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One of the long-standing goals of quantum transport is to use the noise, rather than the average current,
for information processing. However, achieving this requires on-demand control of quantum fluctuations in the
electric current. In this paper, we demonstrate theoretically that transport through a molecular spin valve provides
access to many different statistics of electron tunneling events. Simply by changing highly tunable parameters,
such as electrode spin polarization, magnetization angle, and voltage, one is able to switch between Poisson
behavior, bunching and antibunching of electron tunnelings, and positive and negative temporal correlations. The
molecular spin valve is modeled by a single spin-degenerate molecular orbital with local electronic repulsion
coupled to two ferromagnetic leads with magnetization orientations allowed to rotate relative to each other.
The electron transport is described via Born-Markov master equation and fluctuations are studied with higher-
order waiting time distributions. For highly magnetized parallel-aligned electrodes, we find that strong positive
temporal correlations emerge in the voltage range where the second transport channel is partially open. These
are caused by a spin-induced electron-bunching, which does not manifest in the stationary current alone.
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I. INTRODUCTION

The current generation of electronic technology has pro-
gressed rapidly through constant, iterative improvements to
compactness. With smaller components, devices occupy less
space within a circuit and dissipate less energy, allowing the
construction of densely-packed circuits with improved com-
putational power [1]. This miniaturization process, however,
is soon approaching the molecular size limit of a few nanome-
ters. On this scale, the well-understood deterministic nature
of electron transport is overturned by the probabilistic nature
of quantum effects, opening new possibilities for information
processing and corresponding research avenues. Among the
most promising is the field of molecular spintronics [2], which
explores how electron spin can be used in application to
molecular-sized devices, as opposed to using just the electron
charge [3].

A molecular spintronic device typically consists of a
molecule connecting two macroscopic electrodes. The tran-
sition from electronics to spintronics demands that there be
a level of magnetization within the system; some compo-
nents must possess a dominant spin orientation. Although
one can achieve this through nonmagnetic leads and a
single-molecule magnet [4,5], in this paper, we focus exclu-
sively on spin valves created from a nonmagnetic molecule
coupled to two ferromagnetic electrodes [6–11]. Such de-
vices, commonly called magnetic tunnel junctions, have been

experimentally realized with quantum dots [12–15], carbon
nanotubes [16–20], and even C60 molecules [21,22].

The main idea of a molecular spin valve is to control the
flow of electrons via the magnetic orientation of the elec-
trodes. Through magnetic properties alone, the valve can shift
between high- and low-conductance states by rotation of the
electrodes [8,23]. Beyond this basic function, however, spin
valves also produce numerous regimes with interesting ef-
fects that, combined with the size advantage of a molecular
device, make these devices preferable over conventional elec-
tronics. Two such effects that have already been demonstrated
prototypically are spin-blockade induced negative differential
resistance (NDR) [8,24] and spin filtering [5,25]. Spin filter-
ing describes a situation in which a particular spin orientation
is preferentially allowed to flow through the system, creating
spin-polarized current. The utility of spin filtering is expansive
as it can be used to transfer large magnetic moments through
a system, thus providing a means of flipping magnetic states,
known as spin crossover [26].

In this paper, we show that, additionally to these interesting
effects, a molecular spin valve provides the possibility of
controlling quantum current fluctuations on a single electron
level. By adjusting highly tunable parameters, one can switch
between different statistics of electron transport: Poisson,
electron bunching (super-Poisson statistics), electron anti-
bunching (sub-Poisson statistics), and positive and negative
temporal correlations, all of which are shown in Fig. 1.
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FIG. 1. Examples of different statistics for electronic transport.
Each peak represent electron detection event in the drain. In ad-
dition to the standard Poisson process, one can also observe:
(a) electron bunching (super-Poisson statistics), (b) electron anti-
bunching (sub-Poisson statistics), (c) positive temporal correlations,
and (d) negative temporal correlations. All these different statistics
can be observed in a molecular spin valve.

We explore these different fluctuation statistics using the wait-
ing time distribution (WTD).

While a relatively recent addition to the analysis of charge
fluctuations in open quantum systems [27], waiting time the-
ory has developed rapidly in the last 10 years. Consequently,
it has been used to investigate a wide variety of transport
scenarios, such as tunneling through molecules with electron-
electron [27–30] and electron-phonon [31–34] interactions,
telegraphic switching [35], double [36,37] and triple [38,39]
quantum dots, superconducting junctions [40–44], coherent
conductors [45–47], non-Markovian transport [48,49], period-
ically driven transport [50,51], and transport in the transient
regime [52–55]. As opposed to the full counting statistics
(FCS), which is the most prevalent method for analyzing
charge fluctuations, the WTD provides information on trans-
port at short timescales, particularly via correlations between
successive waiting times [28,50,51,56–58]. Although there
exist finite-frequency and time-dependent FCS capable of
analysis at similar timescales [59–62], as well as discussions
of correlation behavior with current cumulants [63–65], most
FCS treatments work in the long-time or zero-frequency limit
[66]. Measuring waiting times experimentally is a difficult
task, requiring sophisticated single-electron detection meth-
ods [67–70]; however, there are several novel proposals to
measure waiting times, such as using a quantum “clock” [71]
and matrix product states [72].

In the context of quantum-dot spin valves, finite-frequency
FCS have previously been used to analyze how the inter-
play between Larmor precession and a spin blockade affect
the current noise [73,74], while the zero-frequency noise has
been used to investigate the spin torque [75] and dynamical
blockade [76–78]. The WTD and time-dependent FCS have

also been previously used to analyze the coherent dynam-
ics present in this system, finding that Larmor precession
causes coherent oscillations in the WTD and time-dependent
charge cumulants [6,79]. Several groups have also worked
with spin-dependent fluctuation statistics, rather than just us-
ing the electron charge. Tang et al., for example, have recently
developed the theory of spin-resolved waiting times in a
quantum-dot spin valve [10], while Sánchez et al. have de-
veloped a correlation coefficient for the spin-resolved current
[80]. Our analysis, however, focuses on correlations between
successive waiting times, and we find that, surprisingly, the
strongest correlations appear when the coherent dynamics of
the system are diminished.

The paper is organized as follows. Section II describes
the theory; the model Hamiltonian, master equations, and the
WTD, along with its main statistical tools, are introduced. Re-
sults are presented and discussed in Sec. III, which discusses
the average current, a measure of the noise, and temporal
correlations. Section IV presents the conclusions, while the
explicit form of the Liouvillian and jump superoperators are
given in Appendices A and B.

We use natural units throughout the paper: h̄ = e = 1.

II. THEORY

A. Model

To model the spin valve, we couple a molecule to two
ferromagnetic leads, which has the total Hamiltonian

Htot = Hmol + Hel + V. (1)

Here, Hmol is the molecular Hamiltonian, Hel is the Hamil-
tonian of the source and drain electrodes, and V = VS + VD

enables tunneling between these two subsystems.
For the molecule, we use an Anderson model, with Hamil-

tonian

Hmol =
∑

σ

ε d†
σ dσ + U d†

↑ d↑ d†
↓d↓, (2)

where σ ∈ {↑,↓} denotes spin in the molecule, ε = ε↑ = ε↓
is a spin-degenerate molecular orbital energy, and U is the
Coulomb interaction between two electrons occupying the
same orbital. We choose the spin-quantization axis of the An-
derson model to be along the z direction and refer to it as the
“global” spin orientation; the “local” quantization direction of
the ferromagnetic electrodes will be taken relative to this.

The source and drain ferromagnetic electrodes are reser-
voirs of noninteracting electrons

Hel =
∑

α∈{S,D}

∑
kα,σα

εkασα
c†

kασα
ckασα

, (3)

where the subscript kα denotes the energy states of lead α ∈
{S, D}. The electrodes are held at local thermal equilibrium
with the same temperature Tα = T , but different chemical
potentials μα . In all calculations, we adjust the chemical po-
tentials symmetrically around the Fermi level, which is kept
at zero: μS = VSD/2 = −μD, where VSD = μS − μD is the
source-drain bias voltage.

To explicitly include the ferromagnetic nature of the leads,
we apply an asymmetry to the spin-dependent density of states
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FIG. 2. Schematic of a molecular spin valve, which consists of
an Anderson model coupled to ferromagnetic electrodes. The spin-
quantization axis of the source electrode is aligned with the z axis,
whereas the drain electrode is allowed to rotate along the x-z plane,
enclosing an angle φ with the z axis.

ρασα
(ω), for majority σα = +, and minority σα = −, spins

(see Fig. 2). The spin polarization

pα = ρα+ − ρα−
ρα+ + ρα−

, (4)

thus describes the level of magnetization of lead α. The “ma-
jority spin” and “minority spin” terminology is used here
to reflect the fact that the electrodes may have their spin
quantized along different axes to the global spin orientation in
the molecule. In our treatment, we always choose the quan-
tization axis of electron spin in the source electrode to be
along the z axis, thus keeping it aligned with the molecule
so that σS ∈ {↑,↓}. The drain electrode, however, is allowed
have spin quantized in any direction in the x-z plane, which
encloses an angle φ with the z axis.

The different magnetization angles are also reflected in
the source and drain tunneling Hamiltonians, V = VS + VD,
which take the form

VS =
∑

kS

tS (c†
kS+d↑ + c†

kS−d↓) + H.c., (5)

VD =
∑
kD

tD

{[
c†

kD+ cos

(
φ

2

)
− c†

kD− sin

(
φ

2

)]
d↑

+
[

c†
kD+ sin

(
φ

2

)
+ c†

kD− cos

(
φ

2

)]
d↓

}
+ H.c. (6)

In Eqs. (5) and (6), we have assumed that the tunneling
matrix elements tα are real and independent of electrode
energy and spin. Since we further assume that the spin-
dependent density of states in each electrode is constant,
ρα,σα

(ω) = ρα,σα
, the tunneling matrix elements are related

to the spin-dependent electrode-system coupling strength via

�ασα
= 2π |tα|2ρασα

, where we can define the correspond-
ing electrode-dependent coupling strength and total coupling
strength as �α = (�α,+ + �α,−)/2 and � = (�α + �α )/2, re-
spectively.

B. Born-Markov master equation

Although the total dynamics are described by the total
density matrix ρtot, we actually only need the reduced density
matrix for the molecular degrees of freedom ρmol, since the
electrodes are reservoirs of noninteracting electrons. The cor-
responding Hilbert space is spanned by the four orthonormal
eigenstates of Hmol: the dot can be empty |0〉, occupied by a
single spin-up |↑〉 or spin-down |↓〉 electron, or two electrons
of opposite spin |2〉. The coupled elements of the reduced
density matrix are

ρmol =

⎡
⎢⎣

ρ00 0 0 0
0 ρ↑↑ ρ↑↓ 0
0 ρ↓↑ ρ↓↓ 0
0 0 0 ρ22

⎤
⎥⎦, (7)

where most off-diagonal elements of ρmol describe coherences
between states of different charge occupancy, and so decouple
from the transport. The two single electron coherences ρσσ̄ are
necessary in this treatment, as the spin accumulated within the
system extends into the x and y directions.

The reduced system density-matrix time evolves according
to a generalized quantum master equation (GME). Although
most previous treatments of the quantum-dot spin valve have
used a real-time diagrammatic approach to calculate the re-
quired transition rates [6,8,73], in the weak-coupling limit a
Born-Markov master equation (BMME) approach is equiva-
lent. Here, the time-evolution of ρmol amounts to solving the
Liouville-von Neumann equation in the interaction picture,
after tracing out the electrode degrees of freedom:

d

dt
ρmol,I (t ) = Trel[VI (t ), ρtot,I (t )], (8)

where operators in the interaction picture are AI (t ) =
ei(Hmol+Hel )t Ae−i(Hmol+Hel )t .

Under the Born approximation, the influence of the
Anderson-type molecule on the evolution of the electrodes
is negligible and the total density matrix factorizes as ρtot =
ρmolρel. If one further assumes that correlations in the elec-
trodes decay faster than the timescale of system dynamics,
that is, that the transport is Markovian, then one can apply
standard steps to Eq. (8) and obtain a Redfield-type master
equation in the basis of eigenstates of Hmol [81,82]:

iρ̇mn = ωmnρmn +
∑

α

∑
σσ ′

∑
kl


>
α,σσ ′ (ωlk )〈m|d†

σ |k〉〈k|dσ ′ |l〉ρln + 
<
α,σσ ′ (ωkl )

∗〈m|dσ |k〉〈k|d†
σ ′ |l〉ρln

+ 
<
α,σσ ′ (ωnl )〈m|d†

σ |k〉ρkl〈l|dσ ′ |n〉 + 
>
α,σσ ′ (ωln)∗〈m|dσ |k〉ρkl〈l|d†

σ ′ |n〉 − (m ↔ n, k ↔ l )∗, (9)

where the last term indicates that the remaining four terms
of the master equation are obtained by switching the posi-
tions of 〈m| and |n〉, as well as 〈k| and |l〉, then taking the

Hermitian conjugate of the result. The exact forms of the
lesser 
<

α,σσ ′ (ω) and greater 
>
α,σσ ′ (ω) self-energies are in

Appendix A.
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In Liouville space, Eq. (9) becomes a time-local first-order
differential equation,

ρ̇(t ) = Lρ(t ), (10)

where L is the time-independent Liouvillian superoperator
containing all system dynamics, which is also written explic-
itly in Appendix B, and the system density matrix has been
mapped to a vector in Liouville space ρmol(t ) → ρ(t ), with

ρ(t ) = [ρ00, ρ↑↑, ρ↑↓, ρ↓↑, ρ↓↓, ρ22]T . (11)

The original formulation of Braun et al. [8], which many sub-
sequent treatments also use [6,73,74], rewrites the GME as a
master equation for the system charge states coupled to Bloch-
like equations for the x, y, and z components of the dot spin:
ρ = [ρ00, ρ11, ρ22, Sx, Sy, Sz]T , with ρ11 = ρ↑↑ + ρ↓↓ and

{Sx, Sy, Sz} =
{ρ↑↓ + ρ↓↑

2
, i

ρ↑↓ − ρ↓↑
2

,
ρ↑↑ − ρ↓↓

2

}
. (12)

Although our master equation in Eq. (9) and the correspond-
ing Liouvillian in Eqs. (B1)–(B3) are not in this form, we note
that they describe exactly the same dynamics as long as the
molecule-electrode coupling is weak: � � kBT , which all of
our results conform to.

All calculations are performed in the nonequilibrium
steady state ρ̄, which is the null vector of the full Liouvillian:

Lρ̄ = 0. (13)

C. WTD

Let us begin to monitor time delays between succes-
sive quantum tunnelings in the nonequilibrium steady state.
Throughout the paper, we are solely concerned with tunnel-
ings to the drain, which are contained in the quantum jump
operator J. To identify the exact form of J, one could formally
rewrite Eq. (9) as an n-resolved master equation [83] and
include all terms associated with ρ (n−1)(t ) [39]. However, one
could also just directly identify those terms in Eq. (9) that
lower the system’s charge occupation by 1 via a tunneling to
the drain, in this case including all single particle coherences;
this is the approach we take and the resulting quantum jump
operator is shown explicitly in Appendix B.

The WTD for n consecutive waiting times wn(τn, . . . , τ1)
is defined as the joint probability distribution that, given an
initial tunneling to the drain, the next electron waits a time τ1

before tunneling to the drain, the electron after that then waits
a time τ2 before tunneling to the drain, and so on up to the nth
successive electron:

wn(τn, . . . , τ1) = Tr
[∏n

m=1 (Je(L−J)τm )Jρ̄
]

Tr[Jρ̄]
, (14)

where one can obtain Eq. (14) either from an extension of
Brandes’ phenomenological formula [27] or the idle-time ap-
proach defined by van Kampen [58,84].

To compute expectation values and analyze the fluctua-
tions, we introduce the moment-generating function (MGF)
for the joint WTD,

Kn( �χ ) =
∫ ∞

0
d�τ ei �χ ·�τwn(�τ ), (15)

which contains vectors of waiting times �τ = (τn, . . . , τ1), and
counting fields �χ = (χn, . . . , χ1). From the MGF in Eq. (15),
we can calculate the moments of the joint WTD as

〈
τ kn

n . . . τ
k1
1

〉 = ∂kn

∂ (iχn)kn
. . .

∂k1

∂ (iχn)k1
Kn( �χ )

∣∣∣
χn=...χ1=0

; (16)

this is a relatively simple task given that the integral over �τ
can be computed analytically:

Kn( �χ ) = (−1)n Tr
[∏n

m=1

(
J(L − J + iχm)−1

)
Jρ̄

]
Tr[Jρ̄]

. (17)

Our analysis will focus on the first and second moments of
the first-order WTD,

〈τ k〉 =
∫ ∞

0
dτ1 τ kw1(τ1) (18)

= k!(−1)k+1 Tr
[
J(L − J)−(k+1)Jρ̄

]
Tr[Jρ̄]

, (19)

as well as the two-time correlations of the n-order WTDs,
which are

〈τiτ j〉 =
∫ ∞

0
d�ττiτ jwn(�τ ) = (−1)i− j−1 Tr[J(L − J)−2(J(L − J)−1)i− j−1J(L − J)−2Jρ̄]

Tr[Jρ̄]
. (20)

We now introduce the randomness parameter [57,58],

R = 〈τ 2〉 − 〈τ 〉2

〈τ 〉2
, (21)

to provide a measure of variance relative to the mean and
characterize the Poissonian nature of the transport in the same
manner as the widely used Fano factor F = 〈I2〉−〈I〉2

〈I〉 . If the
counting of detected electrons is a Poissonian process, then
F = 1, as the variance of a Poisson process is equal to its

mean. Super-Poissonian noise F > 1, therefore, indicates a
variance greater than the mean, which is produced by elec-
tron bunching. The opposite scenario of sub-Poissonian noise,
F < 1, then indicates electron “antibunching”. These pro-
cesses are shown in Fig. 1.

The associated WTD of a Poisson process is exponen-
tial: wPo(τ ) = λe−λτ , with corresponding average 〈τ 〉 = 1/λ

and variance 〈τ 2〉 − 〈τ 〉2 = 1/λ2. As a result, the random-
ness parameter is also R = 1 for a Poisson process, with the
same interpretations for super- and sub-Poissonian noise as
well.
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Correlations between successive tunneling events will be
measured using a linear Pearson correlation coefficient,

PCτn,τ1 = 〈τnτ1〉 − 〈τ 〉2

〈τ 2〉 − 〈τ 〉2
, (22)

where we are explicitly only considering the Pearson coeffi-
cient of the first τ1 and last τn waiting times in a sequence, as it
contains nontrivial information about possible correlations in
wn(τn, . . . , τ1). Other two-time correlations can always be re-
duced to the averages performed over the lower-order WTDs.
For example, consider the second-order mean

〈τn−kτl〉 =
∫ ∞

0

n∏
m=1

dτm τn−kτlwn(τn, . . . , τ1) (23)

=
∫ ∞

0

n−k∏
m=l

dτm τn−kτlwn−l−k+1(τn−k, . . . , τl ). (24)

The Pearson correlation coefficient is widely used in statis-
tics as a measure of the average linear correlation between
two stochastic variables. In the waiting time context, a positive
value, 1 > PCτn,τ1 > 0, indicates that if the first waiting time
τ1 is longer (shorter) than average, then it is probable that the
waiting time between the nth and (n + 1)th electron tunnel-
ings τn will also be longer (shorter) than average. Negative
correlations, 0 > PCτn,τ1 > −1, in contrast, indicate that a
longer (shorter) than average τ1 is likely to be followed by
a shorter (longer) than average τn.

We will also use a function that measures the correlation
between each possible pair of the first two successive waiting
times τ1 and τ2:

C(τ2, τ1) = w2(τ2, τ1)

w1(τ2)w1(τ1)
− 1. (25)

C(τ2, τ1) is interpreted similarly to the Pearson coefficient,
although it provides a measure of the correlation between each
pair of successive waiting times, rather than an average over
the entire space of τ1 and τ2.

III. RESULTS

A. Stationary current

In Ref. [8], Braun et al. present plots of the stationary
current as a function of bias voltage in the same parameter
regimes that we will probe with waiting times. We will not
reproduce the plots here, which are included in the Supple-
mental Material [85], but will outline a brief explanation of
the physics as a way of contextualizing our later results. In
the following, we will refer to three magnetization angles: the
parallel case is when the leads magnetization is along the
same axis φ = 0; the perpendicular case is when the drain is
magnetized at an angle of φ = π

2 to the source electrode; and
the antiparallel case corresponds to a relative magnetization
angle of φ = π . We also note that all discussions are for an
equal spin polarization of the leads: pS = pD = p.

The parallel scenario shows, somewhat counterintuitively,
the same current profile as transport through a standard An-
derson model with no lead magnetization. One might expect
that, as the lead magnetization increases and tunneling is dom-
inated by majority spin electrons, only one transport channel

will be activated, even at high voltages when double occu-
pancy is energetically allowed. However, the small percentage
of minority spin electrons still play an active role in the trans-
port; although they only rarely tunnel into the dot, they also
only rarely tunnel out, spending a much greater time on the
dot than majority spin electrons, thus creating a spin blockade.
Since 〈I〉 is measured in the long-time limit, and the original
probability for a minority spin electron to tunnel in from
the source is small, it cannot distinguish between these time
scales for majority and minority spins, and so “sees” the same
transport as through an Anderson-type molecule coupled to
nonmagnetic electrodes.

The average current of antiparallel leads, in contrast,
displays a significant dependence on the strength of the mag-
netization within the leads. One still observes the double-step
behavior associated with two distinct transport channels, but
for p → 1 the current is severely diminished. Here, majority
spins from the source electrode are treated as minority spins
in the drain electrode, and vice versa, which means that total
tunneling through the system, and thus the current, is highly
suppressed.

Besides this behavior, the most interesting current feature
discussed by Braun et al. occurs in the perpendicular case,
which displays NDR between ε � VSD/2 � ε + U ; that is,
when a single transport channel is open. Braun et al. ex-
plain that, in this regime, increasing voltage tends to align
the accumulated spin of the dot in the opposite direction to
the magnetization in the drain, which strongly suppresses the
current. The effect is modified by the inclusion of the virtual
exchange field, which produces Larmor-like spin precession.

B. Bunching and antibunching

In this section, we will analyze the transport using the
randomness parameter instead of the stationary current, as
shown in Figs. 3(a)–3(c). We note that we get similar results
to that found by Braun et al. in Ref. [73] for the Fano factor.
First, as one can see in Fig. 3(a), parallel lead magnetiza-
tions and strong electrode spin polarization produce highly
super-Poissonian transport, as R � 1 when a single transport
channel is open in ε � VSD/2 � ε + U . This originates di-
rectly from the effect we discussed before; although transport
is dominated by majority spin electrons, when minority spin
electrons tunnel into the dot, they tend to stay there for a
long time, due to a lack of available states in the drain. This
evidently causes electron bunching in tunnelings to the drain,
and the transport becomes strongly super-Poissonian.

Figure 3(b) also displays super-Poissonian transport, al-
though the underlying physical reason now originates from
the NDR discussed above. As electrons tunnel through the
system, the accumulated spin tends to align in a direction
antiparallel to the drain magnetization, so that after a series
of tunnelings eventually a spin-down electron becomes stuck
in the dot: it cannot tunnel back to the source due to the
bias voltage; no other electrons can tunnel in because double
occupancy is energetically forbidden, and it cannot tunnel to
the drain because there is a low density of states for that
spin polarization. Again, this produces electron bunching and
R > 1, although we note that that magnitude is much reduced
compared to Fig. 3(a).
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FIG. 3. Randomness parameter R as a function of bias voltage for different spin polarizations and relative magnetization angles: (a) φ = 0,
(b) φ = π

2 , (c) φ = π . Both electrodes have the same spin polarization: pS = pD = p. Other parameters are ε = 10kBT , U = 30kBT , kBT =
0.1 meV, γ = 0.01 meV.

In the case of antiparallel magnetization angles, shown in
Fig. 3(c), the transport is at all voltages sub-Poissonian. At
p = 0, the R is that of transport through a normal Anderson
model, with behavior that is well known in the literature
[86–88]. As the spin polarization increases, however, electron
tunneling through the system is almost completely suppressed
and the time between tunnelings to the drain exponentially
increases, pushing the transport towards Poissonian behavior.

Overall, Figs. 3(a)–3(c) demonstrate that a quantum-dot
spin valve is able to produce statistics on demand; simply by
changing the relative magnetization angle one is able to pro-
duce super-Poissonian, sub-Poissonian, and Poissonian noise.

C. Temporal correlations

Beyond just the bunching and antibunching available in
plots of the randomness parameter, the spin valve also displays
temporal correlations in certain regimes, which one can see in
Figs. 4(a)–4(c).

At all magnetization angles and for small lead spin polar-
ization, one sees correlation behavior between the first two
successive waiting times similar to that already reported for
a standard Anderson model [28,30]. At low voltages, when
zero or one transport channel is open, successive waiting times
are completely uncorrelated. In the double occupancy regime,
however, the dot can fill with two electrons. A short initial

waiting time τ1, therefore, likely means that both electrons
tunnel to the drain in quick succession. The dot then has to
be filled with an electron from the source before another tun-
neling to the drain can occur, making the second waiting time
τ2 much longer; τ1 and τ2 become negatively correlated. The
linear strength of this correlation is evidently not very large,
as max{|PC|} = 0.1, and it completely disappears for highly
polarized leads. In the highly spin-polarized antiparallel case,
it is now unlikely that the dot will be doubly occupied and also
unlikely that both of those electrons will tunnel to the drain
in quick succession. In the perpendicular case, the reasoning
is similar, but the magnetization angles are closer so spin
precession can somewhat mitigate the correlation suppression.

In Fig. 4(a), however, one can see that, beside the already
discussed correlation behavior at high voltages, parallel mag-
netization and high-lead spin polarization produces strong
positive correlations between successive waiting times. This
occurs in the small voltage window corresponding to the sec-
ond transport channel opening, as one can see by direct com-
parison with the stationary current. A more comprehensive
picture of these correlations is shown in Fig. 5, which plots
the two-time correlation function defined in Eq. (25) at the
voltage corresponding to the Pearson coefficient maximum.

Here, one can see that the large Pearson coefficient orig-
inates from positive correlations between two long waiting

0 20 40 60 80 100
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0.1

0.2

0.3

0.4
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p=0.5
p=0.75
p=0.99

(a)

0 20 40 60 80 100
-0.1

-0.08

-0.06

-0.04

-0.02

0
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p=0.99

(b)

0 20 40 60 80 100
-0.1

-0.08

-0.06

-0.04

-0.02

0

p=0
p=0.5
p=0.75
p=0.99

(c)

FIG. 4. Pearson correlation coefficient PCτ2,τ1 between the first two successive waiting times τ1 and τ2 as a function of bias voltage
for different spin polarizations and relative magnetization angles: (a) φ = 0, (b) φ = π

2 , (c) φ = π . All parameters are the same as in
Figs. 3(a)–3(c).
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FIG. 5. Relative correlation between successive waiting times
C(τ2, τ1) plotted for parallel magnetizations: φ = 0. Spin polariza-
tion within the leads is p = 0.99 and the voltage is VSD = 75kBT ,
corresponding to the peak in the positive correlations from Fig. 4(a).
All other parameters are the same as in Figs. 3(a)–3(c).

times: τ1, τ2 > 3〈τ 〉. Although in the plot we have constricted
the range to values between −1 < C(τ1, τ2) < 1, so as to
see the fine detail, the actual values go much higher. The
correlation between two extremely long successive waiting
times, for example, is C(6〈τ 〉, 6〈τ 〉) = 20. Correspondingly,
a short initial waiting time and a long secondary waiting time,
or vice versa, are strongly negatively correlated.

To understand the nature of these temporal correlations
for pairs of long waiting times, consider Fig. 6(a). Here, we
have plotted the z component of the dot spin averaged over
the quantum measurement projected density matrix 〈Sz〉 =
(ρ↑↑ − ρ↓↓)/2, as a function of the initial waiting time τ1.
Note that, since the lead magnetizations are parallel, the x and
y components of the average spin are zero. The dashed line
corresponds to the projected density matrix of a system that
starts in the stationary state, undergoes a jump to the drain J,
and then evolves for some time without a jump to the drain
e(L−J)τ1 :

ρ(τ1) = e(L−J)τ1 Jρ̄

Tr[e(L−J)τ1 Jρ̄]
. (26)

For τ1 < 2〈τ 〉, the accumulated spin in the dot is in the posi-
tive z direction, so that it is likely to be occupied by majority
spin electrons from the source. Figure 6(a) shows, however,
that when this majority spin electron tunnels out to the drain,
modeled now with

ρ(τ1) = Je(L−J)τ1 Jρ̄

Tr[Je(L−J)τ1 Jρ̄]
, (27)

then the accumulated spin in the dot returns to zero and there
is no preference for a tunneling of either spin, apart from that
imposed by lead spin polarization.

In contrast, if the initial waiting time is longer, τ1 > 2〈τ 〉,
then the accumulated spin in the dot tends to be negative, and
this accumulated spin remains after the next tunneling to the
drain. Since this is within the voltage regime where the second
transport channel is beginning to open, which one can see by
direct comparison with 〈I〉, it is likely that this second jump
to the drain is not due to the minority spin electron tunneling
out, but rather a majority spin tunneling in from the source
and out quickly to the drain. Consequently, the system remains
likely to be occupied by a minority spin electron and this low-
probability mechanism is again required for the next jump,
ensuring that τ2 is long as well.

Indeed, one can see this directly in Fig. 6(b), where we
have plotted 〈Sz〉 during τ2, after setting τ1 = 5〈τ 〉. The
dashed line indicates the dot is highly likely to possess a
minority spin during the τ2. At small τ2, 〈Sz〉 is close to zero,
which demonstrates the relatively small chance that this jump
was a minority spin electron leaving the system. Note that we
have not shown the case of a short τ1, as the resulting plot is
extremely similar to Fig. 6(a); the system empties itself with
a majority spin tunneling to the drain, and so the dynamics in
τ1 repeat.

Evidently, these correlations are highly dependent on the
leads being strongly polarized, as they disappear even for
p = 0.5. They are also limited to a narrow voltage and
magnetization-angle regime; this is illustrated in Fig. 7, which
maps PCτ2,τ1 and R as a function of both VSD and φ.

At low voltages, in the Coulomb blockade regime, the
second spin channel is completely closed and the mechanism
of another majority spin electron tunneling in is not allowed.
At high voltages, however, the correlations also disappear
because the dot can now easily be doubly occupied and the

0 2 4 6
-0.5

0

0.5(a)

0 2 4 6
-0.5

0

0.5(b)

FIG. 6. 〈Sz〉 The z component of the measurement-averaged spin (a) as a function of the initial waiting time τ1, and (b) as a function of the
second waiting time τ2, given a long initial waiting time: τ1 = 5〈τ1〉. All parameters are the same as in Fig. 5.
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FIG. 7. Transport characteristics of the spin valve across the relevant voltage range VSD, and half-rotation of the drain electrode φ. In (a) the
successive waiting time correlation PCτ2,τ1 is plotted, while (b) contains the randomness parameter R. The spin polarization is p = 0.99 and
other parameters are the same as in Fig. 5.

accumulated spin does not tend to negative values at long
times. The narrow range of magnetization angles, on the other
hand, is understood by considering what happens as the leads
move away from parallel alignment. As φ → π/2, spin pre-
cession allows the minority spin electron to couple to states
in the drain and thus escape the dot at earlier times, and as
φ → π , the current as a whole is diminished, which directly
suppresses the correlations as well.

In an experimental setup, it is unlikely that one would have
a completely efficient detector capable of measuring each
electron tunneling event. A natural question then, is whether
these correlations survive into later tunnelings; that is, if the
detector misses a series of waiting times after the first one
τ2, . . . , τn−1, but captures the nth waiting time τn, are τ1 and
τn still correlated?

Figure 8 shows that, for this model, this is indeed the
case. The initial waiting time is non-negligibly correlated
with many successive waiting times, even up to the w1(τ10),
as shown in the plot. As one would expect, however, as n
increases, the Pearson coefficient between τ1 and τn decreases.
The peak in each curve also occurs over a similar voltage
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7
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1

PC
10

,
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FIG. 8. Higher-order temporal correlations between τ1 and τn,
PCτn,τ1 , as a function of bias voltage VSD. All parameters are the same
as in Fig. 4(a).

range, indicating that the same processes discussed previously
also produce the correlations in higher-order waiting times.

IV. CONCLUSIONS

Molecular spin valves are experimentally realizable trans-
port junctions that offer the possibility of harnessing the
quantum spin, rather than just the electric charge, of tunneling
electrons. In this paper, we explore the extent to which current
fluctuations can be controlled in a spin-valve system, using the
WTD and its associated statistics, alongside a Born-Markov
master equation approach to describe the system dynamics.

First, we analyzed the randomness parameter R as a func-
tion of spin polarization and relative magnetization angle,
finding similar behavior to that of the Fano factor in the
same regimes. For parallel magnetizations, and in the single
occupancy voltage regime, R � 1 when p → 1; the small
percentage of minority spin tunnelings cause severe electron
bunching. This is also evident for perpendicular orientations,
as the NDR in the current-voltage plot manifests as R > 1
too. Here, though, the level of electron bunching is much
lower, as Larmor-like spin precession somewhat mitigates
the effect. Sub-Poissonian transport is observed for the case
of antiparallel leads and low magnetization, in accordance
with known behavior in an Anderson model, while high mag-
netization strongly suppresses the current and thus drives
transport towards Poissonian behavior. Most importantly, it is
observed that all three transport regimes are accessible simply
by changing only the applied voltage and relative orientation
of lead magnetization.

Temporal correlations are absent for any system arrange-
ment allowing only a single transport channel, while voltages
well above the double occupation threshold yield weak nega-
tive correlations. The most interesting region occurs within a
small voltage band around the opening of the second transport
channel and small angular deviation from the parallel orienta-
tion; strong temporal correlations emerge for highly magnetic
leads within this region. From the scaled correlation map
between all possible pairs of successive waiting times, one can
see that, while two short waiting times are uncorrelated, two
long waiting times are strongly positively correlated. For this
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to occur, minority spin accumulates in the molecule during the
first long waiting time and is retained after the next tunneling
event, making it highly likely that a second long waiting time
follows the first. For this mechanism to function, the minor-
ity spin electron must become thoroughly trapped within the
molecule; the leads must be highly spin-polarized to severely
limit availability of minority electrons. This is assisted by a
significant Coulomb repulsion, which allows trapped minority
electrons to impede majority electrons. Increasing the voltage
bias well into the double occupancy regime diminishes the
effect by allowing electrons to easily overcome repulsion,
while deviating from the parallel electrode orientation aids
the mobility of minority spin electrons by means of greater
Lamor-like precession.

While the focus is largely on exploring correlations be-
tween successive waiting times, a surprising observation is
made: Significant correlations also extend to higher-order
waiting time distributions. Driven by the same processes as
those in successive waiting times, correlations between the 1st
and the nth waiting time decreases with n. These correlations
are significant even up to tenth-order: the maximum value of
PCτ10,τ1 = 0.1998.

Not only are the aforementioned temporal correlations
relatively large, the various regimes are accessible within a
single device by manipulation of both VSD and φ, each over
a short range. This demonstrates how the spin-valve device
can controllably switch between regimes to provide versatile
information transfer. It should be noted that these functions
are highly sensitive to electron detection errors. Specifically,
if the function of the device is to encode information in the
duration of the waiting time, failing to detect a single electron
will cause significant processing errors. However, the obser-
vation of notable correlations in higher-order waiting times
does offer some robustness, as the third waiting time is still
correlated with the first even if the second is undetected.
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APPENDIX A: SPIN-RESOLVED SELF-ENERGIES

The self-energies in Eq. (9) are Fourier transforms of bath-
correlation functions, obtained using standard methods [81],
and can be written as


<
α,σσ ′ (ω) = �<

α,σσ ′ (ω) + i

2
γ α

σσ ′ f +
α (ω), (A1)


>
α,σσ ′ (ω) = −�>

α,σσ ′ (ω) − i

2
γ α

σσ ′ f −
α (ω). (A2)

Here, f ±
α (ω) are the relevant Fermi-Dirac functions for elec-

trode α,

f ±
α (ω) = 1

1 + e±(ω−μα )/kBT
, (A3)

and �<,>
α,σσ ′ (ω) and γ α

σσ ′ describe the renormalization and
broadening of the system energy levels due to interaction with
the electrodes, respectively.

The energy-independent γ α
σσ ′ terms are

γ S
σσ = �S (1 ± pS ), (A4)

γ S
σ σ̄ = 0, (A5)

γ D
σσ = �D[1 ± pD cos(φ)] (A6)

γ D
σ σ̄ = �D sin(φ)pD, (A7)

where ↑ and ↓ correspond to signs of + and −, respectively.
In the wideband limit, the renormalizations can be calculated
analytically using the digamma function ψ (x) [39]:

�<
α,σσ ′ (ω) = γ α

σσ ′

2π
�

{
ψ

(
1

2
+ i

2πkBT
(ω − μα )

)}
, (A8)

with �>
α,σσ ′ (ω) = −�<

α,σσ ′ (ω).

APPENDIX B: SPIN-VALVE BMME IN LIOUVILLE SPACE

To move from the GME in Hilbert space to a time-local differential equation in Liouville space, the system dynamics are
collected into one superoperator L, which has the form

L =
∑

α

(Aα − iDα ), (B1)

where

Aα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2�α f +
α γ α

↑↑ f −
α γ α

↑↓ f −
α γ α

↓↑ f −
α γ α

↓↓ f −
α 0

γ α
↑↑ f +

α −γ α
↓↓ f +

α,U − γ α
↑↑ f −

α
1
2γ α

↑↓( f +
α,U − f −

α ) 1
2γ α

↑↓( f +
α,U − f −

α ) 0 γ α
↓↓ f −

α,U

γ α
↑↓ f +

α
1
2γ α

↑↓( f +
α,U − f −

α ) �α (− f +
α,U − f −

α ) 0 1
2γ α

↑↓( f +
α,U − f −

α ) −γ α
↑↓ f −

α,U

γ α
↑↓ f +

α
1
2γ α

↑↓( f +
α,U − f −

α ) 0 �α (− f +
α,U − f −

α ) 1
2γ α

↑↓( f +
α,U − f −

α ) −γ α
↑↓ f −

α,U

γ α
↓↓ f +

α 0 1
2γ α

↑↓( f +
α,U − f −

α ) 1
2γ α

↑↓( f +
α,U − f −

α ) −γ α
↑↑ f +

α,U − γ α
↓↓ f −

α γ α
↑↑ f −

α,U

0 γ α
↓↓ f +

α,U −γ α
↑↓ f +

α,U −γ α
↑↓ f +

α,U γ α
↑↑ f +

α,U −2�α f −
α,U

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B2)
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and

Dα =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 −γ α
↑↓δα −γ α

↑↓δα 0 0

0 γ α
↑↓δα 0 0 −γ α

↑↓δα 0

0 −γ α
↑↓δα 0 0 γ α

↑↓δα 0

0 0 −γ α
↑↓δα −γ α

↑↓δα 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B3)

In defining the matrices in Eq. (B2) and Eq. (B3), we have introduced the new notation

δα = 1

2π
�

{
ψ

(
1

2
+ i

2πkBT
(ε + U − μα )

)
− ψ

(
1

2
+ i

2πkBT
(ε − μα )

)}
, (B4)

f ±
α = f ±

α (ε), f ±
αU = f ±

α (ε + U ). (B5)

Following the procedure outlined at the start of Sec. II C, the jump superoperator is defined as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 γ D
↑↑ f −

D γ D
↑↓ f −

D γ D
↑↓ f −

D γ D
↓↓ f −

D 0

0 0 0 0 0 γ D
↓↓ f −

D,U

0 0 0 0 0 −γ D
↑↓ f −

D,U

0 0 0 0 0 −γ D
↑↓ f −

D,U

0 0 0 0 0 γ D
↑↑ f −

D,U

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B6)
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