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Theory of surface-induced multiferroicity in magnetic materials, thin films, and multilayers
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We present a theoretical study of the onset of electric polarization close to a surface in magnetic materials and
in thin films and multilayers. We consider two different paths that lead to the onset of multiferroic behavior at
the boundary in materials that are bulk collinear ferromagnets (or even antiferromagnets). These two paths are
distinguished by the presence or absence of a surface-induced Dzyaloshinskii-Moriya interaction, which can be
taken into account through Lifshitz invariants in the free energy of the system. Experimental consequences are
discussed in light of the developed theory.
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I. INTRODUCTION

Magnetoelectric multiferroic materials continue to attract
much interest due to both their scientific as well as their
technological importance [1–3]. Typically the ferroelectric
transition temperature is much higher than the magnetic one,
and a coupling between the two order parameters is weak.
Representative examples are the transition-metal perovskites
BiFeO3 and BiMnO3, belonging to the type I class of multi-
ferroics (for more details on the classification, see Refs. [1,4–
7]). When the two ordering temperatures are close or even
coincide, such as in TbMnO3 [8] or TbMn2O5 [9], strong
multiferroic behavior is expected. From the symmetry point of
view, the necessity to break both inversion and time-reversal
symmetries suggests different possible mechanisms that have
been actually realized. In type II multiferroics, magnetism
drives the onset of the ferroelectric order parameter, either due
to the presence of spin-orbit coupling (SOC) and magnetic
frustration, e.g., in Ni3V2O6 [10–12], or exchange striction,
e.g., in TbMnO3 and Ca3CoMnO6 [13,14] or “phase dislo-
cated” spin density waves, e.g., in YMn2O5 [15,16].

Currently the role of surfaces and interfaces in the proper-
ties of materials is the focus of systematic studies [17–21].
In technological applications there are important prospects,
and the theoretical understanding is developing [22,23]. Ex-
perimental techniques have been advanced such that novel
phenomena can be detected as a result of the higher precision
and resolution. Recent advancements led to the detection of
new properties by distinguishing surface from bulk phenom-
ena or going to the atomic scale [24,25].

In this work, we study the effects of boundaries in the
development of multiferroic behavior in bulk materials, thin
films, and multilayers. This is a complementary effort to
first-principles calculations on the magnetoelectric coupling
close to surfaces [26] or monolayers [27] of specific mate-
rials. A straightforward Ginzburg-Landau (GL) free-energy
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analysis with appropriate boundary conditions demonstrates
that collinear magnetism can generate a ferroelectric polar-
ization near surfaces, even without invoking the mechanism
of phase dislocation [16]. In addition, due to the absence of
inversion symmetry close to surfaces, a term that promotes
the Dzyaloshinskii-Moriya interaction (DMI) can be present,
leading to multiferroic behavior through the formation of
spiral magnetic order [11,12]. The underlying assumption
is that we deal with predominantly magnetic materials with
nonzero coupling between magnetic and ferroelectric order
parameters. In the following, we analyze separately the two
mechanisms.

II. GINZBURG-LANDAU ANALYSIS

We focus on a simple-cubic ferromagnet for simplicity
without frustration. Each spin has an interaction with its six
nearest neighbors, according to an isotropic ferromagnetic
Heisenberg-type interaction J , and the expectation value of
the z-component of the magnetization (spin) at site l, m(l) =
〈Sz(l)〉/S, is the order parameter of the system. The crystal
is assumed to have a (001) surface. In the continuous space
approximation, the GL equation of the magnetization m(l),
which depends only on z, reads [28] (for completeness, the
details are in Appendix A)

a2
0

6

∂2m(z)

∂z2
+ (1 − τ )m(z) − βm3(z) = 0, (1)

where a0 is the lattice parameter, τ = T
Tc

is the reduced tem-

perature (Tc is the Curie temperature), and β = 3
5 [s(s + 1) +

1
2 ]/(s + 1)2. In the limit of (z → ∞), far from the surface, the
order parameter takes the bulk value m∞ = (1 − τ )1/2/β1/2.
The free-energy expansion leads to the same equation for
both a ferromagnet and an antiferromagnet [28]. Defining

m(z) ≡ m∞ f (z) and ξ 2 ≡ 1
6

a2
0

(1−τ ) , we obtain

ξ 2 ∂2 f (z)

∂z2
+ f (z) − f 3(z) = 0. (2)
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FIG. 1. Polarization as a function of the distance from the surface.

The boundary conditions are f (∞) = 1 and f (0) =
a0

∂ f
∂z (0). Then the solution of Eq. (1) reads m(z) =

m∞ tanh( z+a0√
2ξ

).
We now address the question of whether the onset of fer-

roelectricity is possible due to the existence of this surface,
which results in the change of magnetization. The physical
argument is that as the inversion symmetry is broken due to
the surface, the onset of multiferroic behavior is possible.

The free energy is supplemented by a term due to the
coupling between magnetization and electric polarization p
and a term that is the electronic part of the free energy that
depends only on p. Since we are interested in systems in
which the magnetic order is the primary one, the second term
is sufficient to be quadratic in p. The free energy reads [40]

δF = FME + FE

= p · {γ∇(m2)

+ γ ′[m(∇ · m) − (m · ∇)m] + · · · } + p(r)2

2χE
. (3)

Note that in the case of collinear magnetic structure, the
term proportional to γ is nonzero while the term proportional
to γ ′ (a Lifshitz invariant for a cubic lattice) is zero. Taking
the dielectric susceptibility as constant and using m(z) as the
magnetic order parameter, the minimization with respect to
p(z) results in

p(z) = −χE {γ∇(m2) + γ ′[m(∇ · m) − (m · ∇)m] + · · · }.
Using the solution of Eq. (1) for the magnetization, p(z)

becomes

p(z)=−m2
∞

√
2

ξ
χEγ

{
tanh

(
z+a0√

2ξ

)[
1− tanh2

(
z + a0√

2ξ

)]}
.

(4)
This function is plotted in Fig. 1. Interestingly, it is

peaked at a distance from the surface z = √
2ξ tanh−1(1/

√
3)

with pmax = − 2
√

2
3
√

3
1
ξ
χEγ m2

∞ ≈ − 1
ξ
χEγ m2

∞, where the neg-
ative sign denotes a direction opposite to the direction of
∇(m2). The distance over which polarization is developed and

the location of its peak are also controlled by the temperature
through the magnetic correlation length. For a reasonable
estimate of the effect, we need the range of possible values
of γχE , which in the literature [29–32] can be found to lie
between 10−23 and 10−13 sm/A, a typical correlation length
[33] ξ ≈ 10 nm and a typical value for the bulk magnetization
m∞ ≈ 10–100 kA/m. Then the range of possible values of
pmax is between 10−10 and 102 μC/cm2, or to produce a mea-
surable polarization, a value for γχE larger than 10−19 sm/A
is enough [34].

III. DMI IN MAGNETIC THIN FILMS AND MULTILAYERS

The lack of inversion symmetry close to surfaces can lead
to the induction of DMI. The direction of the d vector in
this case can cause the directions of the spins of the nearest
neighbors to change in such a way as to break the chiral
symmetry close to the surface [35,36]. For the purpose of
our investigation of the chiral nature induced by the DMI,
the antisymmetric exchange interaction is described by a Lif-
shitz invariant term that is linear in the spatial derivatives of
the magnetization m(r) of the form mi

∂mj

∂xk
− mj

∂mi
∂xk

, where
xl denotes a spatial coordinate. These interactions are re-
sponsible for breaking the chiral symmetry and stabilizing
localized magnetic vortices, with certain chirality that has
been observed experimentally in noncentrosymmetric ferro-
magnetic and antiferromagnetic materials [37,41–43]. It is
possible to observe these effects in centrosymmetric crystals
where stresses or applied magnetic fields [38] or anisotropic
frustrated magnetic interactions [39] induce chiral magnetic
couplings and vortices/skyrmions. Chiral effects, as a con-
sequence of the DMI energy, are not so strong in the bulk,
but they can become fundamentally important in magnetic
thin films and multilayers or near the surface of a larger
crystal where the local symmetry is low. Taking into account
experimental facts, the chiral couplings should also be inho-
mogeneous [38] within a magnetic structure with low local
symmetry. A phenomenological term for the corresponding
chiral energy density is FD = D f (r)L(m), where D is a
constant, L is a Lifshitz invariant, and the function f (r) is
a function describing the inhomogeneous distribution of the
magnetic chiral energy. f (r) was interpreted as another field,
in addition to the magnetization [38], but it essentially in-
dicates the strength profile of the DMI as a function of the
distance from the surface. To demonstrate the physics clearly,
we take two functions as the profile function f (z), where
z is the distance from the surface: a function exponentially
decaying in z and a function 1 − tanh(z/λ), both with the
maximum at the surface. This behavior was verified when the
magnetization in a finite-width slab was computed [38].

We consider a uniaxial magnetic anisotropy that con-
tributes to the energy density a term Fan = −Km2

z . Then the
free-energy density reads

F = A
∑

i

(
∂m
∂xi

)2

+ D f (r)L − Km2
z + FME + FE . (5)

The first term represents the magnetic exchange interaction
with a stiffness constant A, the second term is the energy of
the electric polarization with susceptibility χE , the third term
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FIG. 2. Magnetization (φ) and polarization as a function of the
distance from the surface for in-plane anisotropy with n = 0 (a) and
n = 4 (b). The used parameters are A = 1, D = 1, k = 1, γ = 1,
and χE = 1.5. The peak of the polarization is at a distance from the
surface in agreement with Fig. 1.

is due to DMI coupling, the fourth is due to anisotropy, and
FME is the term of the free energy that couples m and p. In
the following, all the quantities are dimensionless, and for that
purpose the magnetization m is normalized by its amplitude
M0, D is in units of stiffness A per m, χE is in units of vacuum
permittivity ε0, K is in units of A per m2, polarization p is in
units of

√
ε0μ0M0, where μ0 is vacuum permeability, length is

in units of lattice constant, γ is in units of inverse polarization,
and the coupling constant in FME is the product Dγ (instead
of only γ ) [40–43].

A. Anisotropic term with K < 0

When K < 0 in Eq. (5), m lies in the xy plane. The Lifshitz
invariant L can be taken as (mx

dmy

dz − my
dmx
dz ). The free-energy

term that couples m and p then takes the form p · (m ×
dm
dz ), which in this particular geometry reads Dγ pz(mx

dmy

dz −
my

dmx
dz ). It is convenient to work with the angle φ to describe

the vector m that lies in the xy plane. The related part of the
free-energy density becomes

F = A

(
dφ

dz

)2

+ D f (z)(1 + γ pz )
dφ

dz
+ p2

z

2χE
− k cos(nφ).

The last term describes an in-plane anisotropy with n an even
integer, depending on lattice symmetry and/or homogeneous
strain [38]. Minimizing the free energy with respect to m and
p, we obtain

2A
d2φ

dz2
+ D

df

dz
(1 + γ pz ) + D f γ

d pz

dz
− nk sin(nφ) = 0,

(6)

pz = −DγχE f
dφ

dz
. (7)

Inserting Eq. (7) into Eq. (6), we solve numerically for
φ and pz as a function of the distance from the surface.
The results are presented in Fig. 2. This physics provides
a second mechanism to generate a finite polarization close
to the surface, which comes from the nonzero value of dφ

dz
as a consequence of the DMI, which is maximum at the
surface. f (z) is the profile that controls the strength of the
DMI. We have checked that both profiles of f (z) lead to the
same physics qualitatively, and we have used 1 − tanh(z/λ) in
Figs. 2 and 3.

For an estimate of the effect, the range of values of the
product DγχE is taken between 10−23 and 10−13 sm/A, the
intralayer spacing �z ≈ O (1 nm), typical values for the
magnetization [17,44,45] M0 ≈ (10–1000) kA/m, and typical
�φ ≈ 0.1 so that �φ

�z ≈ 105 m−1 while f is of O(1) close
to the surface. Then the range of the possible values of the
maximum polarization is pz ≈ 10−10–104 μC/cm2. Again
with a reasonable value for DγχE of 10−17 sm/A or larger,
the polarization can be detected [34].

B. Anisotropic term with K > 0

When K > 0 in the free energy, the relevant Lifshitz
invariants may involve gradients along all three directions
depending on the respected symmetry. There is a Lifshitz
invariant term L that is purely magnetic, as well as a term Lme

that mixes m and p in the free energy. In the case of twofold
or fourfold symmetry about the z axis, we take the Lifshitz
invariants to be

L + Lme = mz
∂mx

∂x
− mx

∂mz

∂x
+ mz

∂my

∂y
− my

∂mz

∂y

+ γ mz

(
px

∂my

∂z
− py

∂mx

∂z

)
. (8)

Using spherical coordinates for the magnetization m =
(sin θ cos φ, sin θ sin φ, cos θ ), cylindrical coordinates for the
spatial vector r = (ρ cos ζ , ρ sin ζ , z), and focusing on the
magnetic part of the free energy, the problem has axisymmet-
ric localized solutions φ = ζ and θ = θ (ρ, z) with θ (0) = π

and θ (∞) = 0. The part of the free energy proportional to Lme

reads Fme = D f (z)γ cos2 θ ∂θ
∂z (px sin φ − py cos φ). Minimiz-

ing the free energy with respect to θ and px, py, we obtain

A

[
∂2θ

∂z2
+ ∂2θ

∂ρ2
+ 1

ρ

∂θ

∂ρ
− sin θ cos θ

ρ2

]

−D f (z)
sin2 θ

ρ
− K sin θ cos θ = 0, (9)

px = −χE D f γ sin φ cos2 θ
∂θ

∂z
and

py = χE D f γ cos φ cos2 θ
∂θ

∂z
. (10)

As p is the subdominant order parameter, to simplify the
calculation it is sufficient to neglect its effect on θ . Then
the solution for m is similar to the purely magnetic problem
[38]. As a result, the magnitude of p at any given point is
p = χE D f γ cos2 θ | ∂θ

∂z |. In Fig. 3 we present θ as a function
of ρ and z as well as px and py (differing by a phase dif-
ference) (more details are in Appendix B). Similarly to the
case (i), using similar typical values and a reasonable estimate
of | ∂θ

∂z | ≈ 104 m−1, the range of the possible values of the
amplitude of p is p ≈ 10−8–104 μC/cm2, which suggests a
detectable value [34].

IV. DISCUSSION

We present a detailed study of the multiferroic behavior
in thin films, multilayers, and close to the surface of mag-
netic materials with symmetries (inversion and time reversal)
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FIG. 3. Numerical results for K = 1. (a),(b) θ as a function of z and ρ with boundary conditions as explained in the text. The surface are
at z = L and z = −L, while the bulk is at z = 0. (c) The component of polarization py as a function of z and ρ, (d) py at fixed ρ = 0.05 R, and
(e) at fixed z = 0.96L (and L = 4λ), where it shows oscillatory behavior as a function of ρ and φ for the second layer from the surface. The
x-component of the polarization is out of phase by 3π/2 in φ. The rest of the parameters are the same as in Fig. 2.

that do not allow the onset of polarization in the bulk. The
onset of polarization can be achieved either in the presence
or absence of a DMI close to the surface. One mechanism is
through the nonzero gradient of the magnetization, while the
second is through the change of orientation of the magneti-
zation (and not its amplitude) as a function of the distance
from the surface. Our study is essentially the inverse effect of
Ref. [46], where surface-induced magnetization was detected
in the archetypal ferroelectric BaTiO3 [47,48]. In the same
spirit, there exist recent intensive efforts to synthesize multi-
ferroic heterostructures and control the interfacial DMI (e.g.,
Refs. [49–54]). In thin films DMI originating from strong
SOC of interfacial atoms neighboring the magnetic layer can
be engineered and controlled. DMI has been engineered in a
ferromagnet (FM) interfaced with two different heavy met-
als, such as Pt/Co/Ir [55,56], or in magnetic layers inserted
between a heavy metal and an oxide, such as Pt/CoFe/MgO
[57,58]. In thin films, the deposition conditions would make
the couplings vary, given that the strength of the DMI has
recently been shown to vary in a model system Pt/Co/Pt,
depending, e.g., on the temperature variation during depo-
sition [61]. An elegant and reliable method for determining
the magnitude of the DMI from static domain measurements
even in the presence of hybrid chiral structures was recently
demonstrated [59], while electrical detection of single mag-
netic skyrmions has been achieved at room temperature in
metallic multilayers [60].

We estimate the range of values of the polarization that
can be detected even if the coupling constant that mixes the
magnetic and ferroelectric order parameters is several orders
of magnitude smaller than the highest ones reported in the
literature. The polarization we predict is detectable within
the current accuracy of the experimental techniques [47,48].

Techniques such as polarized neutron reflectivity can be used
to detect magnetization gradients over a length scale of a few
nanometers. In the case of out-of-plane components, magnetic
force microscopy is ideal to detect the magnetization compo-
nents. X-ray magnetic circular/linear dichroism can detect the
contribution of individual magnetic ions if required. Scanning
transmission x-ray microscopy has been used effectively to
study the skyrmion dynamics of high temporal and spatial
resolution [62]. Recently, the linear magnetoelectric phase
in ultrathin MnPS3 was probed by optical second harmonic
generation [63]. These techniques in combination with, e.g.,
electrostatic force microscopy or ellipsometry make feasible
the detection of both order parameters.

ACKNOWLEDGMENTS

We thank N. Banerjee, A. Bogdanov, P. Borisov, D. Efre-
mov, N. Gidopoulos, T. Hesjedal, D. Khomskii, P. King,
P. Radaelli, I. Rousochatzakis, and J. van den Brink for
useful discussions and communications. The work is sup-
ported partly by EPSRC through Grant No. EP/P003052/1
(J.J.B.) and a scholarship from the Regional Government of
Kurdistan-Iraq (A.R.T.). J.J.B. also thanks the Isaac Newton
Institute for Mathematical Sciences for support and hospi-
tality during the programme “Mathematical design of new
materials,” supported by EPSRC Grant No. EP/R014604/1,
where a part of the work was done.

APPENDIX A: DERIVATION OF THE GINZBURG-LANDAU
EQUATION

Using molecular field theory, the expectation value of the
z-component of the magnetization (spin) at site l, m(l) =

205409-4
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〈Sz(l)〉/S, which is the order parameter of the system, is writ-
ten as

m(l) = Bs

⎛
⎝− JS

kBT

∑
δ̂

m(l + δ̂)

⎞
⎠, (A1)

where kB is Boltzmann’s constant, T is the tempera-
ture, S is the spin of the magnetic ions, and Bs(x) is
the Brillouin function Bs(x) = (1 + 1

2S ) coth[(1 + 1
2S )x] −

1
2S coth( x

2S ). The sum over δ̂ ranges over the six nearest neigh-
bors of the spin at site l. We can then expand coth(θ ) in powers
of θ :

coth θ = 1

θ
+ θ

3
− θ3

45
+ · · · . (A2)

The Brillouin function then reads

Bs(x) = (s + 1)

3s

{
x − 1

15s2

[
s(s + 1) + 1

2

]
x3 + · · ·

}
. (A3)

We define the reduced temperature τ = T
Tc

[for the model we
discuss, Tc is the Curie temperature, Tc = 2kBJ (S + 1)/3S].
The order parameter is then defined through the relations
m(l) = 〈S(l)〉/S with m(l) = Bs(−

∑
m(l+δ)

2τkB (s+1) ). In the continu-
ous space approximation of the lattice, m(l) becomes also a
function of the continuous l and∑

δ

m(l + δ) 
 6m(l) + a2
0∇2m(l), (A4)

where a0 is the lattice parameter. Retaining only first order in
�2m terms and using β = 3

5 [s(s + 1) + 1
2 ]/(s + 1)2 and the

fact that m(r) depends only on z, the GL equation becomes

a2
0

6

∂2m(z)

∂z2
+ (1 − τ )m(z) − βm3(z) = 0,

which is Eq. (1) of the main text. The free-energy expansion
leads to the same equation for both a ferromagnet or an anti-
ferromagnet.

APPENDIX B: DETAILS OF THE CALCULATION OF
MAGNETIZATION FOR K > 0

As explained in the text, the magnetization in the case K >

0 is determined by the function θ = θ (ρ, z) such that

A

(
∂2θ

∂ρ2
+ ∂2θ

∂z2
+ 1

ρ

∂θ

∂ρ
− sin(θ ) cos(θ )

ρ2

)

+ D f (z)
sin2(θ )

ρ
− K sin(θ ) cos(θ ) = 0 in �, (B1)

where � = (0, r) × (−l, l ). The boundary conditions are as
follows:

(i) On �4 = {(ρ, z) : ρ = 0, −l � z � l}, we impose
θ = π .

(ii) On �2 = {(ρ, z) : ρ = r, −l � z � l}, we impose
θ = 0.

(iii) On �1 = {(ρ, z) : 0 � ρ � r, z = −l} and on �3 =
{(ρ, z) : 0 � ρ � r, z = l}, we impose periodic boundary
conditions: θ (ρ, z = −l ) = θ (ρ, z = l ).

FIG. 4. Computational grid.

Equation (B1) can be equivalently reformulated as

A

(
∂2θ

∂ρ2
+ ∂2θ

∂z2
+ 1

ρ

∂θ

∂ρ

)
− 1

2

(
A

ρ2
+ K

)
sin(2θ )

+ D
f (z)

ρ
sin2(θ ) = 0 in �. (B2)

Defining the linear operator

Lθ = A

(
∂2θ

∂ρ2
+ ∂2θ

∂z2
+ 1

ρ

∂θ

∂ρ

)
(B3)

and the nonlinear operator

g(θ ) = −1

2

(
A

ρ2
+ K

)
sin(2θ ) + D

f (z)

ρ
sin2(θ ), (B4)

we can write the problem in abstract form as follows: find θ

such that

Lθ + g(θ ) = 0 in �. (B5)

1. Numerical solution using the finite-difference method

We introduce a computational grid such as the one shown
in Fig. 4.

Let �ρ and �z be the discretization steps along the ρ and z
axes, respectively, and let Nr and Nz be the number of intervals
in the ρ and z direction. Thus, the point (i, j) has coordi-
nates ((i − 1)�ρ, ( j − 1)�z), i = 1, . . . , Nr + 1, j = 1, . . . ,

Nz + 1.
We also introduce a global numbering of the nodes in such

a way that the node (i, j) is associated with the number k =
( j − 1)(Nr + 1) + i.

We now discretize Eq. (B5) using finite differences. Con-
sidering the nature of the boundary conditions, we will write
the equation in all the nodes except those on the boundaries
�2 and �4, where we impose Dirichlet boundary conditions.
More precisely, we will consider

Lθi j + g(θi j ) = 0, i = 2, . . . , Nr, j = 1, . . . , Nz + 1.
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2. Discretization of the linear term

To discretize the linear term L, we introduce the following
second-order approximations of the derivatives:

∂2θ

∂ρ2
≈ θi−1, j − 2θi j + θi+1, j

�ρ2
, (B6)

∂2θ

∂z2
≈ θi, j−1 − 2θi j + θi, j+1

�z2
, (B7)

∂θ

∂ρ
≈ θi+1, j − θi−1, j

2�ρ
. (B8)

Then, with the help of some algebra, the discretization of
(B5) becomes(

A

�ρ2
− A

2(i − 1)�ρ2

)
θi−1, j +

(
A

�ρ2
+ A

2(i − 1)�ρ2

)
θi+1, j

−
(

2A

�ρ2
+ 2A

�z2

)
θi j

+ A

�z2
θi, j−1 + A

�z2
θi, j+1 + f (θi j ) = 0,

i = 2, . . . , Nr, j = 1, . . . , Nz + 1. (B9)

Considering that on �1 and �3 we impose periodic bound-
ary conditions, we identify the nodes characterized by indices
(i, 1) and (i, Nz + 1) (shown in blue in Fig. 4). Moreover, we
make the assumption that we can identify the nodes (i, 0) with
the nodes (i, Nz ) (green nodes), and the nodes (i, Nz + 1) with
the nodes (i, 2) (red nodes). Thus, in the matrix M associated
with (B9), we can identify⎛

⎜⎝
M11 M13 M1b M1I

M31 M33 M3b M3I

Mb1 Mb3 Mbb MbI

MI1 MI3 MIb MII

⎞
⎟⎠

⎛
⎜⎝

θ1

θ3

θb

θI

⎞
⎟⎠ + g(θ) = 0

and we can reduce the system to(
M11 + M13 M1I

MI1 + MI3 MII

)(
θ1

θI

)
+ g

[(
θ1

θI

)]
= −

(
M1b

MIb

)
θb.

(B10)
For simplicity and with an obvious choice of notation, we

can rewrite (B10) as

M̂ θ̂ + g(̂θ) = b. (B11)

3. Newton’s method for the nonlinear system

To solve the nonlinear system (B11), we consider now
Newton’s method: for k � 0 until convergence, we solve the
linear system

JM̂ (̂θ
(k)

) δ̂θ
(k) = −(M̂ θ̂

(k) + g(̂θ
(k)

) − b) (B12)

and set

θ̂
(k+1) = θ̂

(k) + δ̂θ
(k)

, (B13)

where JM̂ (̂θ
(k)

) is the Jacobian matrix in θ̂
(k)

defined as

JM̂ (̂θ
(k)

) = M̂ + g′ (̂θ
(k)

)

and g′ is the Gâteaux derivative of the nonlinear operator g
defined as

g′(θi j ) = −
(

A

[(i − 1)�r]2
+ K

)
cos(2θi j )

+ D
f [( j − 1)�z]

(i − 1)�r
sin(2θi j ).
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