k-preserving transformation is given by the com-
bined unitary operator C,,P (P is the ph transformation),
which acts as
(Co:P)CL gy asCP) ' =000 paChg_pper (14
and thus satisfies (Co,P)> = 1. Since (Co,P)Hy(Cp.P)~! =
—Hy, the single-particle band energies satisfy ¢, ,(k) =
—e_,—,(k), and the eigenstate wave functions satisfy
;Q(Ux)ﬁauQ,a,n,n(k) = [BczzP(k)]fn,fr];nan,ﬁ,fn,fn(k)s where
B (k) is the unitary sewing matrix of C,,P. This implies
(Co:P)ey, (CocP) ™ = B Ay s (15)
Using the explicit form of B®F(k), one can prove that
[C2.P, Oq,g] = 0 (see Appendix D 2), and thus
{C:P,Hp} =0, [C,P, Hi] =0. (16)
Therefore, C», P is a commuting symmetry of H; but not Hy.
Furthermore, there is a many-body charge conjugation
symmetry P, defined by C,, PT followed by the 1nterchange of
annihilation and creation operators, namely, P, ck . 37)_

(Co.PT )k p,n,s(CooPT )™ I (see Appendix C4). By showing
that P.Oq cP- I = —0yq,G, one can prove that the projected
Hamiltonian within bands |n| < nmax satisfies [see Eq. (C33)
in Appendix C 4]

Pe(Hy + H)P.' = Hy + H;. (17)
In particular, P, maps a many-body state from filling v to
—v, where v is the number of electrons per moiré unit cell
relative to the CNP. Therefore, P, ensures that the eigenstates
of the projected Hamiltonian H = Hy + H; is ph symmetric
about v = 0, in agreement with the (big picture) experimental
observations.

We note that H; in Eq. (10) is not normal ordered. We
can rewrite H; =:H;: + AH; + E;, where :H;: is the normal
ordered four-fermion interaction, AH; is a quadratic fermion
term, and E; is a constant. One can then show that AH; =
L(HEE " — HYyg ™), where Hjy is the Hartree-Fock po-
tential in the projected bands contributed by all the occupied
bands below filling v (see Appendix C5) and the factor of
4 comes from two spins and two valleys. Note that Hj; sums
over all the bands below filling v, instead of only the projected
active bands (see derivation in Appendix C 5). Therefore, AH;
can be understood as the mean-field Hartree-Fock potential
from the remote bands projected away symmetrized about the
CNP. We note that :H;: alone does not have the P, symmetry,
and thus AH; is indispensable as an effective background
Hartree-Fock potential.

V. U4) SYMMETRY IN THE NONCHIRAL-FLAT LIMIT

In the limit of exactly flat |n| < np.x bands, we have
Hy = 0, so the projected Hamiltonian is simply H = H;. By
Eq. (16), G5, P becomes a symmetry of H. Note that Cp, P
preserves the electron momentum k and thus is a local unitary
symmetry. Accordingly, the C,,P symmetry and the spin-
charge U(2)xU(2) symmetry together generate a global U(4)
symmetry of the Hamiltonian H = H;. To see this, we define
an operator

= Z Z [BCZZP(k)]m],n’n’Clt,n’ﬂ,sck,n’,n’,x (18)

k,s nn'nn’

with sewing matrix B (k) of C,.P. It can be proved that
[$*°, H;] = 0 (see Appendix D 2). Note that $Y0 is identical
to Cp,P when acting on single-electron states. For many-
body states, one can show that Co.P = ¢™5"/2 (up to a phase
factor). With the eight generators 5% 8§ of UR)xU(?2)
(b=0,x,y,z), we can define another 8 operators S* =

—£[8°9, 5%] and §** = 4[5, $?]. The 16 operators S* then
satlsfy the Lie algebra of U):

[Sah Scd] — Zfab CdSef
ef

(a,b=0,x,y,2), (19)

where f“b ““d are U(4) group structure constants defined by
[T%P, d] =Y. fe“fb’Cdresf.

It is useful to fix the gauge of wave functions to obtain an
explicit form of §%°. We do this by requiring

(Co:T)ef,, (CT) ' =] (20)

k,n,n,s’
which imposes (0 )opuqQ,g,n,n(K) = uaa’n_n(k). (0% )apUQ,B,n,n
(k) = ua,a,n,n(k) =Uu_Qun-n(—K). A consistent k-
independent gauge for C,, P is then

(Co:P)ey,, (CocP) ™ = —sgn(nynef _, _, . (1)

In addition, we require a k-space continuous gauge [which is
crucial for the useful bases Egs. (26) and (28)] defined below
to have well-defined Berry curvature (see Sec. B 3):

31_{1}) |}, (& + @t (K) — 11’ (K + Qe (K)] = 0. (22)

Under this gauge we can rewrite the 16 U(4) generators

as S = Zk(s )"”1””7 s’C]tm,]ngnns (a,b=0,x,y,2),
where the matrices s*’ within each ph pair of bands n = +ng
read

{{0 0 b XSb, g.y.cysb’ é'OTZSb}. (23)

We note that s has no nonzero matrix elements be-
tween different pairs of ph symmetric bands np # nj.
Meanwhile, the form factors (overlaps) M,(n”f,(k, q+G) =

M (K, q + G)lmy,ny are gauge fixed into the following matrix
form in the band and valley basis (Appendix C 3):

3

=> Mja;k,q+G), (24)
j=0

Mk, q+G)

where o (K, q + G) are real nmax X nmax Matrices, and we
have defined My = §0r0, M, =15, M, = i§>'r°, and M3 =
¢*7* in the space of each pair of band basis n = +ng (1 <
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1B < Nmax), all of which are real matrices. Here M jo; means
the Kronecker direct product of matrices M; and ;.

We note that we could further fix the gauges of the k
nonpreserving symmetries Cp,, T, and P in a k-independent
way consistent with Eqgs. (20)—(22) [see Appendlx B2 and
Eq. (B18)]. Under a further gauge fixing CZch . “szl =

cik n.—n.s» ONE can show that the functions «;(k, 9 + G) (0 <

Jj < < 4)nsatrsfy the conditions in Egs. (C24) and (C25). In
particular, these conditions require

apk, G) = o '(=Kk, G),

at q = 0 (see Appendix C 3).
With the gauge fixing of Egs. (20)—(22), we can define a
new basis within the pair of bands n = £ng as

CT n s + l'€yC+ —n, s
)t = 5 ks ey = £1),  (26)
which we show in Appendix B 3 have well-defined Berry cur-
vatures. The reason for the notation ey = =+1 is because this
basis is the eigenbasis of the Pauli matrix ¢, with eigenvalue
ey in the two-dimensional energy band basis of n = £ng. We
shall call the basis (26) the irrep basis, for the reason below.
At each k and Chern number ey, as shown in Appendix
D 2b, the four irrep basis creation operators dj; ("B)T , of valleys
n = =% and spins s =1, | form the basis of a fundamental
U(4) irreducible representation (irrep), where the generators
5% have 4 x 4 representation matrices

sP(ey) = {10, eyt¥s’, eyt's’, tisb). 27

This can be seen by observing that dl(("gyﬁm diagonalizes the
matrix ¢ in Eq. (23) with the eigenvalue being ey. Note
that the two irreps s%(ey) with ey = %1 differ by a uni-
tary transformation ¢, namely, a  valley rotation about z
axis. Despite this difference by a unitary transformation, the
two irreps s?’(ey) are both the fundamental irrep of U(4).
In Young-tableaux accepted notations, we shall denote the
fundamental irrep of U(4) as [1]4 and the trivial identity irrep
of U(4) as [0]4 (see Appendix D 1, and see Ref. [109] for
a detailed explanation of the Young tableaux notations). An
electron with a fixed ey = 1 and k thus occupies a U(4) irrep
[1]4.

For ng = 1, namely, for the lowest conduction and valence
bands n = 1, we denote the basis in Eq. (26) in simplified
notations without upper index as

t .
df _ Ckoprgs TIOYCK g
k.ey,n,s — ﬁ ’

which will be extensively used for solving the pro-
jected Hamiltonian within the lowest eight flat bands in
Refs. [109-111]. As proved in Ref. [108] (see also similar
discussions in Refs. [72,74]) and briefly reviewed in Appendix
B 3, if a pair of energy bands n = £np are disconnected with
other bands, the irrep band we defined in Eq. (26) will carry a
Chern number ey e; ,,,, Where e; 5, is the Wilson loop winding
number of the two bands n = £ng. Due to the nontrivial
topological winding number e, ; = 1 in the n = 1 bands
[43—47,76,116,117], the irrep basis dll in Eq. (28) of all

(ey ==%1),  (28)

ey,n,s

k for each fixed ey, n, s form the basis of a Chern band of
Chern number ey = =£1 (see proof in details in Ref. [108] and
also a brief review in Appendix B 3), provided the n = %1
energy bands are gapped from the higher bands (which is
true near the first magic angle). For this reason, we shall call

key n.s (Within the n = %1 energy band space) the Chern
band electron basis, or simply the Chern basis. We note that
our Chern basis in Eq. (28) is (adiabatically) equivalent to the
Chern bands defined in Refs. [72,74].

If the |n| < nmax bands are gapped from higher bands but
are connected among themselves, we would expect the net
Chern number of the 71, irrep basis dl(("fﬁn L (1< ng < gy
to be equal to ey (see Appendix B 3).

VI. U4)xU(4) SYMMETRY IN THE (FIRST)
CHIRAL-FLAT LIMIT

The symmetry of flat-band TBG is enhanced when wy =
0 < w; in Eq. (2), which is known as the chiral limit [37].
In this paper, we shall also call it the first chiral limit, to
distinguish with the second chiral limit defined below in
Sec. VIII. In this first chiral limit, there is a unitary chiral
transformation C acting as Cclt,Qn’wC‘l = (02)aCh @y p.5°

which satisfies CHyC~! = —Hp and C? = 1. Therefore, the
energy band eigenstates satisfy €, ,(k) = —e_, (k) and
(02) attQ.a.nn(K) = [BE(K)] . pinnttQ. p,—n.y (K), where BC (k)
is the unitary sewing matrix of C. This implies Cc;n’nvsC" =
[BE ()] yinnCh _py "

When projected into the flat bands |n| < nmax, by Eq. (11),
one can prove that [C, Og g] = 0, and thus

{C,Hy} =0, I[C,H]=0. 29)

Therefore, in the first chiral-flat limit where Hy = 0 and thus
H = Hj, the chiral transformation C becomes a symmetry.
Note that C preserves the electron momentum k and thus is
a local unitary symmetry.

We can then define a Hermitian operator

S/ZO = Z Z [BC(k)]nr],n’n’ci‘;_mnysck,n’,n’,s9 (30)

k,s nn'nn’

which commutes with H;. Note that §’%° is identical to C when
acting on single-electron states. For many-body states, one can
verify that C = ¢™5*/2 (up to a phase factor). Its commuta-
tions with the 16 U(4) generators S in Eq. (19) yield another
16 new operators S, and one can prove that S and §'*
form the 32 generators of a U(4)xU(4) group (Appendix D 3).
This can be seen explicitly under the gauge fixing of Egs. (20)
and (21), for which the only k-independent gauge choice
(up to a global sign) for C is CC;LM’SC’I = isgn(n)ncllfnim
(Appendix D 3). We note that this gauge choice is also con-
sistent with the k-independent gauge fixings of C,,, T and P
in Eq. (B18). The 16 new generators can then be expressed
as §' = Z(S )mr]snr] Y/Ckmnyckili]ﬁ (a,b=0,x,y,2),
where s” within each pair of bands n = #ng are given by

s =210, Orrsh, Ot sty 3D

We note that s** has no nonzero matrix elements between
different pairs of ph symmetric bands np # ng. We can
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urther linear combine an into operators =
further 1 bine $% and S int tors S

b i _
Zk(s(:lt: )m,n,s;n,n’,s’ck'm’;Lsck,n,n’,s’ (a’ b - O’ X, y’ Z)’ Where

@ = (" £ )52, (32)
One can then verify that

(20571 =do g LIPS e =D G

ab,cd

where f are the U(4) structure constants in Eq. (19).

Therefore each set of ij (ey = %£1) generates a U(4) group,
leading to a total U(4)xU(4) symmetry. We note that the
nonchiral-flat U(4) in Eq. (23) is not one of the two U(4)s
with fixed ey here, although it is a subgroup of the first
chiral-flat U(4)xU(4) here.

The 4 1rrep band (Chern band if ng = 1) basis creation
operators dk'f , (of valley-spin flavors n = 4, s =1, |) at
a fixed k and ey in Eq. (26) occupy a fundamental irrep
of the U(4) generated by ij and a trivial identity irrep of
the U(4) generated by Si”ey (ey = x1). The corresponding
representation matrices of S¢° are

= (1+ey)r%s’/2, (34)

which can be derived by replacing rnatrlx ; (¢”) by its
eigenvalue 1 (ey) in the irrep band basis d kooy s+ 1 We use
([X1]4, [A2]4) to represent a U(4)xU(4) irrep “which is the
tensor product of an irrep [A;]4 of the first U(4) and an irrep
[A2]4 of the second U(4), we see that the irrep basis dl((”i);r ns
at a fixed k occupies an irrep ([1]4, [0]4), while the irrep basis
a’l((”“)T ~at a fixed k occupies an irrep ([0]4, [1]4).
Furthermore in Appendix D3 we proved that [see

Eq. (D30)] the C symmetry restricts
aik,q+G)=0w3(k,q+G)=0 (35)

in Eq. (24). This makes Oq, in Eq. (11) diagonal in index ey
in the basis dl(("gfns [see Eq. (D45)], and thus the number of
electrons in the np,y irrep bands (particularly, Chern band if

nmax = 1) with a fixed ey is conserved.

VII. U(4) SYMMETRY IN THE (FIRST) CHIRAL-NONFLAT
LIMIT

We now turn to the first chiral-nonflat case which is in the
first chiral limit wg = 0 [thus Eq. (29) holds], but does not
have exactly flat bands (Hy # 0). Since the chiral symmetry
implies €, ,(k) = —e_, ,(k), the projected kinematic term in
Eq. (9) within each pair of bands n = +ng can be rewritten as

0 .
H(nB) Z 6+nB n(k)(gzt N )m,n,s;n,n’,s’clj(qm!n'sck,n,n’,s’- (36)

As a result, Hy only commutes with 16 out of the 32
U@4)xU(4) generators 5% and $' in Egs. (23) and (31).
We denote these 16 generators commutmg with Hy as §% =
Zk(s Y, sinn ,yc;m’nisck,n,n/,y, where 5% within each pair of
bands n = +ng read

5 = %%, (a,b=0,x,y,2). (37)

They form the 16 generators of a U(4) group. In particular,
the representation matrix 5 of generator $*° at each k is

given by the sewing matrix of iCC,, P, and thus $%0 i identical
to iCCy;P when acting on single-electron states. For many-
body states, one has iCC,,P = ¢™"/2 (up to a phase factor).
Therefore, in the first chiral-nonflat limit with Hy # 0, there
is a global U(4) symmetry generated by S which is reduced
from the U(4)xU(4) symmetry of the first chiral-flat limit.
We note that this first chiral-nonflat U(4) here (Eq. (37)) is
different from the nonchiral-flat U(4) (Eq. (23)).

Since S is proportional to ¢° in the band basis, the energy
band creation operators c;i s In each band n at a fixed k
occupy a fundamental irrep [1]4 of the first chiral-nonflat U(4)
group. Equlvalently, the irrep band (Chern band if ng = 1)

creation operators dk ey for fixed ey, ng, and k also occupy

a fundamental U(4) irrep [1]4. For the irrep of either ck,n, n.s OF

d(nB)'

k.ey .5 L€ representation matrices of S are given by

3P(n) = 5%(ey) = 19" (a,b=0,x,y,2). (38)
Note that the representation matrices 5% (n) [or 5(ey)] are
independent of n (or ey). This is in contrast to the nonchiral-
flat limit, where the representation matrices of S for ey =
+1 differ by a unitary transformation t, [although ey = +£1
therein still give the same fundamental nonchiral-flat U(4)
irrep; see Eq. (27)].

VIIL. U4)xU(4) SYMMETRY IN THE SECOND
CHIRAL-FLAT LIMIT

We find that there exists a second chiral limit w; = 0 < wy
where the continuous symmetry of TBG is largely enhanced,
similar to the situation in the first chiral limit discussed in
Secs. VI and VII. Although this limit is far from the exper-
imental reality of the TBG samples, its existence suggests the
possibility of a possible hidden duality in the BM model and
its interactions. For w; = 0 < wy, we can define a second
chiral transformation C’ satisfying C? =1 and C’I%C’ I =
—H,, which acts as C’ e Qu C’ = (07)ga ;Qck Qnfus with
log=%1forQe Q.. Thrs new chiral symmetry has unusual
commutation relations with the twofold rotation C,,, time-
reversal 7', and the unitary particle-hole symmetry P (see
Appendix D 5 a and Ref. [108] for details). It also satisfies (see
Appendix D 5)

{C',Hy} =0, [C',H]=0, 39)
similar to the first chiral symmetry C [Eq. (29)]. Note that the
second chiral symmetry C’ preserves electron momentum k.
In the second chiral-flat limit with w; = 0 and Hy = 0, similar
to the first chiral-flat limit, we can define a symmetry

g0 Z Z [B€ (K) g ﬂ/ck s Okt 55 (40)

k,s nn'nn’

where BC (k) is the sewing matrix of C’. Together with
5% in Eq. (19), it generates a U(4)xU(4) group with 32
generators S (see Appendix D5). Under the gauge fix-
ings of Egs. (20) and (21), and a further gauge fixing for
C’ as C’c]t,n’n.XC/’1 = isgn(n)nci’_nqnq‘v [which is consistent
with the continuous condition (22); see Appendix D5b],

tab __ sab i rab
we find S¥7 =3, (s{ )m,n,S;n.n’J’Ck,m,n,sck,mrl’qS" where s’
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within each pair of bands n = +np read
s = (% 4 ¢t 2. 1)

Again, we note that s’% has no nonzero matrix elements be-
tween different pairs of ph symmetric bands ng # ny.

It is worthwhile to mention that, due to the unusual com-
mutation relations of C’ with C,,, T, and P which flip k,
one cannot further fix the sewing matrices of C,;, T, and
P into a k-independent form as in Eq. (B18). Instead, the
sewing matrices of these k flipping symmetries have to be
k-dependent, for instance, given by Eq. (D65) in Appendix
D5b. This is closely related to the topologically protected
double degeneracies at Cy;-invariant points of the MBZ, as
proved in Ref. [108].

In this second chiral-flat limit, the four irrep band basis cre-
ation operators dli”fyﬁ” s(m==L,5=7,])atafixedk and ey in
Eq. (26) occupy a fundamental irrep of the U(4) generated by
S:% and a trivial identity irrep of the U(4) generated by S
(ey = *£1). The corresponding representation matrices of S'??
are

s = (1 £ ey)r%s?)2, (42)

which can be see by substituting matrix {0 (¢&?) by its eigen-

value 1 (ey) in the irrep band basis dk"f e Therefore, the

irrep basis dli”i)f at a fixed k occupies an irrep ([1]4, [0]4)
of the second chlral flat U(4)xU(4), while the irrep basis
d("B)’ , at a fixed k occupies an irrep ([0]4, [1]4).

Furthermore in Appendix D5 we proved that [see
Eq. (D66)] the C’ symmetry restricts

ai(k,q+G) =aw3(k,q+G) =0 (43)

in Eq. (24).

However, with w; = 0 < wy, there is barely an angle
where a set of low-energy bands become flat, and it is proved
in Ref. [108] that all the energy bands are topologically con-
nected into a perfect metal (see Fig. 2(c), Appendix D 5, and
Refs. [108,118]). This makes the second chiral-flat limit less
related to experimental realities, although it can possibly be
achieved by artificial patterning of the moiré lattice to enhance
AA hopping. Besides, we note that for the lowest ph band
pair of ng = 1, the “Chern band basis” dl;e s in Eq. (28)
no longer has a well-defined Chern number, since the n = %1
bands are connected with all the higher bands.

We also note that although the representation matrices in
the two chiral limits in Egs. (32) and (41) are the same, their
physical operations are different, since they are generated by
the sewing matrices of the first chiral symmetry C and the
second chiral symmetry C’, respectively.

IX. U4) SYMMETRY IN THE SECOND
CHIRAL-NONFLAT LIMIT

With the TBG bands in the second chiral limit poorly flat,
the second chiral-nonflat limit where w; = 0 < wy and Hy #
0 gives a more physical limit, which may be realized by artifi-
cial patterning of moiré lattices. In this limit, similar to the first
chiral-nonflat limit, we can prove that (see Appendix D 6) a
U(4) symmetry remains, which is generated by the remaining
iC'C,, P symmetry. The 16 U(4) generators are a subset of the

TABLE I. Symmetries in different limits. The last column shows
the contributing ph and chiral symmetries.

TBG limit Hy wo w Symmetry  ph/chiral
Nonchiral-nonflat #0 >0 >0 UQR)xUQR)
Nonchiral-flat =0 >0 >0 Uu@) C,.P
(1st) chiral-flat =0 =0 >0 U@WxU¥ G P, C
(1st) chiral-nonflat #0 = >0 Uu@) iCCy, P
2nd chiral-flat =0 >0 =0 U4HxU4) CpP,C
2nd chiral-nonflat #0 >0 =0 U@) iC'Cy,P

generators S’ in the second chiral-flat limit [Eq. (41)], which
we denote by S = Y, (3 Do n.sim ' Che .y Chon. ' Where
b within each pair of bands n = +ng is given by

g/(lb é_orasb (44)

This simply gives the spin-valley rotations without affecting
the space of energy band indices n. Accordingly, either the
energy band basis clﬁ , or the irrep band basis dk";m sata
fixed k and n or ey occupy a fundamental U(4) irrep, with the

representation matrices of Sab given by

§(n) = 5 (ey) = %" (a,b=0,x,y,2). (45)

X. THE STABILIZER CODE LIMIT

Generically, the projected interaction Hamiltonian H; in
Eq. (10) cannot be analytically diagonalized, since generically
[0q,6, O¢.¢']1 # 0 for q # q or G # G’ [see Eq. (C16)], and
thus the terms O_q,_gOq,¢ in Hy are noncommuting.

However, in the case we are only projecting into the lowest
eight bands with n = £1 (namely, np,x = 1), there is limit
which we call the stabilizer code limit, where the Hamiltonian
becomes similar to (but not strictly identical to; see Appendix
E) a stabilizer code Hamiltonian with all of its terms mutually
commuting. The stabilizer code limit is defined in either the
first chiral-flat limit (with first chiral symmetry C) or the sec-
ond chiral-flat limit (with second chiral symmetry C’), where
Eq. (35) or (43) is satisfied, and the condition is that the form
factors M(k, q + G) in Eq. (24) are k independent for any
q, G. In this limit, as we proved in Appendix E, one would
have [Oq,G, Oq,¢’] = 0. Thus, all the terms O_q,_gOq,¢c in
the Hamiltonian H = H; in Eq. (10) will be commuting:

[qu,fGOq,Gv qu’,fG’Oq’,G’] =0. (46)

This stabilizer code-like Hamiltonian has all of its many-body
eigenstates exactly solvable, which will be solved in a separate
paper [109].

XI. DISCUSSION

We have demonstrated that for the projected Hamiltonian
with Coulomb interaction in the lowest 87,x (2111max per Spin-
valley) bands of any ny,x > 1, there exists various different
limits where global U(4) or U(4)xU(4) symmetries emerge.
For ny,.x, there exists a stabilizer code limit for the Hamilto-
nian in either the first or the second chiral flat limit, where
all the terms in the Hamiltonian are mutually commuting.
Our conclusions are summarized in Table I and Fig. 3. Near
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1st chiral-nonflat < nonchiral-nonflat S 2nd chiral-nonflat
u4) U(2)xU(2) u4)

l l l

1st chiral-flat nonchiral-flat 2nd chiral-flat
<
U(4)xuU(4) U4) U(4)xU(4)

W, /w,=0 Wy /Wy =00

v v

stabilizer code
k-independent form factors

stabilizer code
k-independent form factors

FIG. 3. The relations between the symmetries of projected
Hamiltonian within any set of ph symmetric bands of full spin-valley
flavors in various limits. The arrows point along the directions along
which the symmetry groups are enhanced into a larger one.

the first magic angle, the low-energy physics is expected to
be governed by the projected Hamiltonian with n,x = 1. A
projected Hamiltonian within higher number of bands could
be a good approximation at higher magic angles, where more
than two bands per spin-valley can become flat.

The U(4) symmetry in the nonchiral-flat limit in Eq. (23)
and U4)xU(4) symmetry in the first chiral-flat limit in
Eq. (32) that we prove here agree with those discussed in
Ref. [72] for the lowest eight flat bands near the first magic
angle. We note that, however, we show the symmetries are
generic for the projection into any number of ph symmetric
bands with full spin-valley degrees of freedom. Besides, we
have identified a second chiral limit, which also enjoys a
U(4)xU(4) symmetry in a second chiral-flat limit. We have
also derived the explicit irrep band basis of the symmetries in
all the different limits. Furthermore, we showed that under a
strong condition, the projected Hamiltonian in the lowest eight
bands in the first or second chiral-flat limit becomes similar to
a stabilizer code Hamiltonian, thus allowing one to exactly
solve all the many-body eigenstates, which we will study in
Ref. [109].

A U(4) symmetry in the flat band limit is also discussed
in Ref. [71], which is constructed based on a non-maximally-
symmetric Wannier basis. (These Wannier functions break the
C,,T and C,, T P symmetries, which protect the fragile topol-
ogy [43-45] and stable topology [108] in TBG, respectively.)
The U(4) symmetry in Ref. [71] is closest to our first chiral-
nonflat U(4) symmetry that we introduce in Eq. (37) since they
have the same generators 7% (a,b =0, x, v, z). However,
Ref. [71] does not assume the CC,, P symmetry but requires
the flatness of the two bands, which is in contradiction to our
first chiral-nonflat U(4), which assumes the CC,, P symmetry
and does not require flat bands. The reason Ref. [71] needs
flat bands is the absence of exact CC,, P symmetry. We show
in Appendix F that, if the CC,, P symmetry is imposed to the
Wannier functions, then the two U(4) symmetries become the
same and do not require the flatness of bands.

The TBG interacting Hamiltonian, symmetries, and gauge
fixings we derived here provide a solid ground for future
theoretical studies. In the various limits we discussed, the
many-body eigenstates of TBG should fall into irreps of U(4)
or U(4)xU(4) groups. Besides, the generic PSDH form of

the projected interaction H; in Eq. (10) allows us to look for
ground states of the Kang-Vafek type in the flat band limit.
We will study the ground states and excitations of TBG in
these limits analytically and numerically in separate papers
[109-111]. The existence of several limits with identical large
continuous symmetry groups (but different generators) of the
BM interacting Hamiltonian, as shown in Fig. 3, suggests the
presence of a yet to be found duality of this model.
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APPENDIX A: REVIEW OF THE SINGLE-PARTICLE
HAMILTONIAN

The quantitative and symmetry aspects of the single-
particle Hamiltonian of TBG are discussed in detail in
Refs. [107,108]. For completeness, here we briefly review the
notations and conclusions for the single-particle Hamiltonian.

1. Bases

We denote the fermion operator in the plane-wave basis
of graphene layer [ as c;a,s’ ;- Here p is measured from
the I" point of the monolayer graphene Brillouin zone (BZ),
o = A, B represents the AB sublattice, s =1, | is the spin
index, and / = = is the layer index. We define K, as the K
point in the top-layer graphene BZ and K_ as the K point in
the bottom-layer graphene BZ. K, and K_ differ by a twist
angle 6 (Fig. 1). For concreteness, we assume K; is along the
direction with an angle —6/2 to the p, axis. Each graphene
layer [/ contains two valleys, K and K’, at momenta nK;, where
n = =+ denotes graphene valleys K and K’, respectively.

For later use, we define the two-dimensional (2D) mo-
menta

q =K —Ky)=k(O, 1,

V3 I\’

q = C3.q =k9(—7,—§> s
V3 1\’

qzzc;ql:ke(T—E) : (A1)
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where ky = |[K_ — K| = 2|K,|sin(6/2) for twist angle 6.
We can then define the moiré BZ (MBZ) for the TBG moiré
lattice, which is generated by the moiré reciprocal vectors

buyi=qG—q, byw=q3 —q. (A2)

2. Single-particle Hamiltonian

When the twist angle between the two graphene layers
is small (8 ~ 1°), an approximate valley-U(1) symmetry and
an approximate moiré translation symmetry emerge. Accord-
ingly, the single-particle Hamiltonian is decoupled between
two valleys n = =+.

To concentrate on the low-energy physics of the two val-
leys, we define Qy = Zby;; + Zbyy, as the triangular moiré
reciprocal lattice sites generated by the moiré reciprocal vec-
tors by and by, in Eq. (A2). We then define two shifted
momentum lattices @, = q; + Qpand Q_ = —q; + Qp. We

then define the low-energy fermion operators C;Q,n,a,x at val-
ley nand Q € Q. as
i
CT — {C¥++k—Q,(x,s.+ Q € Q+ (A3)
k,Q.+.a,s CK,-&-k—Q,(x,s,— Q e Q_
;
T _ C—K,+k—Q.a,s,— Q € QJF Ad
Ck,Q,f.a,s - T Q ’ ( )
' C K, +k—Q,a.5,+ Qe Q.

where k takes value in the MBZ, and k = 0 is chosen at the
center (I'y; point) of the MBZ. In practice, we always take
a finite cutoff for Qp  _; the largest Q in Q. should have
a norm much smaller than |K,|. We denote the number of
points in Qo 4 — as [Qo ¢ —|.

The single-particle Hamiltonian of TBG for small twist
angle 0 is given by [1,107,108]

= 2 2.2 [,

keMBZ nafs QQ’

quQ,n,a,sck,Q',ﬂ,ﬁ,s’ (AS)

where hg )Q (k) is the first-quantized momentum space Hamil-
tonian at valley 7 in the sublattice space, and Q, Q' € Q. At
valley K (n = +), we have
3
hy o) = vr(k — Q) - 08,0 + ¥ Tjdq.04q,-
j=1

(A6)

where v is the graphene Fermi velocity, and the matrices

T; = woog + w; [ox cos w + oy sin M]
(A7)

Here og and ¢ = (0, 0,) are the 2 x 2 identity matrix and
Pauli matrices in the space of sublattice indices, while wy > 0
and w; > 0 are the interlayer hoppings at the AA and AB
stacking centers of TBG, respectively. Generically, in realistic
systems wy < w; due to the lattice relaxation. In the absence
of lattice relaxation, one has wy = wy.

At valley K’ (n = —), we have

hy () = axh“é oK)y = —vr(k — Q) - 0*g.0

+ Z(UX’I}GX)(SQ,Q’iq]-a
j=1

(A8)

where 0* = (0, —0y).

3. Symmetries

Here we summarize the symmetries of TBG, which can be
found in Ref. [43] and are expanded on in Ref. [108].

1. Discrete symmetries. Since graphene has zero spin-orbit
coupling (SOC), we can define a set of spinless symmetries
for TBG. In TBG, there are spinless unitary discrete rotational
symmetries Cy;, Cs;, and C,, and the spinless antiunitary
time-reversal symmetry 7', which satisfy

[Csz, Hol = [Caz, Hol = [Cor, Hol = [T. Hol = 0. (A9)
We denote the action of a spinless symmetry operator g on the
fermion basis cl:Q s 35

=) ID@lewsenchq.ype  (AlO)

Qn'g

+
gck,Q,n,a,sg

where D(g) is the representation matrix of the symmetry
operation g in the space of indices {Q, n, o}, and gk is the
momentum after acting g on momentum k. In particular,
Cy.;k = Tk = —k. The representation matrices for the dis-
crete symmetries of TBG are given by

22

[D(C3)lQnp.Que = ‘SQZCaz,Q‘Sn’,n(emT%)ﬂa’ (A1D)
[D(Ca)]Qnp.Qne = 8Q.c2,Q8y.—n(0x) pa> (A12)
[D(Ca) ] s.Qua = 3Q.—Q8y,—4(0x)pas (A13)

(D)l p.Qne = 3.~y —ndp.q. (Al4)

Moreover, T is antiunitary, so TiT— ' = —i.
In particular, the combined symmetry C,,7 does not
change k, i.e., C;,Tk = K, and the representation matrix is

[D(C2ZT)]Q’n’ﬁ,Qna = [D(CZZ)D(T)]Q’n’ﬁ,Qna

= 3Q,Q8y.1(0x)p.a- (A15)

2. U(2)xU(2) spin-charge rotation symmetry. The
graphene has zero (negligible) spin-orbit coupling (SOC).
Since the single-particle Hamiltonian of TBG has two decou-
pled valleys n = %, and the SOC is zero, the electron SU(2)
spins of each valley can be rotated freely. Each valley also
has a charge U(1) rotation symmetry. This leads to a global
U(2)xU(2) symmetry. The eight generators of the U(2)xU(2)
symmetry are given by

dab b
§Y = Z(Ta)nn’(s ).rs’clt’Q’n’agxck.Q,n’,a,s’,
k

(a=0,z, b=0,x,y,2), (A16)
where we have defined 7¢ and s* (@ = 0, x,y, z) as the 2 x
2 identity and Pauli matrices in the valley and spin spaces,
respectively.

3. Particle-hole (ph) transformation P. In addition to
the above symmetries, TBG also has a unitary particle-hole
(ph) “symmetry” [43], which satisfies the anticommutation
relation

{P,H,} = 0. (A17)
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The action of P is given by

= DP)lrpamnc gy ps . (A1)
QB

i
Pck!QYn,aqu

with the representation matrix

[D(P)]qwp.Qne = 8@~y .n0p.bq » (A19)
where {o = %1 for Q € O, respectively. Note that P trans-
forms creation operators to creation operators (rather than
annihilation operators) and maps sites Q € Q1 into —Q €
Q. Since P flips the single-particle Hamiltonian H,, it is not
a commuting symmetry of TBG but only reflects a relation be-
tween the positive and negative energy spectra. Furthermore,
the ph transformation P satisfies

P’ =1,
{P,Cy} =0,

[P, C3.]1 =0,
{P, T} =0,

{P,Cox} =0,
[P,C, T]=0. (A20)
4. Eigenstates

The solutions to the single-particle Hamiltonian Hy in
Eq. (AS) allows us to define the energy band basis

Z UQua;ny (k)ck Q,n,as’
Qu

(A21)

Cknns

where uQq,.,;(K) is the eigenstate wave function of energy
band n of the first quantized single-particle Hamiltonian

hg’)Q,(k) in valley 5. It satisfies

Y 11 0], sturinn (K) = €ny (KD Qusny (K),
Q.8

(A22)

where ¢, ,(k) is the single-particle energy of eigenstate
UQa;ny (K). Note that the wave function uqq;u, (k) and energy
€,,n(Kk) are independent of spin s, because of the absence of
SOC. In each valley and spin, we shall use integers n > 0 to
label the nth conduction band, and use integer n < 0 to label
the |n|th valence band (thus n # 0). The lowest conduction
and valence bands in each valley-spin flavor is thus labeled by
n==l.
Since c}; by Qs = c;Q_bM“ nas for reciprocal vector byy;
(i =1, 2), we generalize the eigenstate wave function to mo-
menta k outside the MBZ by the embedding relation for
shifting momentum k by a reciprocal vector by,;:
MQoz;m](k +byi) = “Q—bMi,a;nn(k)- (A23)
This ensures our energy band basis is defined periodically in
the MBZ, namely, ck T— ckn .+ Besides, due to the Cy;
symmetry and ph symmetry P, the energy spectrum satisfies
GI‘LJ’)(k) = En,fn(_k) s 6n,n(k) =

—€_pn(=k). (A24)

The single-particle Hamiltonian can then be rewritten in
the energy band basis as

HO - Z Z €n, n(k)cknmcknm

nns

(A25)

APPENDIX B: GAUGE FIXING AND THE CHERN
BAND BASIS

In this Appendix, we fix the gauge for the energy band
basis cf(m]s in Eq. (A21), so that we are able to obtain an
explicit form of the interaction Hamiltonian in Appendix C 3.
We will also define a Chern band basis, whose gauge fixing
was shown in Ref. [108], using the energy band basis.

1. Sewing matrices

The discrete symmetries in Appendix A3 yield certain
relations among the eigenstate wave functions related by these
symmetries. For the purpose of gauge fixing, here we will
discuss these relations among eigenstate wave functions for
operators Cy,, T, and P.

For notation simplicity, we denote the wave function
UQq;ny(K) as a column vector u,,(k) in the space of indices
{Q, «}. Furthermore, when a representation matrix D(g) of
an operation g [defined in Egs. (All) to (A19)] acts on a
wave function u,,, (k), we denote the resulting wave function
in valley n for short as [D(g)],, #ny(K), the components of
which are given by g5, [D(8)lqun @ g tq pony (K). Namely,
we suppress the indices {Q, @} of the representation matrix
D(g) for short.

When g is a symmetry operator satisfying [Hy, g] = 0 (or
{ﬁo, gl = 0), if u,,y (k) is an eigenstate wave function at mo-
mentum Kk, the wave function [D(g)],;y i,y (K) (an additional
complex conjugation is needed if g is antiunitary) must also
be an eigenstate wave function at momentum gk at the same
(or opposite) single-particle energy. For symmetries Cy,, T,
and P, this allows us to define the sewing matrices B8(k) in
the band and valley space connecting the symmetry related
eigenstates by

[D(CZZ)]nn’unr]’ (k) = Z[BCZZ (k)]mn,my’umn(_k)’ (Bl)
[D(T)]nr]/“:,]f (k) = Z[BT (k)]mn,m)/umn(_k)a (BZ)
[D(P)]nn/unn’ (k) = Z[Bp(k)]nm,nn’umn(_k)~ (B?’)

m

For nondegenerate wave function u,, (k) in valley 7', since
C>. and T commute with the Hy and flips the valley 7, while P
anticommutes with Hy and preserves the valley 1, we generi-
cally have

e

[BCx K)mn.ny = Sn—nOmn ¢ nr
(BT (K)ot = 8 —ySmyner ),
[BP(k)]m”v”U' = 87],71/8—171,1’lei¢:"/(k). (B4)

Accordingly, the action of a symmetry operator g on the en-
ergy band fermion operators [defined in Eq. (A21)] is given
by

88 = D Bl s (BS)
m
Since the three symmetries satisfy the relations
C,=1,T"=1, PP=—1, {P,Cy,} =0,
{P,T} =0, [C,T]=0, (B6)
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with the above notations, the symmetries Cy;, T, and P allow
us to define

B“*(—k)B®* (k) = BT (—k)B"*(k) = —B" (-k)B" (k) = I,
B"(—=k)B (k) = —B“*(—k)B" (k),
B"(—k)B" (k) = —B" (=k)B"*(k),

BT (=K)B“* (k) = —B“*(—k)B" (k), (B7)

where B%*(k) stands for the complex conjugation of matrix
B3(k), and [ is the identity matrix in the n, n space. More
discussions on the sewing matrices can be found in Ref. [108].

The combination of the three symmetries yields two inde-
pendent symmetry operations C,,T and C, P, which do not
change k. Note that C,,T is antiunitary and C,,P is unitary.
Their sewing matrices are defined by

[DCo)DT )ty (6) = 3 BT (K)o g (K. (BS)

[D(P)D(C2z)]m]/unn’ (k) = Z[BCZ:P(k)]mr],m]/umn(k)~ (Bg)

m

For nondegenerate eigenstates at momentum k (nondegener-
ate within one valley), they are given by

C2z

BOT (k s s s )
[ ( )]mn,nn/ = Op,’Om,n€ ™" s

Caz

B (K) lyn oy = 8 18 o (B10)
mn,nn. = Y—n,n Y —m.n ’

where by definition we have gonCznT k) = (pnT,n’(k) +
@, (—K) and g7 (k) = ¢,% (k) + ¢F _, (=K). The sewing

! ' 2 ;
matrices of C,, T and C,, P are subject to the constraint that

(Co, TV = (Co.PY* =1, [Co,)T,Co,P1=1,  (Bll)
and thus they satisfy
BT (B (k) = B ()PP =1,
B (k)BT (k) = BT ()B" (k). (B12)

2. Gauge fixing

We will now gauge fix the wave functions and sewing
matrices of the k-preserving symmetry operations C,,7 and
C,,P. By Egs. (B10) and (B12), we are able to choose the
following k-independent choices for the sewing matrices:

[BCz:T(k)]mn,m]/ = 8'7,71’8””“
[Bczzp(k)]mn,nn’ = —Sgn(n)n/(s—n.n’fs—w-

Accordingly, the symmetry actions on the band basis fermion
operators are given by

(Cx:T ey (CoT) ™ = ey,

(B13)

,n,n,s’
(Co:P)ct,, (CocP)™ = —sgn(miney _, _, . (Bl4)

This, however, does not yet fix the entire phases of the energy
basis at momentum K, since the sewing matrices in Eq. (B13)
are invariant under the unitary transformation of wave func-
tions u,, (K) — sgn(n)nu,,(K) at each individual k. To further
fix this gauge freedom for different k € MBZ, we start by
choosing a momentum k = ky where eigenstates within one
valley are nondegenerate and choosing a fixing of the band

basis at kg satisfying Eq. (B13). We then fix the band basis of
bands +n at other k # Kk by requiring

Jon(k+q, k)
= [u) , (& + Quy (k) — ', (k + Qu_y (k)| (B15)
to be a continuous function of k and q that satisfies

lirr})fn,,,(k +q,k)=0 (B16)
q—
for all k. Meanwhile, we require the wave functions u, , (k)
at all k to satisfy Eq. (B13). This fixes the relative sign
between wave functions u, ,(k) and u_, ,(K) in a way that is
continuous in k. Note that we do not require the wave function
u, ,(K) itself to be globally continuous in k of the entire MBZ,
which is impossible when the band » is topological. However,
locally u, ,(k) can always be chosen to be continuous in k,
provided u, ,(k) is nondegenerate at momentum k. We will
see the importance of condition (B16) in Appendix B 3 again.
We also note that we could alternatively define the contin-
uous condition between the same n but opposite 7 bands as
limg [u, , (K + @)u, (k) — u, _, (kK + q)u, —, (k)| = 0. To-
gether with Eq. (B13), this is equivalent to condition (B16).
In particular, we see that all the sewing matrices in
Eq. (B13) are closed within each pair of bands n = +ng for
any ng > 1. The same is true for all the sewing matrices
we will consider in this paper, which are either commuting
or anticommuting with the single-particle Hamiltonian Hy.
Within the space of each pair of ph symmetric bands with
band indices n = £ng, if we use ¢* and ¢ (a =0, x, Yy, 2)
to denote the identity and Pauli matrices in the energy band
n = *np space and the valley space, respectively, the sewing
matrices in Eq. (B13) can be rewritten as

BT (k) =¢°7°, Bk =¢'r.  (BID)

We also mention that for ng = 1 (i.e., within the lowest con-
duction and valence bands n = %1 per spin per valley) when
k is at Ky or K}, point of the MBZ, bands n = +1 and n = —1
are degenerate. In this case, we still choose the eigenstate
basis at K, or K, point such that Eqgs. (B17) and (B16) are
satisfied.

Lastly, we note that we can further fix the relative gauge
between wave functions at momenta k and —k by fixing the
sewing matrices of C,, and P. In particular, for k not at the
P-invariant momenta, which are I'y, and the three equivalent
M), in TBG, one can choose the sewing matrices of Cy;, T,
and P between each pair of bands n = +np as

B (k) = ¢, BT(k) =%, BP(k) = —i’T%,

(B18)
which are consistent with Eq. (B17). As proven in the next
subsection, with the gauge condition Eq. (B16), the sewing
matrix B (k) must have additional minus signs, i.e., B (k) =
i¢?7%, at an odd (even) number of the four P-invariant
momenta if the two bands n = £np have an odd (even) topo-
logical winding number protected by C,.T, and at the other
odd (even) P-invariant momenta B (k) are —iZ” 7%, the same
as those at generic momenta. Accordingly, the sewing ma-
trices B (k) and BT (k) also have the additional minus at
momenta where B (k) has the minus sign. In this work, we
choose BY (kr,,) = —i¢¥t% and BF (ky,,) = i¢”7%. It should be
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noticed that Eq. (B18) is incompatible with the second chiral
symmetry, which we explain in Sec. D 5.

For the purpose of this paper, we will use the gauge
conditions in Eqs. (B17) and (B18) for gauge fixing of the
interaction Hamiltonian in Appendix C.

3. The Irrep band basis and Chern band basis

After we have gauge fixed the wave functions as shown in
Egs. (B17) and (B16), we have defined a new basis dl(("eBy)Tn ,in
Eq. (26) within the band space of each pair of ph symmetric
bands n = +ng, which we call the irrep basis:

. _
(ng)t  __ Cl'L"B-,UqS + i

k,ey,n,s — ﬁ ’

In particular, for ng = 1, we call them the Chern band basis
within the lowest two bands (in each valley-spin flavor), which
we denote for simplicity as dk il yops = dli ey.m.s» @S given in
Eq. (28), where ey = %1. This basis will be useful when we
discuss the symmetries in various limits in Appendix D.

In this Appendix, we briefly show that the basis dé”g)'n s
defines a band with well-defined Berry curvature, and for a
fixed ey, n, s gives a band with Chern number

(ey = £1). (B19)

C® = eyern,, (B20)

ey,n,s

where e, ,, € Z is the Wilson loop winding number of the
two bands n = +ng, provided the pair of bands n = +np are
disconnected with other bands. More details can be found in
Ref. [108].

The wave functions of the Chern band basis in Eq. (B19)
are given by (denoted by wave functions with a prime)

u+nB,r](k) + ieyM,,187,7(k)

u;Y’nB’n(k) = 7 (B21)
Due to the condition in Eq. (B16),

we know that limg_,¢ uinB,ﬂ(k +

Qttny (k) = limgou’ (kK + Qu_y,
(k). Therefore, we find the Chern band wave functions
satisfy the continuous condition

hm |uey o (K + q)u;,y ’nB,,](k)|

1 . +
- E (lll—l;l}) |M+nB»77(k + q)qunB,n(k)

+ eye;uT_nB,n(k + q)u—nBJ7(k)|
(B22)

= 8y ¢} -
This continuous condition [which is due to condition (B16)]
allows us to define a continuous Berry curvature for the Chern
band wave function ue/ . n( ).

We first focus in the valley n = + sector. The sewing
matrix for C,,T restricted in valley n =+ is given by
BT (k) = ¢° [see Eq. (B17)]. Under this gauge, according
to Ref. [45], the non-Abelian Berry’s connection [A(K)],;, =
iuL’ +(K)0kup,+ (k) will take the form

0 ia(k))

Ak) = (_ia © 0 (B23)

in the energy band basis u, (k) of n = +ng. The sign of
wave functions u, (k) is fixed in such a way that a(k) is
globally continuous in the BZ, excluding the Dirac nodes
between the two bands +ng (recall that we assume the bands
+ng are disconnected from other bands, thus there can be
Dirac nodes between them only if ng = 1), which is always
possible [45]. In particular, this way of sign fixing is consistent
with Eq. (B16), since the vanishing of the diagonal Berry’s
connection requires limg_, |ufn,n(k + Qi (K)| = 8.0

It is known that the Wilson loop winding number of two
bands isolated from other bands is given by the Euler class

[45]:
! Z 7{ dk - a(k) ! / d’k Q(k)
€y = 5 : == :
2 21 —~ Jop, T JMBZ-Y, D;
(B24)

where D; is a sufficiently small region containing the ith Dirac
point in the BZ, and Q(k) = Vi x a(k).

With Eq. (B23), we can derive the Berry connection of the
irrep band basis dE ey .+.s At K away from Dirac points as

AL (k) = il ), (K)

= 5[uinB,+(k)aku+n3,+<k>+ieyu1n3,+(k>aku_n3,+(k)
— eyt (K)kttiny,+ (K)+ul,  (K)U_ny 4 (K)]
= eya(k). (B25)

Furthermore, the Berry curvature can be shown to be nondi-
vergent at the Dirac points between the two bands n = +ng
(see proof in Ref. [108]; if ng > 1, there are no Dirac points
between bands n = +ng). Therefore, by Eq. (B24), we find
the irrep basis dlins) 4 carries a Chern number given by
Eq. (B20).

Further, note that the C,, symmetry maps the irrep basis
dli”g)' ,.s Into d("kB): _, [see Eq. (B18)]. Since C,; does not
change the Chern number we conclude that the Chern number
of the irrep basis dlgnf)'n , in the MBZ is simply given by
Eq. (B20).

In particular, for the lowest two bands ng = 1, the bands
are topological and carry a winding number e; = 1 [43-45].
Thepefore, for the Chern band basis (the irrep basis with ng =
1) dik,ey,—,s’ we have Chern number

Cey,n,s =éy, (B26)

and thus the name “Chern band basis” within the lowest two
bands (see Ref. [108] for a more careful treatment at the Dirac
points at CNP, which does not change the conclusion).

For ng > 1, if the two bands n = *ng are isolated from
other bands, they will be trivial, and thus e, ,,, = 0 forng > 1
[43—45]. Therefore, they will have Chern number C, ”B =0.

Now we show that if e, ,, is odd, then the s1gn of the
sewing matrix B” (k) must be k dependent: For = +, B (k)
can be chosen as —i¢” at all the momenta except one or three
of the P-invariant momenta, where B” (k) must be i¢”. To see
this, we assume BF (k) = —ix (k)¢?, where x (k) = %1, and
transform it into the Chern band basis Eq. (B21). We obtain

BY , &) =u . (—KDPW, , .k

eye

= —ix(K)eyde, o - (B27)

205413-12



TWISTED BILAYER GRAPHENE. III. INTERACTING ...

PHYSICAL REVIEW B 103, 205413 (2021)

Therefore, P leaves each branch of the Chern band basis,
which has the Chern numbers e; ,,ey, invariant. iP can be
equivalently thought as an inversion symmetry for each Chern
band since it squares to 1 and changes k to —k. The “inver-
sion” eigenvalues of the Chern band ey are given by x (K)ey
for k being the P-invariant momentum. Due to the relation
between Chern number and inversion eigenvalues, we have

(=D =[x (&), (B28)
K

where K indexes the four P-invariant momenta. Therefore, the
right-hand side must be —1 (1) if e ,,, is odd (even), implying
x(K) = —1 at one or three (zero, two, or four) of the four
P-invariant momenta. The sign of B (k) in the other valley
n = — can be obtained from the constraint between B (k)
and B” (k).

In the case when a pair of bands n = +np are not isolated,
the Chern number C;* | _is not clearly well defined. We leave
this question for future studies.

APPENDIX C: INTERACTING HAMILTONIAN WITH
COULOMB INTERACTION

In this Appendix, we write down the interaction Hamilto-
nian of TBG for the Coulomb interaction with screening from
the top and bottom gates.

1. Low-energy interaction

We denote the (screened) Coulomb interaction in TBG
between two electrons of distance r as V (r). Usually, TBG
samples in experiments feel the Coulomb screenings from the
top and bottom gates. Here we assume the TBG has a top gate
plate and bottom gate plate which are distance £ away in the z
direction. The screened Coulomb interaction is then given by

=D
U
y n_Z:oo N ET

Vir)= (CI)

where U = e?/(e&), with € being the dielectric constant,
and r = |r|. We call £ the screening length, which is usually
around 10 nm and comparable to the moiré lattice constant.
For € =~ 6 from typical hBN substrates, and £ ~ 10 nm, we
have Ur ~ 24 meV. Using the 2D Fourier transformation for-

mula that
[} 2w
— / dq/ dgeféquiqrcosé
0 0

2 1
Y
0 & —ircos@

_%‘ dz
- lzl=1 «‘;‘_Z—il"(Z2+ 1)/2

1 1
= T €20, @

qu gféqﬂ'q-r
Qn)? g

V(a)
7 Ug

0.2 7

FIG. 4. The interaction V(q) as a function of £€q given by
Eq. (C3).

we find the Fourier transformation of the Coulomb interaction
(Cl)is

V(q) = / d*re "V (r)

( 1)nefiq~r
=&U; Z / > >
e 0 r*+ (n§)
o Inlq'+ita/—aq)r
=2n&U, fdz f ( N4
i;oo @y
) —Inlgq’
= 2n£U; Z /d '82(q — q)(—1)"S
n=—oo
e~ tanh(§¢/2)
= 2EU: Y (— 1) = (U2
5,,;30 g2
_ 2me? tanh(éq/Z), ©3)
€ q
Whereq = |q|, and we have used the formula ) 2 eI =

1-— 1+e - = tanh (3). Note that V(—q) = V(q). The function
V(q) with respect to £ q is plotted in Fig. 4.

The Coulomb interaction of the 2D TBG electrons can
be written in the momentum space under the graphene plane

- +
wave basis as Cpoasil 3

N 1 1
EE I VD M GO
Ol & 0.qeGBZ a,a,s,5', 1,1/

1
+
X (Cp’—q,ot’,s/,l/cp/*a/*s,'l/ - E(Sq,())v (C4)

where p, p’, q take values in the microscopic graphene BZ,
and €, 1is the total area of TBG. Note that we did not
normal order the interaction Hamiltonian H; in Eq. (C4),
and have subtracted a %541,0 term in the two brackets of
fermion operators. Normal ordering or removing the term
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%8‘1,0 only shifts A; by a chemical potential term of the form

'bLZp,a,s,lC;,a,s,lcl’vaasal’ which does not change the general
physics. However, the advantage of the form in Eq. (C4) is
that the Hamiltonian H is symmetric about the filling of the
charge neutral point (CNP). In particular, this chemical poten-
tial shift allows us to easily obtain a many-body ph symmetric
projected Hamiltonian, as we will derive below and discuss
in more details in Appendix C4. The derived many-body ph
symmetric projected Hamiltonian is the most appropriate one,
as it effectively properly includes the Hartree-Fock contribu-
tions from the passive bands (Appendix C5).

The low-energy physics of TBG is concentrated at
microscopic electron momenta p around the two valleys

J

+K;,. Since V(q) decays quickly when ¢ > 1/£, and in
TBG |K;| > 1/&, we can ignore the terms in Eq. (C4) with
|q| ~ |K;| connecting two valleys. After this approximation,
at low energies we can assume p and p + q (p’ and p’ + q)
belong to the same graphene valley, namely, only intravalley
scattering is preserved. Rewriting the fermion operators using
Egs. (A3) and (A4), we can rewrite the low-energy interaction
Hamiltonian as

A 1
1 =
2Qu0t

Y. V@+6)spg-cdpgra.  (C5)
GeQy qeMBZ

where

1

Spgrc =y, Y. > (c.Lq,Q_G,n,a,sck,Q,,,,a,s — §5q,05G,0>~ (C6)

n,0,s keMBZ Qe Q 1

Physically, § pq+¢ is the Fourier transform of the total electron density at momentum q + G relative to the filling of the graphene
CNP (since the CNP of TBG when the two layers are decoupled is at half filling (clt +.0-G, n,a,xck,Q,n,aﬁ = %Sq,OSG,O in both

graphene layers).

2. Projected Hamiltonian

We now project the TBG Hamiltonian into the lowest 8ny,,x bands |1| < np,x in each spin and valley. When the twist angle
0 is close to the magic angle 6y, ~ 1.1°, a reasonable projected Hamiltonian is with ny,x = 1. To distinguish them from the
unprojected Hamiltonians Hy and H; in Egs. (A5) and (C5), which have hats, we denote the projected kinetic and interaction
Hamiltonians as Hy and H; (without hats), and the total projected Hamiltonian as H = Hy + Hj.

From Eq. (A25), we can easily write down the projected kinetic Hamiltonian into |n| < np,.x bands as

HO: Z Z Z En,n(k)cltnmcknns~ (C7)

[n|<nmax Ms keMBZ

To find the projected interaction Hamiltonian, we first note that due to Eq. (A21), the density operator in Eq. (C6) can be

written as

1
$6a=3 Y T ((z iy q)oa{w) - an,osG,O)

nas k QeQ4 mn

- 1
= Z Z Z Z ua—G,Ot;mn (K + q)uq.amny (K) (CkJrq,m,,],sck,n,r],s - E(Sq,ogmn> > (C8)

nas k QeQi m,n

where from the first line to the second line we have used the completeness relation

86.0 = Y Uy gy KUQ.mn (K). (C9)

nn

We then define the form factor (overlap) matrix as given in Eq. (12), which we reprint here for convenience:

MK A+G) =) > ) K+ Diaom (K).
“ Qe Qs

(C10)

We note that if k 4 q is outside the first BZ, it must be brought into the first BZ using the embedding relation in Eq. (A23). This

further simplifies Eq. (C8) into

1
39610= 32 S ML 0.+ 6 g b~ 0ot )

kns m,n

(C11)

We can then define a projected density operator 8 pg +q Dy restricting [m|, [n]| < nmax in Eq. (C11):

%G-Hl = Z Z M:Zl.n(k’ q + G) (Clltq,m,r],sck’”s’hs - 56(1’08’””) ’

kns |ml|,[n|<nmax

1
(C12)
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and substitute 8 pg +q into Eq. (C5) to obtain the projected interaction Hamiltonian H; in the n = £1 bands. To simplify the form
of the interaction Hamiltonian, we define a set of operators

_ 1
046 =VV@+Glpgia=D, . VVEA+GM) Kk q+ G)(pﬁ,q,m,n,s - gb‘q,oém,n), (C13)

kns |m], |n|<rmax

and the electron density operator within the flat bands

n _ f
pk,q,m,n,s - Ck+q,m,n,sckvn”l,s' (C14)
We can then write the projected interaction Hamiltonian as

1

H =
2Q0t

> 046046 (C15)
qeMBZ GeQ,

as given in the main text Eq. (10). In particular, we have
(046, Oqcl= Y. VVG+QVG + )0 4\qmns
k,m,n,n',n,s

x[MP k+q . q+GM? (k. q +G)—M? k q+ M (k+q,q +G)]. (C16)

which in general does not vanish if q # ' or G # G’. Therefore, different terms in the interaction Hamiltonian H; do not
commute.

3. Gauge fixing of the interaction

Equation (C10) give the generic definition of the coefficient M,(n’fll(k, q + G). Here we fix the form of this coefficient under
the gauge fixing of Eq. (B17). Under this gauge, the following constraints must be satisfied:
(D Hermiticity condition:

Mk, q+G) =M (k+q.—q—G), (C17)

which is trivially satisfied by the definition in Eq. (C10).
(II) The C,, T symmetry yields the real condition

MK, q+G) =" > [DCo:T )ty (k + @)lo—¢.o[D(Co: T it (k)]

a QeQ:
=YY e e cam&+ @) =Y D" Uy am Kigumk + @)
o QeQ. o QeQ.
=M{*(k, q +G). (C18)

(IIT) Due to the combination operation C,,P, which has the sewing matrix D(C,,P) = ¢”1” in each pair of bands n = £np
[Eq. (B17)], we have

MOk, q+G) =" > [DCo:P)u},, (K + Qlo—6.u[D(Co:P)ity; (K)o
« QeQy

= Z Z (é‘_\')mm’ua_(}a,m',_n(k + q)uQ,a;n’,—n(k)(Cy)n’n
a QeQy
="M, g+ G L, (C19)

where we write M7 in short as a matrix M in the band space, and {* means the Pauli matrix within each pair of bands +n.
(IV) For momenta k and k + q not at M), points, due to the C,, symmetry, which has the sewing matrix B(C,)(k) = ¢°*
[Eq. (B18)], we further have

MK, q+G)=M""(—k, —q — G). (C20)

For the case where K is at M), and k + q is not at My, the sewing matrices are given by —B“*(k) = B“*(k + q + G) = i¢°t*
due to the discussion in Appendix B 2, and hence the above condition changes to

Mk, q+G)=-M""(-k, —q — G). (C21)

For the case where K is not at My, and k + q is at M), the M matrix also satisfies Eq. (C21) for the same reason. For the case
where k is at My, and q = 0, the sewing matrices are given by B (k) = B®(k + G) = —iz°r* and hence the M matrix satisfies
Eq. (C20).
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We can generically parametrize M} , (K, q) as
ML,k q+G) = D Y @ )poak q+G), (C22)
a=0,x,y,z b=0,z

where only b = 0, z are allowed, since M,]  (k, q + G) is diagonal in valley n. We have assumed a,(K, q + G) are npax X Amax

matrices, and is tensor produced with ¢¢ in each pair band basis n = 4ng and the valley Pauli matrix t”. Condition III requires
M to be commutative with ¢¥7” in the band and valley indices, which restricts M matrix to decompose into four terms

Mk, q+G) = {’t%ay(k, q + G) + ¢*tai (k. g + G) + it t’ar(k, g + G) + ¢*Tea3(k, q + G). (C23)

We note that if ny. = 1, @g.1.2.3(K, q + G) are simply numbers, while if n,0x > 1, o00.1.2.3(k, q + G) will be matrices. Condition
Il requires M) ,(k, q + G) to be real, and thus «g,; 2.3(k, q + G) are all real (matrix) functions. We denote the matrix coefficient
of a;j(k, q + G) in Eq. (C23) as M. Besides, condition I requires

(1) oza(k,q—i—G):ozZ(k—{—q, —q—G) fora=0,1,3, a(k,q+G)=—a, (k+q, —q-G). (C24)
Finally, for k and k + q not at M}, points, condition IV requires
2) ak,q+G)=0o,(—k,—q—G) fora=0,2, a,k,q+G)=—a,(-k,—q—G) fora=1,3. (C25)
In particular, the combination of Egs. (C24) and (C25) implies that at ¢ = 0, we have
a2k, G) = a5 (-k, G),  «;(k,G) =—a] (-k,G), (j=1,2,3). (C26)

It is worth noting that even though Eq. (C25) is derived with assumption that k and k + q are not at the My, momentum, it
is also true for k at My, and q = 0 because condition IV [Eq. (C20)], from which Eq. (C25) is derived, is true for k at M), and
q = 0. Therefore, Eq. (C26), the combination of Egs. (C24) and (C25) at q = 0, is true for k over the whole BZ.

4. Many-body charge conjugation symmetry of the Projected Hamiltonian

The full projected Hamiltonian H = Hy + H; has a many-body charge-conjugation symmetry, which ensures that all the
physical phenomena is ph symmetric about the filling of the charge neutrality point (CNP) at v = 0.

We define the many-body charge conjugation P, as the single-particle transformation C,,T P followed by an interchange
between electron annihilation operators ¢ and creation operators c¢', namely,

P Ck n, 37) ! - C—k,m,r]/,.v[BCZZTP(k)]mn’,m](k)a ’Pcck,n,n,xtpcil = Cik’mmxs[BCZZTP*(k)]mn’,m] . (C27)
Under the gauge fixings of Eq. (B17) and Eq. (B18), one has BS T:n = BZ o = (=87 T*) iy ,nn [Eq. (B18)] within each pair of
bands n = +ng. We now show P, is a symmetry of the prOJected Hamiltonian.
Because of the relation €, ,(k) = —e_, ,(—k), the kinetic Hamiltonian is invariant under P. up to a constant:
PeHoP: ' = Y €nyK)cknncly oy = D €nn(=K)cy _, ok —ny+ const. = Hy + const. (C28)
k,nn,s k,nn,s

Next, we note that the projected density operator %q . 1n Eq. (C12) satisfies

— , , 1
Pc'alqurGlpc_l = Z Z[K)Mn (k, q + G)é“]mn <C—k—q,m,77.scT_k’n,nys - _(Sq,O(smn>

nmns Kk 2
Ve ) : 1
= Z Z[i‘ﬁ/ﬂ(k, q + G)g)]mn <_C1_k_nyn_’sckq,m,n,s + §5q,03mn>
nmns k
1
= Z Z ;yMn( k+ q.9q + G)gv]mn< Ck+q nn, sCk,m,n,s + 25(1 08mn> (C29)
nmns k

due to Egs. (C23) and (C25), we have

M}, (K q+G) = Zc:,m My, (—k —q = G)), . (C30)
and hence
_ 1
P¢-8pq+(;79€1 ,;MZ M (k—q,—q— G)( ck+qnmckmm+25q08mn> (C31)
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Due to Eq. (C17), M (k —q, —q — G) = M (k, q + G), and thus

_ B 1 _
PedpgrcPr' =Y Y M),k q+ G)(—clqu’m!wck,n,,,,s + an,oamn> = —8pqiG- (C32)

nmns Kk

Therefore, according to Eq. (C13), we have P.Oq P, = —Oq . and thus the projected interaction in Eq. (C15) has the
charge-conjugation symmetry [P., H;] = 0. In total, we have

PHP =H—= 3 ) e =H ()
[n|<nmax k1,8

for H = Hy + H;, where we have used the fact that ¢, ,(k) = —e_, ,(—k) in Eq. (A24) due to the single-particle ph symmetry
P. Note that P, maps a many-body state at filling v to filling —v, where v is the number of electrons per moiré unit cell relative
to the CNP. Therefore, one expects the TBG ground states at v and —v to be ph symmetric.

5. Contributions from the passive bands in the Projected Hamiltonian: Hartree-Fock Potential

We note that the projected interaction Hamiltonian H; in Eq. (C15) is not normal ordered. We can rewrite H; into normal-
ordered part and some quadratic fermionic terms as

Hy = H™ + AHD 4+ AH® + const., (C34)

where H*™ is the normal ordered Hamiltonian, and H" and AH® are specified below. By defining interaction parameters

Ui (@K = D" V(G + M), (K, —q — OM), (K, q +G), (C35)
GeQp
we can rewrite each term as
1 /
norm (n'n) .
HIO - 2Q%0t Z Z Z Umr’]n,’?;mn(q’ k/k)cz-&-q,m,n,sc;—q-mkn’,s’ck’q"’ﬂﬂs’ckv"vﬂﬂs’ (C36)
o qkk’eMBZ nn'ss’ m,n;m’,n’
1 / K
wm_ - (n'n) 1/ i
AH - ZQtot Z Z Z Um’m’;mn(o’k k)ck,m,n,sckv””/v“ (C37)

Kk’ nn'ss’ m,n;m’

and

1
AH® — o Y33 U @k k=)l o (C38)
k,q n.s mun';m

where we have used the fact that U,;',’,;',],)mn (q; K'k) = U,El',’lf];n),n, (—q; KK’) which trivially holds by exchanging the two M matrices in
the definition (C35). By summing over only |m|, |n| < nmax, H; gives the projected Hamiltonian. In the following, we prove that
H,(l) and H,(z) can be heuristically understood as the Hartree and Fock potential of the higher passive bands |n| > ny.x Which
are projected out. We emphasize that the difference between the H; and its normal-ordered version is not just a simple chemical

potential shift, contrary to the unprojected interaction Hamiltonian H;.
We first note that the full interaction Hamiltonian H; before projection is simply given by Egs. (C36)—(C38) with summation

over all band indices m, n, m’, n’. We now derive the Hartree-Fock Hamiltonian of the full Hamiltonian A; at filling v = —4nmay
(number of electrons per moiré unit cell relative to the CNP). The occupied single-particle bands at v = —4n,,, produce a mean
field

<C;m7n’sck’,n.n’,s’> = ®(_nmax - m)ak,k’(sm,nSr],n’(Ss,s’a (C39)

where we define ®(x) = 1 if x > 0, and ®(x) = 0 if x < 0. We shall use the property of interaction parameter U (') (q; K'k) =

sgn(mn)U,ff,’;;Z)m,_n(q; kK'k) = sgn(m/n/)Ui;',’/_"z,;m’n(q; kKk)=U 1(;;71?,2/”'(_‘1; kK’), which can be verified by the properties of the

M matrices through Eq. (C23)—(C25). We then find the Hartree term

1 : .
V=—4Npax ’ m'n) K i
H) =50, D30 20(—nma —m) = U (O KK)] - Chmns

KKk’ nn'ss’ m,n;m’

1 / "
'm . f
T > 3T Yl OKK)C s, (C40)

kk' nn'ss’,m,n |m'|<nmax
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and the Fock term

1
o 2

k.q n.s

v=—dnmax __
HF

+ D O(—tax —m)US

Ny 7 ()
|: Z O(—"max —m )Um’n’;mm’
m,n’;m’

(a:k +q, k)cz,m,,n,‘vck,n,n,s}

. i
(‘L k + q, k)C]H_q,m,nﬁsck+t],n/,7),s

m,nm (C41)
1 / T
== 2Q Z Z Z 8(_nma" -m )[Uriﬁl?;)mm’ (q; k + q, k) + U;’;Z?m,n(—q; k, k+ q)]CkJrq’m’,],sck—&-q,n,r;,s
tot k,q n.s mn'sm
1
=" Z Z Z 20(—max — m/)Ur(nr/):-le/(‘I? k. k— q)cz s ko, se
2Qtol K.q 7,5 ma'sm ’ T
Similarly, one can show the Hartree term at v = 4n,, is given by
HI‘-)I:“”max — _HI‘-)I:_“’nmnx’ (C42)
and the Fock term at v = 4ny,y 1S
_ 1
HFV_M"“'X = — Z Z Z 20(Nmax + 1 — m/)Urgtr’lr:,;)mm’(q; k. k— q)CZ,mJ}qSCk’"’n’s' (C43)

2Q0;

k.q n.s mn';m'

Therefore, when projected into the lowest 8ny,,x bands (2ny,,x per spin-valley), we find the difference between our particle-hole

symmetric Hamiltonian and its normal-ordered version:

) _— v=—dNmax __ V=4max
AH — HH — _HH k]

Note that the interaction satisfies the orthonormal condition ), U ()

AH® = %(H;=*4nmmx _ H;:4nmzlx). (C44)

(q:k, k — q) = > V(q + G)S,,,, s0 under the single-

m'n;mm’

particle ph transformation P which takes Pcz’m’ ,M,P‘1 = —sgn(m)ncT_ky_mY n.sr W have

PHFV=74nmax P 1

k.q n.s m,n';m’

— _2s; D30 200 + 1
tot k.q n.s mn'sm

_ 1

T 2Qu

k.q n.s mn';m

k,m,n,s

U(’I’I’)

mn;m'n’

where we have used the ph symmetry of interaction

1
o D30 20(—nmax —

DD > 2 = Ol + 1= m)IUL

(q: k. K') = sgn(mnm'n U

m/)Sgn(m”)U;S?:;)mm/(Q? k,k — q)cikﬁm’nqsc,;{,,n,ﬂ,s

+ m/)U(rm)

m'n;mm’

(q; kv k — q)C;m,,},sck,n,q,s
(C45)
(k. k= Q)] , Chmns

V=4nmax 2 : ¥
_HF ™ — My Ckym,nyxck,m,n,m

(—q; —k, —k’). The constant

,—n;—m',—n’

Wy is defined by uy = %{ Zq,G V(q + G), which is a coefficient of a chemical potential term.

6. U(2)xU(2) spin-charge rotational symmetry

In Eq. (A16), we have given the generators of the
U(2)xU(2) symmetry of the single-particle Hamiltonian H
from the spin-charge rotational symmetry in each valley.
Here we show that the projected interaction Hamiltonian also
respects the U(2) xU(2) symmetry. Hereafter, with the under-
standing that we assume the gauge fixing given by Eqs. (B17)
and (B16) [we note that Eq. (B16) is only used for defining
the irrep band basis in Eq. (B19), which will be useful in the
discussion of nonchiral-flat U(4) irreps in Appendix D 2 b], we
shall use ¢4, ¢, s¢ to denote the identity matrix (¢ = 0) and
Pauli matrices (a = x, y, z) in the each pair of bands n = +ng,
valley n = %, and spin s =1, |, bases, respectively.

When projected into the 8np,, flat bands of |n| < nmax,
the eight generators S% (a=0,z, b=0,x, v,z) of the

[
U(2)xU(2) symmetry in Eq. (A16) take the form

b b
S = Z (sa )m,r],s;n,n’,s/clt’m’,],sck,n,r]/,s/’
k,m,n,s;n,n',s'
(a=0,z, b=0,x,y,2), (C406)

where the matrices within each pair of bands n = £ng are
given by

S0b=§'0 0.b

%0, st =¢%%P, (b=0,x,y,2). (C47)

In particular, S° and S? give the global spin-charge U(2) ro-
tations and the valley spin-charge U(2) rotations, respectively.

It is easy to see that both S° and $? are diagonal in valley
n and only act on spin s. Since the operator Og ¢ defined in
Eq. (C13) is diagonal in valley 7, and all the coefficients are

205413-18



TWISTED BILAYER GRAPHENE. III. INTERACTING ...

PHYSICAL REVIEW B 103, 205413 (2021)

independent of spin s, we conclude that

[04.6, 5”1 = [Oq.c.5"1=0. (C48)

Accordingly, the interaction H; in Eq. (C15) respects the
U(2)xU(2) symmetry, and so does the full projected Hamil-
tonian H = Hy + H;.

APPENDIX D: ENHANCED SYMMETRIES IN
VARIOUS LIMITS

In this Appendix, we will show that the U(2)xU(2) sym-
metry [Eq. (C46)] of the full Hamiltonian H = Hy + Hj is
enhanced into higher symmetries in various limits of TBG.
Since all these higher symmetries involve the U(4) group, we
first briefly review the algebra of the U(4) group.

1. Brief Review of the U(4) group

The U(N) group is defined by all the N x N unitary matri-
ces U satisfying UTU = Iy, where Iy is the identity matrix.
The matrices U are generated by all the linearly indepen-
dent N x N Hermitian matrices, and thus the total number
of generators is N2. In particular, for the U(4) group, the 16
generators can be represented by the tensor product of two sets
of 2 x 2 identity and Pauli matrices 7¢ and s* (a = 0, x, y, 2)
as

ab b

s, =1%", (a,b=0,x,y,2). (D1)
We denote their commutation relations as
b.cd
[s6f, 561] = feredsy!. (D2)

J

(C2:P)0yc(C:P)' =" 3" V(a+GMY)(k, q+G)

kns m,n=%£1

— . 1
= Z Z V(q + G)([g—)’M(—ﬂ)(ky (l + G)C}]mnck+q’m’n’sck,t1,n,Av - 5

kns |ml,In|<nmax

=2 2

kns |m|,[n|<nmax

V V(q + G)M1§1n,1)1(k’ q + G) (C;Jrq,m,n,sck’”s’lvs -

Then fe“fb “d are the group structure constants, which are the
same for all representations of U(4) group.

The set of all the 4 x 4 matrices U defines the four-
dimensional fundamental irreducible representation (irrep)
of the U(4) group, and the representation matrices of the
generators are exactly given by Eq. (D1). There is also a one-
dimensional trivial identity irrep, in which the representation
matrices of all generators si’ = 0. We shall use the following
notation to denote the fundamental irrep and trivial identity
irrep of the U(4) group:

U(4) fundamental irrep: [1]4,

U(4) trivial identity irrep: [0]y4. (D3)
We will not explain the meaning of these notations, except
that we mention they are consistent with the Young tableau
notations for U(4) irreps we explain and adopt in Ref. [109].

2. U(4) symmetry in the nonchiral-flat limit
a. The symmetry

We now assume the magic angle TBG is in the nonchiral-
flat limit, where the projected kinetic Hamiltonian in Eq. (C7)
becomes exactly Hy = 0, while both wy > 0 and w; > 0 in
Eq. (A7). In this case, the total projected Hamiltonian is H =
H;. We will show that there is an enhanced U(4) symmetry.

To see this, we first show that C;,P is a symmetry of H =
H;. With the sewing matrix of C,.P given by BF (k) = ¢'1”
in Eq. (B17), we have

2

1
((CZZP)c.Lq,m,n,sck,n,n,s<czzP)—' - —sq,oam,n)

m,qqu,oam,n)

1
§8q,08m,n> == Oq,Ga (D4)

where we have used Eq. (C19). Therefore, we have [Cy.P, Oq,g] = 0, and thus the interaction Hamiltonian H; in Eq. (C15)

satisfies

[Co:P, H] = 0.

(D5)

Besides, since [Cy,, Hol = 0 and {P, Hy} = 0, we have {C,.P, Hy} = 0, which implies ¢, , (k) = —e_, _, (k). If we want to have
[Co.P, Hy] = 0, we would have to require €, ,(k) = €_, _,(K), which is only possible when ¢, , (k) = 0, namely, only in the

exact flat band limit with projected kinetic term Hy = 0.

The Cp,P symmetry allows us to define the following operator as a commuting symmetry of the projected Hamiltonian

HIHII

0 Cy. P )
7 = Z Z [B = (k)]nn,n’r}/Clt’n,n,sck,n/,r]/,x = Z Z [Cyf}]m],n’n’C;mﬂ,sck,n’,n’,x ,

k,s nn'nn’

(D6)

k,s nn'nn’

where we have used the gauge fixing of Eq. (B17), and ¢* only acts within each pair of bands n = +ng. We note that when 50
acts on single-electron states ¢, , ns |0) where |0) is the vacuum, it is the same as the operation of C,,P. To see this is a symmetry,

we note that

[0, 0qc1 =D Y (T MK, q + Gy Ch s Chor s = 0,

k,s nn'nn’

D7)
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where we have used the fact that the M(k, q + G) matrix commutes with ¢”t¥ from condition (C23), a result of the C,,P
symmetry. Therefore, $*° is a commuting symmetry of the interaction Hamiltonian H; in Eq. (C15), namely,

[$°°, H/] = 0.

(D)

Recall that H; has a U(2)xU(2) symmetry with eight generators $% and S% (b = 0, x, y, z) in Eq. (C46). The commutators
of §0 in Eq. (D6) with the eight U(2)xU(2) generators then yields 16 Hermitian operators in total:

Sab — Z

k,m,n,s;n,n',s'

where within each pair of bands n = :I:nB

e A S SR
More specifically, the new generators are given by
§7=-318%.57. $7=21s0.57. 1D

It is then easy to see that the 16 operators S satisfy the
commutation relations of U(4) generators,
[Sab Scd]

= f;ﬁC‘dsef , (D12)

where f“b “d are the U(4) structure constants defined in
Eq. (D2). Therefore, we find in the nonchiral-flat limit, the
projected interaction Hamiltonian H; has an enhanced U(4)
symmetry.

The Cartan subalgebra of the U(4) generators in Eq. (D10)
can be chosen as

0.0.0

0700, §OZO

Cartan: 0707, 7% (D13)

We note that although we proved the symmetry of
S0 under the fixed gauge (B17), the definition of 0 =
Zkunnnn BCZZP(k)]m?v"/’l/Cl:x,n,n.sckv”/vﬂ/vf in Eq (D6) is
gauge invariant. This can be seen by noting that under
a gauge transformation ¢, — e"f’"-”c;nqn’s, the sewing
matrix 'elements change according to [B®:F ) gy —
& B (B (K) ]y

b. The single-electron irreps

The k-independent representation matrices of Eq. (D10)
at each momentum k can be decomposed into fundamental
U(4) irreps. This can be done by transforming into a new basis
where ¢ is diagonalized. This turns out to be exactly the irrep
band basis dlfl"?yﬁﬂ = \Lﬁ(cltﬁrm;,r}qs + ieYCli,an,n,s) we defined
earlier in Eq. (26) (see also Ref. [108]). Forng = 1, ey = %1
gives the Chern number of the band basis. The single-electron
state in irrep band ey

d(ﬂB)I |0)

k,ey,n,s

(D14)

has eigenvalue ¢¥ = ey. Itis then easy to see that the represen-
tations of the U(4) generators S for the single-electron state
(D14) are given by

b zb}

sP(ey) = {10, eyt¥s’, eyT's”, tis (D15)

Therefore, the single-electron state (D14) for a ﬁxed ey, or
equivalently the irrep band fermion operator dk for a
fixed ey, occupies a fundamental irrep [1]4 of the U(4) group.

ab ¥
(S )m,n,s;n,n’,s’ Ck,m,n'sck,n,n’,s’ 5

(a,b=0,x,y,2), (D9)
%), (@, b=0,x,y,2). (D10)
[
However, we note that the ey = 41 and ey = —1 irreps differ

by a 7 valley rotation ¢””**/? about the z axis.

For many-body Fock states created by multiple dj; ("B)T ,the
U(4) representation is given by the tensor product of the U(4)
fundamental irreps [1]4 of each d ("BY)T . Such tensor product
representations can be further decomposed into U(4) irreps,
which we will not discuss here but rather in our upcoming
paper of the many-body states of the PSDHs [109].

3. U4)xU(4) symmetry in the (first) chiral-flat limit

In this Appendix, we demonstrate that by setting wy =
0 < w; (the chiral condition) and setting the projected ki-
netic Hamiltonian Hj to zero (flat condition), the system has
a unitary U(4)xU(4) symmetry. We call this limit the first
chiral-flat limit.

a. The chiral symmetry at wy = 0

In the first chiral-flat limit, since wy = 0, the single-particle
Hamiltonian of TBG acquires an additional unitary chiral
symmetry C, which satisfies the anticommutation relation
with the full single-particle Hamiltonian 1-70 in Eq. (AS):

{C,Hp} =0. (D16)
The action of C is given by
Cef 0nasC = D IDOlawp.anachg.yps  (DIT)
Qn's
with the representation matrix
[D(O)]wp.Que = 8Q.Q87.1(02)p.a- (D18)

Note that C preserves the electron momentum k. Since C
flips the single-particle Hamiltonian Hy, it is not a commuting
symmetry of TBG, but only reflects a relation between the
positive- and negative-energy spectra. The transformation C
satisfies

=1,
[C,P] =0,

[C,T]=0,
{C,Co.P} = 0.

{C,Cy,} =0,

(C,Co, T} =0, (D19)

b. The full symmetry

When transformed into the energy band basis, the chiral
symmetry C implies

€nn(K) = —€_p (K), (D20)
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[D(C)yttay (K) = Y (B K)oy thy (), (D21)
where
[BE M) gy = S8’ ™. (D22)
This implies the transformation
Cefpy s C7 =Y BEA) gy .- (D23)

my)
By the relations {C, C;,T} = {C, C5,P} = 0, the sewing ma-
trix of C satisfies

BE(K)BT (k) = BT (K)B (k) ,

B¢ (k)B“ (k) = —B%"(k)BC (k). (D24)
Under the gauge fixing of Eq. (B17), we have BT (k) =
¢%7% and B®" (k) = ¢”7”. The only k-independent gauge for
sewing matrix of C in consistency with Egs. (D22) and (D24)

within each pair of bands n = +ng is then (up to a global
minus sign)
BC(k) = 1. (D25)

In particular, this k-independent gauge fixing (D25) of C
automatically ensures the continuous gauge fixing condition

J

(B16), which is crucial for defining the irrep band basis
in Eq. (26). To see this, note that Eq. (D25) tells us that
u_p (k) = isgn(n)nu, (k) for band n = £ng, and thus we
have

Fan &+ . K) = |1} (k4 quy () — ', (K + qu_p,(K)|
= [u] , (k + @y, (K[ — sgn(n)*n*]| = 0
(D26)

for any k and q, satisfying Eq. (B16).

We also note that this gauge fixing of C is consistent with
the gauge fixings of both C,, and P separately in Eq. (B18).
Basically, the relations {C, C;;} = 0 and [C, P] = 0 require

B€(—k)B“:(k) = —B“*(k)BC (k),

B¢(—k)B’ (k) = B (k)B“ (k), (D27)
which is satisfied by Eq. (D25).

For the projected Hamiltonian H = Hy + H;, we now show
that C is a symmetry of the interaction Hamiltonian H; and
further constrains the matrix M (k, q + G) in Eq. (C23). To
see this, we note that with the relation (D21) due to C sym-
metry, the definition of M(k, q + G) in Eq. (C10) satisfies
(written as a matrix in the n, n space)

an'fi(k, q+G)= Z Z UQ—G.rmy (K + Qs (K)

* Qe
=3 > [, &+ @OD(O)lo-6.4[D(C)tny (K)]Q.
“ Qe
= BEK+ QO Ty Y. Y UGy K+ Qtigamy B Ky . (D28)
“ Qe Qs
or in matrix form,
M, q+G) =Bk + q)'M(k, q + G)B (k). (D29)

We note that Eq. (D29) is independent of gauge fixings. If we take the gauge fixed form of M (k, q + G) in Eq. (C23) and the
gauge fixing of C in Eq. (D25), we find M (k, q + G) has to commute with ¢”7%. Thus, when there is the chiral symmetry C, the
gauge fixed M (k, q + G) has to take the form

MK, q+G) ="k, ¢ + G) + i’y (k. q + G).

In particular, the functions «;(k, q + G) = a3(k, q + G) = 0.
By Egs. (D23) and (D29), it is easy to see that

(D30)

1

COucC™' =) Y JVig+GM) k q+ G)(CCLq’m,nqsck,n,wcl _ E(sq,oam,n>

kns m,n==%x1

. 1
=> > e+ G)([Bc(k + @) MK, @+ GBI i Ch gy sChnns = M + G)sq,oam,n>

kns m,n==x1

1
= Z Z A V(q + G)annzl(ky q + G) (Clt_’_q’m,n’kaqn’nys — E(quo(smyn) = Oq,G~ (D31)
kns m,n==%1
Therefore, [C, Oq,g] = 0, and accordingly the projected interaction H; satisfies
[C,H] =0, (D32)

implying C is a symmetry of H;.
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The C symmetry allows us to define the following operator
as a commuting symmetry of Hj:

S/ZO = Z Z [BC(k)]nr],n’n’cltqn'nysck,n’,n’,s

k,s nn'nn’

= Z Z [{yTz]m;,n’n/Cl’gn’nﬁsck,nﬂnﬂxa

k,s nn'nn’

(D33)

where we have gauge fixed its representation by Eq. (D25).
We note that when $°° acts on single-electron states ck . ;10)
where |0) is the vacuum, it is the same as the operation Of C.
To see this is a symmetry, we note that

1S, 0g.c1 =Y > (115, MK, q+ G}y

k,s nn'nn’

¥
k.n,n,s

X ¢ Ckn,y,s = 0. (D34)

Therefore, S’ is a commuting symmetry of the interaction
Hamiltonian H; in Eq. (C15), namely,

[S<°, H;] = 0. (D35)

Note that §° does not commute with the single-particle
Hamiltonian Hy unless ¢, , (k) = €_, ,(k). Due to Eq. (D20),
this is only possible when ¢, ,(k) = 0, namely, in the exact
flat band limit Hy = 0.

Recall that H; already has a U(4) symmetry generated
by $% in Eq. (D9). The commutation of S% with §’? then

J

produces another 16 Hermitian operators:

S/ab — Z

k,m,n,sn,n',s'

rab T
(s )m.,ﬂ,S;n,ﬂ’,S’Ck,m,n,sck,n,ﬂ’,S"

(a,b=0,x,y 2), (D36)

where for each pair of bands n = £np
b — (10, Ocrsh, 0vsh, ¢PTisPY,  (a, =0, x, y, 2).
(D37)

In summary, the single-particle representation matrices of all
the generators S°” and §’* can be reorganized into

(%%t %), (a,b=0,x,y,2).

¢O74s (D38)

It is more convenient to linear combine the U(4)xU(4)
generators as

Sib = Z (Sih)m,n,s;n,r]’,s’c;m,n“yck,n,n’,s’v (D39)
k,m,n,s;n,n',s"
where we define
54 = 2(; + )19, (a,b=0,x,y,2). (D40)

In this form, it is easier to see that the 16 generators Si” gen-
erate one U(4), the 16 generators Sab generate another U(4),
and [$4?, §¢] = 0. Therefore, in total they give a U(4)xU(4)
symmetry in the first chiral-flat limit.

We note that the U(4) group in the nonchiral-flat limit in
Eq. (D10) is a subgroup of the U(4)xU(4) group in the first
chiral-flat limit in Eq. (D40), but it is not one of the two tensor-
producted U(4) groups.

The Cartan subalgebra of the first chiral-flat U (4) x U (4)
generators in Eq. (D38) can be chosen as

Cartan of first chiral U (4) x U (4) :

g-O.L.OsO’ COT S" é-().L—ZSO’

c. The single-electron irreps

The irreps of the U(4)xU(4) group can be obtained by the
tensor product of the irreps of the first U(4) and the second
U(4), respectively. We shall use

([A1]4, [A2]0) (D42)

to represent a U(4) x U(4) irrep, which is the tensor product of
an irrep [A1]4 of the first U(4) and an irrep [X,]4 of the second
u).

At each momentum K, the k-independent representation
matrices in Eq. (D40) can be decomposed into U(4)xU(4)
irreps. This can be done again by transforming into a new
basis where ¢” is diagonalized, which is exactly the irrep
band basis dlingyﬁn = %(C;st,n,s + ieyclﬁann’s) we defined
earlier in Eq. (26), where ey = %1 gives the irrep number of
the band basis. The single-electron state in irrep band ey

d("B)T |0)

k,ey,n,s

(D43)

has eigenvalue ¢” = ey. It is then easy to see that the repre-
sentation matrices of the U(4)xU(4) generators S;’Eb for the

4-07:zsz7 {y‘CO 0

o0t Tt TS (D41)

(

single-electron state (D43) are given by the 4 x 4 matrices

sP =11 £ ey)r’s (D44)

Therefore, the single-electron state (D43) for a fixed ey, or
equivalently the irrep band fermion operator a’“BY)T for a
fixed ey, occupies an irrep of the U(4)xU(4) group. The
U4)xU(4) irrep of d™’ s given by ([1]4, [0]4), while the

k, +l 1,8
U4)xU(4) irrep of d Ko—1 .5 is ([0]4, [1]4), where we recall
that [1]4 and [0]4 are the four-dimensional fundamental irrep
and the one-dimensional trivial identity irrep of U(4) group,
respectively.

We also note that the operator Qg ¢ in the first chiral limit

can be rewritten under irrep band basis as

Ouc = Y VV(G+QIM, (K q+ G)lyyn,

k.ey,n,s

1
(ng) (n )
X Z (dk-fq;y 7,8 k Ey ns §5q,05ng,ng>y (D45)
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where
M., (k,q+ G) = ag(k, q + G) +ieyar(k, q + G). (D46)

Therefore, the interaction H; in Eq. (10) is diagonal in the
index ey.

For many-body Fock states created by multiple dl((":_fy”m,
the U(4)xU(4) representation is given by the tensor product
of the U(4)xU4) irreps ([114, [0]4) or ([0l4, [114) of each
dé"fyﬁm Such tensor product representations can be further

decomposed into U(4)xU(4) irreps, which will be discussed
in a separate paper [109].

4. U(4) symmetry in the (first) chiral-nonflat limit

We have seen that the first chiral-flat limit has a U(4) xU(4)
symmetry in the projected Hamiltonian H = H;. Here we
show that if wy = 0 < w; but Hy # 0, which we define as the
nonchiral-flat limit, there is still a remaining U(4) symmetry.

a. The symmetry

When Hj # 0, namely, when €,, (k) is not constantly zero,
we have H = Hj + Hj, and neither C», P nor C is a commuting
symmetry of H. However, their combination CC,P is still a
commuting symmetry, namely,

[CCy,P, H] = [CCy, P, Hy]l + [CCy, P, Hi] = 0. (D47)
Therefore, the symmetry is still enhanced compared to the
nonchiral-nonflat case. This can be most easily seen as fol-
lows: Among the 32 generators in Eq. (D38), only those
with a single-particle representation matrix proportional ¢°
is still a symmetry when Hy # 0. This is because the kinetic
Hamiltonian in the first chiral limit (denoted by HO+ ) can be
written as

0.0
Ho = Hy" = Zq"‘*”(k)(é’zf $ )m,n,S;n,n’,S’Clt,m,n,sck,n,n’,s’ﬂ
k

(D48)

where we have used the constraint €, , (k) = —e_, ,(k) due to
the chiral symmetry C. It is then clear that the generators in
Eq. (D38) proportional to £” will flip the pair of single-particle
bands n = +ng and do not commute with H,. Therefore, we
are left with 16 generators commuting with H = Hy + H;. We
redefine their notations as follows:

Sah = Z (gab)m,n,s;n,n’,s’c;m.n,sck,n.n’,s" (D49)
k,m,n,s;n,n',s"
where for each pair of bands n = £ng
59 = %% (a,b=0,x,y,2). (D50)

They form the generators of a U(4) symmetry group. In par-
ticular, ¢%7%s is the sewing matrix of iCC,.P.

We note that this U(4) symmetry group in the first chiral-
nonflat limit is different from the U(4) symmetry group in the
nonchiral-flat limit [Eq. (D10)]. Here the generators S are
simply the full unitary rotations in the valley-spin space, while

the band space is not transformed.

b. The single-electron irreps

Since the generators in Eq. (D50) is proportional to ¢, any
fixed band basis of all valleys and spins form a fundamental
U(4) irrep. For example, we still consider the single-electron
state in the irrep band basis

(ng)¥
k,?y,??,.&‘|0>'

(D51)

For a fixed k and ey, the states in Eq. (D51) occupies a
fundamental irrep [1]4 of the first chiral-nonflat U(4), and the
representation matrices of the generators are given by

7ab

. (@ b=0,x,y,2) (D52)

for either ey = £1. Similarly, the many-body Fock states
created by d"" are given by the tensor product of the

k,ey,n,s
fundamental irreps [1]4 of each d™"  [109].

k.ey,n,s

5. U(4)xU(4) symmetry in the second chiral-flat limit

We now consider an opposite limit where w; = 0 < wy,
which we define as the second chiral limit. Although this
limit is far from experimental reality and the band structure
contains no flat bands over the full MBZ (but they are flat in
some directions of the MBZ) and is a perfect metal (see Fig. 2,
proof is given in Ref. [108]), the interaction Hamiltonian
enjoys a enhanced U(4)xU(4) symmetry of different physical
origin from the first chiral limit. One cannot help but hope
there is some hidden duality in the TBG problem.

a. The second chiral symmetry

When w; =0, we can define a second chiral transfor-
mation C’, which anticommutes with the full single-particle
Hamiltonian Hj in Eq. (AS):

{C’,Hy) = 0. (D53)

The operation of C’ is given by
il 1—1 i
Cef anasC ™ = S IDCaws.amc gy s (D54
Q'
with the representation matrix

[D(C,)]Q’n’ﬁ,Qna = é‘Q(SQ/,Q(Sn’,n(Uz)ﬂ,av (DSS)

where {o = %1 for Q € Q.. Note that C’' preserves the
electron momentum k. Since C’ flips the single-particle
Hamiltonian Hy, it is not a commuting symmetry of TBG
but only reflects a relation between the positive- and negative-
energy spectra. The transformation C’ satisfies

C*=1, [C,Cn]l=0, {C.,T}=0,
(C',P}=0, {C,C,T}=0, {C,C,P}=0. (D56)

b. The full symmetry
When transformed into the energy band basis, the second
chiral symmetry C’" implies

€ny(K) = —€_p (K), (D57)

[D(C/)]nn’unn’(k) = Z[BC’ (k)]mr],m]/umn(k)y (D58)

m
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where
[BC,(k)]mn,m]’ = 8n,n’87m,nei(p£’7,(k). (D59)
This implies the transformation
C/Clt,n.n’,sCFl = Z[BC,(k)]mn,nn’climm’s- (D60)

mn

By the relations {C’, C;,T} = {C’, C,P} = 0, the sewing ma-
trix of C’ satisfies

B (k)BT (k) = —B<T (k)B " (k) |

B (K)B“F (k) = —B%" (k)BC (k). (D61)

Note that this constraint for the sewing matrix of C’ is exactly
the same as that for C in Eq. (D24). Therefore, within each
pair of bands n = +ng, if we impose the gauge fixing of
Eq. (B17), we similarly find the only consistent k-independent
gauge for sewing matrix of C’ is (up to a global minus sign)

B (k) = V17, (D62)

This k-independent gauge fixing (D62) of C’ also auto-
matically ensures the continuous gauge fixing condition
(B16), which is crucial for defining the irrep band basis in
Eq. (26). This is because Eq. (D62) tells us that u_, ,(kK) =
isgn(n)nu,,, (k) for band n = +ng, which implies

Son &+ @ K) = [u] (K + @ity (K) — 1", (K + Qttp (K|
= |u} , (k + Q) (K[1 — sgn(n)*n*]| = 0
(D63)

for any k and q, satisfying Eq. (B16).

However, the gauge fixing of C’ in Eq. (D62) is incon-
sistent with the k-independent gauge fixings of both C,, and
P separately in Eq. (B18). This is because [C’, C;.] = 0 and
{C’, P} = 0 require

B (—k)B“ (k) = B (k)BC (k),

B® (—k)B” (k) = B" (k)B€ (k), (D64)

which are, however, not satisfied by the simultaneous gauge
fixings of Eqgs. (D62) and (B18). If we fix the sewing matrix
of C’ to be k independent as given in Eq. (D62), the sewing
matrices of C,; and P have to be k dependent. In this Ap-
pendix, we shall choose the gauge fixing of Eq. (D62) and give
up the separate gauge fixing of C;, and P in Eq. (B18), since
only their combination C,.P is used for the U(4) symmetries
discussed here.

However, we note that if a momentum Kk is C,, invariant
(the 'y, point and the three M), points in MBZ), the above
gauge fixing problem appears to imply the absence of well-
defined sewing matrices of C,, and P. In fact, this is because
at w; = 0, the TBG band structure is protected to be doubly
degenerate at C,, invariant momenta, which leads to a perfect
metal (see Fig. 2 and Ref. [108] for proof). Therefore, the
pair of bands n = +np are connected with the other bands
at T'y; and M), points, where the projection within the two
bands n = +£ngp is ill defined. The sewing matrices of C;, and
P at such C,, invariant momenta can only be written down
when the additional degenerate states at these momenta from
other bands are included. We shall not discuss this matter here,

since we will not use the sewing matrices of C, and P in this
Appendix.

Nevertheless, we note that one could fix the gauge of C;,
and P in a simple k-dependent way, provided k is not a Cy;, in-
variant point. First, we divide all the C,,-noninvariant k points
into two sets Ky, K, related by Cy,, namely, C,, Ky = K,. For
instance, Xy and K, can be two half-MBZs related by Cs,.
Then we can fix the sewing matrices of C,, and P (and T' given
that C,; and G, T are fixed) at C;,-noninvariant k within each
pair of bands n = £ng as

B (k) = (—1)/¢°7,
BP(k) = i(—1)Y ¢,

B (k) = —(=1)'¢"7",

(fork € KC)). (D65)

Since the gauge fixed sewing matrix of C’ in Eq. (D62)
is exactly the same as that of C in Eq. (D25), we can follow
a similar derivation as that from Egs. (D28) to (D40), which
gives us the following.

First, C’ is a symmetry of H; satisfying [C’, H;] = 0, and
the M (K, q + G) matrix is restricted to have the form

Mk, q+G) =%k, q + G) + i’ ar(k, q + G).
(D66)
The Hermitian condition of the M(k, q + G) [Eq. (C17)] re-
quires that
ak.q+G) = o5k +q,—q—G),

Kk q+G)=—al(k+q,—q—G). (D67)

For q = 0, the B>(k) sewing matrix implies M"(k, G) =
M~1(—k, —G) and hence

a0k, G) = ag(—k, —=G), s (k, G) = aa(—k, —G).
(D68)

Combining the above two constraints, we obtain

ap(k, G) = o} (=k,G), a(k,G) = —al (—k, G).
(D69)
Second, the C’ symmetry yields a U(4)xU(4) symmetry
with generators

b b
S = Z (s )m,n,s;n,n’,S’Clt,m,n.scksn,n’,S" (D70)
k,m,n,s;n,n',s'
where we define
s = 1" £ ¢, (a,b=0,x,y,2). (D71)

We note, however, although these generators take the same
gauge-fixed form as those in the first chiral-flat limit
[Eq. (D71)], their physical origins are different: Here the
U(4)xU(4) generators are generated by the sewing matrix of
the second chiral symmetry C’, while in the first chiral-flat
limit, the U(4)xU(4) generators are generated by the sewing
matrix of the first chiral symmetry C.

¢. The single-electron irreps

We have shown that under the gauge fixings (B17) and
(D62), the U(4)xU(4) generators of the second chiral-flat
limit is exactly the same as that of the first chiral-flat
limit. Therefore, exactly parallel to the first chiral-flat limit,
the single-electron irreps in the second chiral-flat limit
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are given by the irrep band basis dlingyﬁn s = %(C:{ dngs T
f

ieyci;’_nB’n’s) we defined earlier in Eq. (26), where ey = +£1
gives the irrep number of the band basis. The single-electron
state

d("B)T |O)

k.ey,n,s

(D72)

with a fixed ey and k occupies a U(4)xU(4) irrep of
([1]4, [0]y) if ey = +1, and ([0]4, [1]4) if ey = —1. The rep-
resentation matrices of the U(4)xU(4) generators S:“tb for the
single-electron state (D43) are given by the 4 x 4 matrices

s =11 L ey)r’s’. (D73)

Howeyver, in this second chiral limit, we note that the basis
dl:ey_ ns = dlilzlm when ng = 1 no longer give a well-defined
Chern band in the MBZ with a definite Chern number as
illustrated in Sec. B 3, since the lowest two bands n = +1
are gapless with the higher bands when w; = 0 (see Fig. 2).
Neither are the bands flat, possibly giving rise to interesting,
gapless phases.

6. U(4) symmetry in the second chiral-nonflat limit

If w; = 0 < wy, taking into account the kinetic term Hy #
0, we are still left with a U(4) symmetry. We call this limit the
second chiral-nonflat limit. Since the U(4)xU(4) generators
in the second chiral-flat limit are exactly the same as those
in the first chiral-flat limit, the case here is mathematically
exactly the same as the first chiral-nonflat limit in Appendix
D 4. Therefore, we conclude that the second chiral-nonflat
limit has a remaining U(4) symmetry with generators given
by

Srab ~lab ¥
S = Z (Su )m,r;,x;n,n’,s’ck,m,ﬂqsck,n,r;/,s/a (D74)
k,m,n,s:n,n',s'
where within each pair of bands n = +ng
59 = 0%% (a,b=0,x,y,2), (D75)

under the gauge fixings of Eqs. (B17) and (D62). The only
difference is that here the U(4) symmetry is generated by the
sewing matrix of iC'Cy. P, which reads ¢°7*s.

This second chiral-nonflat limit is more physical, since
when w; = 0 < wy, the bands are never too flat (Fig. 2).

APPENDIX E: THE STABILIZER CODE LIMIT

The projected interacting Hamiltonian in Eq. (10) is gener-
ically a quantum Hamiltonian, where the terms O_q _gOq,G
do not commute, since the commutator [Og g, Og,¢] given in
Eq. (C16) does not vanish for generic form factors (overlaps)
M7 (k, q + G). Thus, although it gives a PSDH, which al-
lows us to find exact ground states at certain fillings in the flat
band limit (for which H = H;) as we will demonstrate in a
separate paper [109], it is impossible to analytically solve all
the many-body eigenstates of H = H;.

However, in the case where we are projecting only into
the eight lowest n = %1 bands (i.e., nmax = 1), in the first (or
second) chiral-flat limit wy = 0 (or w; = 0) and Hy = 0, if
we further have M), (K, q + G) independent of k, we would
have [Og,G, Oq.¢’]1 = 0. We call this limit the stabilizer code

limit:
stabilizer code limit
= 1st/2nd chiral-flat limit
+ k-independent form factors M(k, q + G). (El)

Indeed, Eq. (D30) or (D66) and our k-independent assumption
lead to a k-independent form factor matrix:

MKk, q+G)=M(0,q+G)
= %7%;(0, g + G) + i’ %2 (0, q + G).
(E2)

In particular, if ny = 1, both (0, q + G) and 22 (0, q + G)
are not matrices but just numbers, and thus they commute
among each other. Therefore, by Eq. (C16), we have

[0g.6, Oq.c] x M(k +q,q +GM(K,q +G')
-MKk+q,9 +G)H)MKk,q+G)=0.

(E3)
This yields a Hamiltonian similar to a stabilizer code Hamil-
tonian
1
H=H = ) 046046 (B4
ot 4eMBZ GeQ,

where all the terms commute:
[O—q.—GOq,Gv O—q/,—G’Oq/,G/] =0. (ES)

Therefore, all the terms O_q _gOq,g can be simultaneously
diagonalized, which makes all the many-body eigenstates
of the Hamiltonian exactly solvable. Note that Eq. (E4) is
not strictly a stabilizer code Hamiltonian since the terms
O_q,-60q,c do not have a spectrum equal to 0 or 1 (moreover
their spectrum depends on q and G). Nevertheless, Eq. (E4)
has the crucial feature that makes the spectrum of a stabilizer
code solvable (namely a sum of commuting operators), thus
its name.

As we will prove in Ref. [109], the Hamiltonian H = H;
in the stabilizer code limit is an extended Hubbard model
with extended interactions and zero hoppings. Therefore, al-
though far from physical, the stabilizer code limit provides
a Hubbard-model understanding of the TBG physics, as sug-
gested by the recent experimental observations [22,23].

We will solve the stabilizer code limit Hamiltonian in
Ref. [109].

APPENDIX F: COMPARISON WITH THE U4)x
SYMMETRY OF REF. [71]

In this Appendix, we discuss the interaction Hamiltonian
of Ref. [71] and compare it with ours. In Ref. [71], Kang
and Vafek were the first to show the appearance of a U(4)
approximate symmetry in their Hamiltonian, which is a type
of PSDH obtained by projecting into a Wannier basis.

1. The Wannier gauge

The s =1 sectors are related by an SU(2) rotation. Thus,
we only need to construct Wannier functions in the s =1
sector; the Wannier functions in the s =] sector can then be
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symmetrically generated. Before we introduce the Wannier
functions, let us first write the Bloch states of TBG as linear
combinations of plane waves

1 )
=5 D) QRSO RIIRG), (FI)
QcQ: Ra

where summations over R, « are limited to sites in the top
layer (bottom layer) graphene for Q € @, (Q € Q_), |R«) is
the atomic orbital at R + t,, and N is the number of unit cells
in each of the two graphene layers. Generally, the Wannier
functions are linear combinations of the Bloch states

W/k,n,n)

1 . ~
|wRM7Mv71) = «/T_M Z e_lk‘RMquu,n)’
k

Wisn) = D [Wienn) Wy, (K), (F2)

n=%1

where N, is the number of moiré unit cells and W (k) at each
k is a two-by-two matrix. We denote the center of the Wannier

J

/
C3z

Coywrypen) = Y Vi T [wWRy wy): [RYy + tary = Coy(Ryr + tag )],
B

TwR,,pun) =

where y* is the first Pauli matrix in the moiré sublattice space,
and t* is the first Pauli matrix in the valley space. Kang
and Vafek’s |wy23.4) are our |wg,,.1,.4), |WRy,.1,—)s |WRy,2,—)>
|wr,, 2, +k), respectively. Here we have used ng to represent
the 277 /3 rotation microscopically centered at honeycomb ver-
tex of graphene. In this work, we use Cj, to denote the 27 /3
rotation microscopically centered at the honeycomb center of
graphene. One should notice that the C3, eigenvalues, which
are % at Iy, are different from the Cs; in the BM model,
which are 1 at I'j; [43]. We will discuss the relation between
C3; and Cj_ in the end of this subsection.

The sewing matrices of Cs;, Cyy, T on |1;k7 wn) can be
obtained from the actions of Cs;, C;,, T on the Wannier func-
tions. We have

Cézwfk,p.,n) ik'RMCéz ‘WRM-V-JI>

1
= w2
M

1 ik»RM|
e WRM L, )

.2
— N3

T | (-1 -1
— elr]T_ E e:k.(ng R;W+C3Z s, —tar, ) WRI’W’MJ]>
R

— o5 piCik—K) ti

JCng,p,,n>a (F7)

where R), = C; (Ry + tyr) — ty .. Thus, the C3, sewing
matrix is

CéZ
un,vn’

BTE(K) = 8,,8,,€" 3 ORI (F8)

.2 /
wRM,Wz> =" |wR}4,M,n)’ (R} +tar . = G5, (Ry + tag )],

function |wr,,,.,n) as Ry + tar ., with Ry = Liay + hay,
being a moiré€ lattice and ty, (u = 1, 2) being the sublattice
vectors. Here we take the unit cell basis as ay;; = (0, —1) and
ay, = (‘/7§, %). Notice that the Bloch states are periodic in
momentum space, so the transformation coefficient is e~ *®
rather than e~™®®*%) The sewing matrices of |y, ,) are
defined as

BE () = (Ve pon |8 Vi)

The two bands in each valley have a fragile topology protected
by C,,T symmetry and a stable topology protected by the
PC,, T symmetry [108]. Thus, in order to obtain the Wannier
functions, we have to abandon smooth C,, T gauge and smooth
P gauge of |, ). It is possible to choose a smooth gauge
for the remaining symmetries g = C3;, G5y, T since they do
not protect a topology. According to Kang and Vafek [42],
the two Wannier states (u = 1, 2) in each valley locate at the

(F3)

honeycomb lattice, i.e., ty,; = %aM,l + %aMg = (%, 0), and
ty2 = —ty1, and one can choose the Wannier functions to
satisfy
(F4)
(F5)
|wRM,p,,7r])» (F6)

(

We also have

~ R
Coy Vi) = : MCZy}wRM,u,n)

1
«/T_MZR ‘
M
1 .
=) vt —— > Mg )
%; v nnm% -0

=Y VT
o n'n
b Ny

ik-(C5 R, 4C5- g —tar 1)
x Y MG e )

Ry

_ X X
- Z Yo.uTin
vy’

Vo) (F9)

where Coytyr, =ty and Rj; = Coy(Ryr 4 tag ) — tar .
Thus, the C,, sewing matrix is

Cay

By &) = Yiew Ty (F10)

For the time-reversal, we have

~ 1 . ~
T|I//kv“v77> = \/T_M Ze_lk.RM|wR,ufﬂ> = |1/f*kqll~»*’l)'
Ry

(F11)
Thus, the time-reversal sewing matrix is
T X
Bun,vn,(k) = 5,wf,],,,/- (F12)
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In this gauge, the C,.T sewing matrix B> (k) and the P
sewing matrix B")(k) must have be discontinuous at some
momenta due to the topology protected by C,, T and/or PC,, T
of the two lowest bands. Correspondingly, in the Wannier ba-
sis the C,, T and P representations must be nonlocal. Usually,
an Wannier function at r (r ## 0) would be transformed to an-
other Wannier function at —r under C,,T or P. In the nonlocal
case, the Wannier function at r (r # 0) will be transformed
to a linear combination of all the Wannier functions in the
whole 2D space under C,,T or P. Any tight-binding model in
this Wannier representation that has finite-range hopping will
break the C,,T and the P symmetries.

a. Another choice of Cs, center

We find that the C;, operation, which is a 27 /3 rotation
at the honeycomb vertex of graphene, is the 27 /3 centered
at honeycomb center of graphene followed by a microscopic
translation, i.e., Céz = {1| — a;}C5;. Here a is the lattice basis
of single-layer graphene. The microscopic model of TBG
cannot have both c_gz and GCs,. For example, we choose the
twisting center at the honeycomb center, and then Cs, is an
exact symmetry but Cy_ is only an approximate symmetry;
however, the microscopic error of C;_ should be negligible,
diminishing at small angle. The translation —a; will lead to
factors €5 and e~ for the two valleys K and K’, respec-
tively. Thus, the representation matrix of C3, in the BM model
is given by

D(C},) = €57 D(Cy), (F13)

J

_ 2 2 i .
QRM = CRM+dM'/ —lM'U],[j],n,sCRM"FdM,j —tar 1. L7l m.85

ns jeO

— § § _ 1yl i=DiT t .
- (( D™ e CRM+dM/+1 =ty 1) 11,5 CRu g —tur 1. |/]*'7’S+H'C')'

n.s je(OD

where D(Cs;) is given by Eq. (Al1). Thus, C;; acts on the
Wannier functions as

Cac|wrypen) = |[WRy in)s [Riy + e = Coc(Rag +tar ).
(F14)

It follows that the C3, sewing matrix is
Bio 1y () = 8008y X0, (F15)

Notice that the C,, axis of Kang and Vafek’s model is same as
ours, so we do not need to change the C,, sewing matrix.

2. Interaction

Now that we have implement the Kang and Vafek Wannier
symmetries, we transform their interaction [71] into momen-
tum space. Let us denote the fermion annihilation operator of
the Wannier states as cg,,,,.,n,s- Then the Kang-Vafek interac-
tion has the form

Vo
Hy == Ow,Or,. (F16)
Ry
1
Or, = §QRM + K1y, (F17)

where Ry, sums over all the lattice vectors (honeycomb cen-
ters), and QOg,, and Ty, are given by

(F18)

(F19)

Here j sums over the six hexagon vertex around the triangle site Ry, [j] = j mod 2 is the sublattice index, and ¢ is a phase
factor. The vectors are given by das1 = tyr,1, dya =ty 2 = —ty 1, and dyy, j1» = C3.dy, ;. To match our convention of Wannier
functions, we have decomposed the position (Rys + dy, ;) of the operator C;M s into a lattice vector Ry, +dy j —
ty ;) and a sublattice vector ty ;). O, is the total charge on the six vertices of the honeycomb centered at Ry,. Tg,, is a
hopping-like term where each term annihilates an electron at the vertex j and create an electron at the vertex j + 1 or j — 1.
The phase factor associated with the hopping is ” if j = 1,3,5 and is —e /"’ if j =2, 4, 6. k is a factor determining the
strength of the hopping-like term and is estimated as 0.16 in Ref. [71]. («x is originally denoted as «; in Ref. [71]. We changed
the notation to avoid confusion with the o (k, q + G) function [Eq. (C23)] in this paper.) We can write Og,, as

Z Z CRM+dM,-—tM 15015 Ry =t 11, L1,

n.s je
i—1 (=)' T
+ (DT Rt s Rt s+ HC). (F20)
Now we apply the transformation
1 .
Or, = — » e 9Rug, (F21)
Ny
q
such that the interaction can be written as our interaction form (already present in Vafek and Kang)
(F22)
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We transform the three terms, i.e., the Og,, term, the first term in Tg,, term, and the second term in 7g,,, in Og,, one by one. First,

we have
o = LS riagr — L Rea 303 .
a= e Ry = 35 ¢ CRy+uy j—tur 71,1/1,7,s Ryt =t [1n.s
M Ry M Ry ns jeO
R —i(Ry+d Ry +d k
= 3Ny Zel YD D e T IRt e T Gl ekt
M n.s je(Q pk
1
_ ¥ _ T
=322 20 2 ChratiinsOhlilns = 2 2 ChrqunChnns (F23)
ns jeO k uns  k
Second, we have
_ iRy -q J=1gil= 1)y ~1no T
~ N Z e Z Z( ) RM+de+l =ty 11, L+ 11m, sCRuy+du j—tur 1, L1 m,s
n.s jeO
K iR 1 i(=1) "1y —i(Ryy+dyy 1 — Ry +dy j— k
N_ é M(IZ Z( 1)] Y Z iRy g j1 =ty [j+11) P E Ry j—tar 1) ;[]Jrl] sl 7Ls
M R, s jeO
1 1)y~ 1no d k d k
—— Z Z( 1)] l( Y™y Ze i(dps j1 =ty [j+11)( +q> i(darj—ta 1) c£+q L], q;ck Lln,s- (F24)
n.s jeO
We split the summation } ;. into >, ;5and Y, ; ¢, and then
=K Z Z in? Z el( dM,+1+1M2)qel(de—tM1 dM,+1+tM2)kclt+q - SOk s
ns j=1,35
—x Z Z —in? Z el( dysj+ 1+t qel(de—th—de+1+lM 1) kck+q - Ok 25 (F25)
n,s j=2,4,6
Since ty,; = —ty and dyy, 43 = —dyy, ;, the phase factors of the second term are the complex conjugations of those of the first
term, and thus we can rewrite Ofl as
2 ind —in® §
Or=kY Y "ok, Q)cf, g, Chims =€ 0 K Q41,2 (F26)
ns k
with
wk, q) = Z e (1t 2)-d i (da j—tar 1 —das 1 Htu2)- K (F27)
j=1.3.5
Now we list all the involved vectors in the phase factors (ty,; = dp.1, tyr2 = dpsa):
J=1, —dyjp+dys=—ay, dy;—dyi—dy 1 +dys=—ay, (F28)
J=3, —dyj1+dyas=0, dy;—dy1—dy 1 +dys=—ay —au, (F29)
j=5 —dyj+dys=-a;—ay, d;—d—dy i +dys=—ay —2ay. (F30)
Thus, we have
a)(k7 q) — e—iam‘qe—iam'k + e—i(ﬂM|+aM2)'k + e_i(aM1+aM2)'qei(aM]_2aM2)'k. (F31)
Since the third term in Og,, is the Hermitian conjugation of the second term, we have
3 2 ino t —in® +
0} = Q_Tq =¥ Z Z (e w(k, —qQ)Cy 5 (Chq 105 + e 0" (K, _q)ck,l,n,sck_qu’”'s)
in® —inw T
=k Y > (=" ok +q —Q)c] g0,k tns T €O KA —Q)cf o Ch2s)- (F32)
We define
Bk, q) = ok, q) — ok +q, —q). (F33)
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Thus, OF 4 O; can be written as

2 3 inY —in®
Oa+ 05 =" "B Q)cf g, Chtns — € " B K Qg 1, Chans

ns k

Now we write the total O4 operator as

where M is

(F34)
Oq =YY M) (K Qcy,q 0, Chons: (F35)
ns k
Mk, q) = y° — iky*Re[e” B(k, @)] + iky Im[e™’ B(k, )]. (F36)

We can also express M as a 4 x 4 matrix (in the sublattice and valley spaces) as
Mk, q) =y°7° — iy Re[(cos 91° + i sin 9 19)B(K, q)] + iky Im[(cos ¥7° + isin ¥ 77)B(K, q)]
=y%7% — iky*t"Re[cos 9 B(k, q)] + ik y*t°Im[cos ¥ B(k, q)] + ixy t°Im[sin ¥ B(Kk, q)] + iky*T°Re[sin 9 B(K, q)].

F37)

With this, we have brought the Kang-Vafek interaction to the same form as our momentum-space interactions.

3. The Kang-Vafek U(4) symmetry

It is obvious that the Kang-Vafek interaction have spin-valley U(2) x U(2) symmetry, whose generators are

)/O‘L'Osa,

)/O‘L'Zsa,

a=0,xyz (F38)

Now we show that it indeed has a U(4) symmetry. Our proof is the momentum-space version of the original proof [71]. We

introduce two matrices
¥ = p*t%cos ¥ + yt7sin ¥,

and rewrite the M matrix as

M, q) = y°2° + ik T Im[B(k, q)] + ik =Re[B(K, q)].

¥ = —p*rsin® 4 y't%cos ¥,

(F39)

(F40)

One can verify that {Z*, '} = 0. We then apply a k-independent gauge transformation ¢'27"% such that /277 £%e~27'7 =
y*70 and YT RISV Y79, After the transformation, M becomes

Mk, q) = y°1° + ik y* " Im[B(k, q)] — iy’ t"Re[B(k, q)]. (F41)
Therefore, the M matrix is invariant under the U(4) generators
yor“sb, a,b=0,x,y,2z. (F42)

This gauge transformation seems equivalent to setting ¢ = 0 [71]. However, after the gauge transformation, the sewing matrices

might change.

4. Relation between Kang-Vafek U(4) and the C,, P-implied U(4) symmetry

Let us first fix the C,, P gauge of the Wannier functions. According to Eq. (A20), we have

(C.PY =1, [C3,CP] =0,

and hence

(B0 = 1,

B (k)B" (k) = B (Coyk)B™ (),

Since both T and C,,T P (the charge conjugation) are local in
real space, as shown in Appendix C4, C,,P must also be a
local operator in real space. Thus, we want C,, P to be local
in the Wannier representation. However, this is incompatible
with the crystalline and time-reversal symmetries. In order to
be local in the Wannier representation, C,,P must leave the
center of each Wannier function invariant and hence will be

[Cay, Cp.P] =0, {T,CyP}=0, (F43)
B (k)B“F (k) = B (C3,k)B (k), (F44)
BT (k)B®"* (k) = —B“"(—Kk)BT (k). (F45)

(

k independent. Since C,, P does not change the sublattice,
the sewing matrix B®>*(k) should be diagonal in the sublat-
tice index and thus does not contain y*” terms. Since C,,P
changes valley, it must not contain 7° and 7. Thus, B
can only have four possible terms: y %%, All the four terms
commute with B (k), which only contains the terms y%?7°.
In order to commute with B> (k) (y*t*), only y°z* and y*7”
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are possible. However, both commute with T = 7*K, whereas
Eq. (F43) shows that C, P anticommutes with 7". Thus, a local
representation of C,.P is not compatible with the C3;, G, T
symmetries. In other words, C,, P in the Wannier representa-
tion that respects Cz;, C,, T symmetries must be nonlocal.

The above analysis leads to two conclusions: (i) Our
charge-conjugation symmetry must be nonlocal in the Kang-
Vafek Wannier representation, and (ii) Kang and Vafek U(4)
symmetry, which is local in the Wannier representation, is
not equivalent to the C,,P-implied U(4) symmetry, which is
nonlocal in their Wannier representation.

5. Kang-Vafek U(4) as our U(4) chiral-nonflat limit symmetry

We now ask: Is the Kang and Vafek U(4) consistent with
our U(4) implied by the C,,PC? We assume that the Kang
and Vafek model (at least approximately) preserves the C,, PC
symmetry. Here C is the chiral symmetry:

D(O)h(K)D™(C) = —h(k), D(C)Qu.0 = 80,00y

c?=1. (F46)
Commutations between C and T', C3;, Gy, Gy, P are
[T,C]1=0, [Cs,Cl=0, [Cy,C1=0, {C,CopP}=0.
(F47)
Thus, we have
(C3,PCY* = =1, [Cs,Co,PC1 =0, [Cy,

C.PC1 =0, {T,C).PC}=0, (F48)

and hence
B () = —1,

B (K)B®=FC (k) = BPC(C3,k)B™ (k),  (F49)

B (K)B%" (k) = B"(Co,)k)B (k),

BT (k)B“:F*(k) = —B“FC(—Kk)B” (k). (F50)

We try to find a k-independent solution, which means C,,PC
is local in the Wannier representation. Since C,,PC preserves

the sublattice (local) and changes valley, B*C can only have
four terms iyo’zr"'y , each of which squares to —1. All the
four terms commute with Cs, (y%?). Two terms commute with
Coy (y*1): iy, iy*1?, and the two terms also anticommute
with T'. Therefore, there are two solutions of B¢=*C:

BCZZPC(I) — ij/OTx, BCZZPCQ) — l.]/ZTy. (FS])

If we can understand M [Eq. (F36)] as the inner product of
periodic part of Bloch wave functions, i.e.,

M, (K, @) ~ V(@ (s g i)

then M must commute with BFC. Applying B¢ and

(F52)

B:FC® 10 Eq. (F37), we obtain ¢ = 0,7 and & = %, re-
spectively. For ¢ = 0, m, the U(4) generators are
yorist, a,b=0,x,y 2 (F53)
for v = :l:%, the U(4) generators are
yirst, y0r%%t a=0,x, v,z (F54)

Now we show that the two representations Eqs. (F53)
and (F54) are equivalent. Under the gauge transformation
() %), Eq. (F54) becomes Eq. (F53) and BC:, B®», BT
remain unchanged.

We summarize: (i) The C,,PC can be chosen as local in
the Wannier representation. (ii) If Kang and Vafek’s model
does not have an exact C,,PC symmetry (which remains to
be checked), then, if we continuously recover the C,, PC sym-
metry, their U(4) continuously changes to our U(4) implied
by the C,,PC symmetry; this U(4) is implied by the chiral,
nonflat limit. Hence, we conjecture that the Kang and Vafek
U(4) is also invariant to the addition of some kinetic terms.
(iii) The U(4) symmetry implied by C,.PC is also local in the
Wannier representation because the U(2) x U(2) part is already
local, and the additional generator is just the C,, PC operation.

If we impose the CC,, P symmetry to the Kang and Vafek’s
tight-binding model, their U(4) symmetry would become the
chiral-nonflat U(4) symmetry, since the two U(4) symmetries
share the same generators 79" (a, b =0, x, Y, 2)-
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