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Charge noise remains the primary obstacle to the development of quantum information technologies with
semiconductor spin qubits. We use an exact analytical calculation to determine the effects of quasistatic charge
noise on a ring of three equally spaced exchange-coupled quantum dots. We calculate the disorder-averaged
return probability from a specific initial state and use it to determine the coherence time T ∗

2 and show that it
depends on only the disorder strength and not the mean interaction strength. We also use a perturbative approach
to investigate other arrangements of three or four qubits, finding that the return probability contains multiple
oscillation frequencies. These oscillations decay in a Gaussian manner, determined by differences in energy
levels of the Hamiltonian. We give quantitative values for gate times resulting in several target fidelities. We find
that the decoherence time decreases with an increasing number of qubits. Our work provides useful analytical
insight into the charge noise dynamics of coupled spin qubits.
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I. INTRODUCTION

Electron spin qubits in semiconductor (particularly, Si)
quantum dots are considered to be a promising platform
for developing quantum information technologies due to
their long coherence times and fast gate speed, as well as
the potential scalability and ability to use resources from
the semiconductor industry which are currently available.
Semiconductor spin qubits remain among the most studied
quantum computing platforms in the world, with laboratories
in the United States, Australia, Europe, Japan, Canada, and
China actively pursuing coupled semiconductor quantum dot
systems for eventual quantum computing applications. There
has been much experimental progress, including the imple-
mentation of two qubit gates between singlet-triplet qubits
[1], the fabrication of linear arrays of nine quantum dots [2],
the shuttling of spins across linear arrays [3], and the imple-
mentation of basic quantum algorithms on a programmable
two-qubit processor [4]. A plaquette of four quantum dots has
also been used to perform simulations of the Hubbard model
and observe Nagaoka ferromagnetism [5–7]. A four-qubit
quantum processor has been constructed with hole qubits in
geranium quantum dots [8,9]. Very recent unpublished work
from Delft reported the fabrication of a six-spin qubit Si
system, where our work should be relevant [10]. These are just
a few examples from the many recent exciting developments
in the field. In spite of much impressive progress, the subject
faces a rather difficult challenge in mitigating errors arising
from charge noise, which is invariably present in all electronic
materials, devices, and circuits. In particular, charge noise
has prevented semiconductor quantum dot platforms from de-
veloping multiqubit system operations, with the current limit
being two to four coupled qubits at most.

Benchmarking of quantum dot devices has led to single-
qubit gates with fidelities over 99.9% [11], but two-qubit gates
have fidelities ranging from 90% to 95%, with a few specific
gates reaching up to 98% [12,13]. However, the fidelities of
these two-qubit gates must still be increased substantially
(>99%) in order to meet the minimum threshold values
needed to implement quantum error correcting codes. The
two-qubit gate fidelities are predominantly limited by charge
noise, which can arise from local charge impurities in the
solid or in the controlling circuits which create the quantum
dot potential wells [14,15]. These impurities can affect the
electron wave functions and in turn affect the strength of
the exchange interaction used to perform the two-qubit gates
since the exchange interaction depends very precisely on the
wave function overlap [14]. Methods have been proposed to
reduce the effect of charge noise, such as using quadrupo-
lar exchange-only qubits, which use four electrons in three
quantum dots to access a sweet spot where qubit operation is
robust to first-order charge noise [16]. Additionally, there are
proposals for dynamical decoupling schemes, which perform
rotations using complex pulse shapes which cancel errors to
some degree [17,18]; however, dynamical decoupling requires
precise understanding of the source and form of the noise to be
canceled. None of the proposed techniques for mitigation have
been generically successful in eliminating charge noise, and
understanding and eliminating charge noise remain the main
obstacle in the development of semiconductor spin qubits.

The effects of noise have been studied theoretically in
coupled double quantum dot systems [19–23]. Beginning
with a Hamiltonian for two exchange-coupled dots in the
presence of an external magnetic field, the probability P(t )
was calculated that the system initialized in a given state
would be measured in the same state after evolution for
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some time t . Quasistatic noise was modeled by choosing
the magnetic field and exchange interaction strengths from
random Gaussian distributions, and the return probability was
analytically averaged over all choices for each parameter.
This disorder-averaged return probability showed oscillations
within a Gaussian-shaped envelope, and the value of T ∗

2 for
the system was obtained from the decay rate of the envelope
[19]. Numerical simulations have also been performed for
larger systems in the same manner, including a system of two
capacitively coupled singlet-triplet qubits [20,21] and ion trap
spin chains (which have a similar Hamiltonian and dynamics)
[22]. This method has also been used to determine the fidelity
of spin transport across spin chains via SWAP gates [23]. These
works are all, however, purely numerical, and although useful
in their own right, these numerical calculations fail to provide
analytical insight into the noise dynamics.

In this current work, we analytically calculate the effects
of charge noise on various systems of three and four quan-
tum dots. For a ring of three quantum dots, we perform an
exact analytical calculation and obtain expressions for the
disorder-averaged return probability, as well as the spin ex-
pectation values and entanglement entropy for each qubit. We
find that the shape of the oscillation envelope is completely
independent of the mean exchange interaction strength and
depends only on the disorder strength, and we obtain the exact
coherence time T ∗

2 as a function of disorder strength. For other
systems, we develop a perturbative approach to calculating
the noise-induced decoherence effects. We show that multiple
frequencies appear in the resulting expressions and that these
frequencies depend on the differences between energy levels
of the noiseless Hamiltonian. These frequencies each decay in
a Gaussian-like manner with their own decay rate, and the de-
cay rates are given by the first-order noise-induced corrections
to the energy levels which produce the frequencies. For each
system, we calculate T ∗

2 and find the times tc at which the sys-
tem drops below various fidelity benchmarks. Our analytical
theory provides detailed insight into the noise dynamics which
are hidden (and therefore difficult to discern) in the existing
numerical calculations. It is, in fact, quite an unanticipated
finding that the multiqubit dynamics under charge noise can
be obtained analytically.

This paper is organized as follows: in Sec. II, we examine a
ring of three equally spaced quantum dots and perform an ex-
act analytical calculation of several quantities in the presence
of noise, including the disorder-averaged return probability
from a specific initial state. We give an analysis of the results,
discussing the short- and long-time behavior of the system
and its dependence on the initial Hamiltonian. In Sec. III, we
address a system of three quantum dots in a linear geometry by
using a perturbative approach, and we compare our results to a
direct numerical evaluation of the same quantities. In Sec. IV,
we use the same perturbative approach to examine a ring of
four quantum dots. Finally, we conclude with a discussion in
Sec. V.

II. THREE-QUBIT RING

In this section we calculate the effect of noise on a quan-
tum dot plaquette with three qubits arranged in an equilateral
triangle. Specifically, we consider the case where the mean

interaction strengths between each pair of dots are identical.
This case has a high degree of symmetry, which allows the
dynamics in the presence of noise to be calculated exactly an-
alytically. We begin by defining the model and Hamiltonian;
we then show the calculation of the disorder-averaged return
probability from an initial state. Finally, we discuss the results.

A. Model and Hamiltonian

We consider a single half-filled band in a plaquette consist-
ing of a ring of three quantum dots, and thus, three electrons
are present. We neglect the effect of higher unoccupied energy
orbitals as the energy difference between bands tends to be
much larger than the interaction strength between dots, which
is the relevant energy scale for the dynamics of the system.
Similarly, we also assume a large on-site interaction energy,
and thus, we ignore states where a single dot contains more
than one electron (these are all experimentally valid and theo-
retically used approximations for semiconductor quantum dot
qubits). Then each dot will contain exactly one electron, and
the exchange interaction between dots will give rise to the
following Heisenberg Hamiltonian:

H = J12 �S1 · �S2 + J23 �S2 · �S3 + J13 �S1 · �S3. (1)

Let the values of the exchange interaction between two
dots Ji j have a Gaussian distribution because of the noise with
mean J0 and standard deviation σJ . Here, σJ is a measure of
the charge noise induced disorder, leading to random Gaussian
fluctuations in the exchange coupling. In order for this distri-
bution to be sensible, J0 must be several times larger than σJ ,
so that the proportion of the distribution with a negative value
of J is negligible, and we will assume this is the case. It is con-
venient to define and work with the deviations �i j = Ji j − J0.
These deviations will then have the following distribution:

f (�) = 1√
2πσJ

e
− �2

2σ2
J . (2)

For any function or operator A which depends on Ji j , we
define its disorder-averaged expectation [A] as follows:

[A] =
∫

A f (�12) f (�23) f (�13) d�12d�23d�13. (3)

Note that the Hamiltonian in Eq. (1) commutes with the
total spin operator S2, as well as its z projection, and thus,
both quantities are conserved. There is only one state with
Sz = 3/2, and thus, its dynamics is trivial. We will focus on
the dynamics of the Sz = 1/2 subspace.

Our model relies on several assumptions. We assume a
linear noise term, and thus, our results may not apply to select
systems with quadratic noise terms, such as in Ref. [16],
although the majority of experiments do exhibit linear noise.
It should be possible to generalize our work to different noise
terms, but this is beyond the scope of the current work, where
we establish the general theory and principles using the usual
linear noise model. Additionally, we use the quasistatic noise
approximation, which is well justified in quantum dot systems
since gate times are very fast compared to noise frequencies.
In fact, the whole point of semiconductor spin qubits is very
high gate speed and the prospect for future scalability. We
also exclude the Zeeman interaction term in our model, as
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our focus for this paper is charge noise. In fact, it is well
known that field noise arising from nuclear spin coupling
is strongly suppressed in Si and can even be eliminated by
isotopic purification, making Si spin the ideal semiconductor
material for qubit applications [24], leaving charge noise as
the only operational decohering mechanism. The effect of
the Zeeman interaction on qubit dynamics has been studied
extensively in other works [19–21] and is small when the
exchange interaction terms Ji j are large, which is when there
is the greatest amount of charge noise. In Si spin qubits, field
noise is far too weak for it to affect qubit operations at the op-
erational gate frequencies. Additionally, some qubit proposals
do not have a Zeeman term present at all, with both one- and
two-qubit operations performed via exchange coupling [25].
Various other system-dependent deviations from our model
may occur, such as changes in the exchange interaction due
to valley splitting in Si. However, as long as such effects
are small, the resulting dynamics will still be qualitatively
the same. Quantitative numerics require precise knowledge
of the microscopic Hamiltonian, which is system dependent
and generally unknown, and thus, we study the qualitative
behavior of the system. Our current theory should be thought
of as the minimal theory which must be the starting point for
understanding noisy qubit dynamics in semiconductor spin
systems.

B. Calculation of return probability

We consider the system prepared in an initial state |↑↓↑〉
and define the return probability P(t ) to be the probability
of measuring the system to be in the same state after it has
evolved for some time t . Note that this initial state is the
only nontrivial state with individual spins initialized to ↑ or ↓
since other combinations are equivalent by symmetry. There
are three states with total Sz = 1/2: |↑↑↓〉, |↑↓↑〉, and |↓↑↑〉.
These are not spin eigenstates, so we instead use the following
basis:

|φ j〉 = e2 jπ i/3 |↑↑↓〉 + |↑↓↑〉 + e−2 jπ i/3 |↓↑↑〉√
3

(4)

for j = −1, 0, 1, where |φ0〉 has spin 3/2 and |φ±1〉 have spin
1/2. In this basis, H is given by

H = 3J0

4

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ + 1

4

⎛
⎝−�� 0 2ξ ∗

�

0 �� 0
2ξ� 0 −��

⎞
⎠,

(5)

where �� = �12 + �13 + �23 and ξ� = e2π i/3�12 + �13 +
e−2π i/3�23. Diagonalizing gives the following energies and
eigenvectors:

E0 = 3J0

4
+ ��

4
,

E± = −3J0

4
− ��

4
± |ξ�|

2
,

|ψ0〉 = |φ0〉 ,

|ψ±〉 = ±χ∗
�√
2

|φ−1〉 + 1√
2

|φ+1〉 , (6)

where χ� = ξ�/|ξ�|. The initial state |↑↓↑〉 corresponds to
the vector (1 1 1)/

√
3 in the φ j basis, and decomposing into

the basis of eigenstates, this becomes

|↑↓↑〉 = 1 − χ�√
6

|ψ−〉 + 1√
3

|ψ0〉 + 1 + χ�√
6

|ψ+〉 . (7)

We then calculate the return probability P(t ) for a particu-
lar disorder realization, yielding

P(t ) = 1

9

(
2 cos

|ξ�|
2

t + cos
3J0 + ��

2
t

)2

+ 1

9

(
2Reχ� sin

|ξ�|
2

t + sin
3J0 + ��

2
t

)2

. (8)

From this expression, the disorder average [P(t )] can be
calculated using Eq. (3). In order to compute the integral, it
is helpful to change the variables of integration from �i j to
�� and ξ�, the latter of which takes values over the whole
complex plane. We then write ξ� in terms of its magnitude
and complex argument ϕ� = arg ξ�, which produces the fol-
lowing integral:

[P(t )] =
∫

P(t )
e−(�2

�+2|ξ�|2 )/6σ 2
J

(
√

2πσJ )3

2|ξ�|
3
√

3
d��d|ξ�|dϕ�.

(9)

This integral can be evaluated and expressed in terms of
the Dawson function F (x) as follows:

[P(t )] = 5

9
+ 4

9
e−3σ 2

J t2/8 cos
3J0t

2
− 1

3
√

3
σJtF

(√
3σJt

2

)

− 2

3
√

3
e−3σ 2

J t2/8σJt cos
3J0t

2
F

(√
3σJt

4

)
. (10)

Using a similar process, we calculate the disorder-averaged
expectation value of the Z2 operator (the Pauli Z operator on
qubit 2), yielding

[Z2] = 1

9

{
− 1 + 2

√
3σJtF

(√
3σJt

2

)

+ 4e−3σ 2
J t2/8 cos

3J0t

2

[
− 2 +

√
3σJtF

(√
3σJt

4

)]}
.

(11)

The expectation values of the other two spins [Z1] = [Z3]
can be obtained directly from this result since the three must
sum to 1. We plot these expectation values as a function of
time with J0 being constant in Fig. 1. These expectation values
can be used to calculate the expectation of the Hamming
distance from the initial to final states. The Hamming distance
is a quantity used for error correction which measures the
number of qubits which must be flipped to transition between
the two states and thus is a measure of the error introduced into
the system [22,26]. In Fig. 1 we plot normalized Hamming
distance, defined by

D(t ) = 1
2 + 1

6 (〈Z1〉 − 〈Z2〉 + 〈Z3〉). (12)

Additionally, in Fig. 1 we plot the entanglement entropy
between qubit j and the rest of the system, defined as

S j = −Trρ j ln ρ j, (13)
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FIG. 1. The disorder-averaged return probability [P(t )], normalized Hamming distance [D(t )], expectation values [Z1(t )] and [Z2(t )], and
entanglement entropy of qubits 1 and 2 [S1(t )] and [S2(t )]. Each is plotted for several values of σJ , with J0 held constant.

where ρ(t ) is the disorder-averaged density matrix of the
system evolved a time t from the initial state |↑↓↑〉 and ρ j

is ρ traced over all qubits except qubit j.

C. Analysis

We examine the behavior of the return probability [P(t )]
given by Eq. (10) by separating [P(t )] into its static and os-
cillatory parts. We define the static part as the midpoint of the
oscillation envelope as a function of time, and the oscillatory
part of [P(t )] is the deviation of [P(t )] from the envelope’s
midpoint, which is thus determined by the envelope’s width.
Expanding in (σJt )−1, we find the long-time asymptotic be-
havior of the static and oscillatory parts as follows, which we
plot in Fig. 2:

[P(t )]st = 4

9
− 2

27σ 2
J t2

+ O

(
1

σ 4
J t4

)
,

[P(t )]osc = e−3σ 2
J t2/8 cos

3J0t

2

[
− 32

27σ 2
J t2

+ O

(
1

σ 4
J t4

)]
.

(14)

For t 	 σ−1
J , the static part varies as t−2, but the oscilla-

tory part falls off as e−t2
, so oscillations are detectable only

on short timescales. Specifically, we note that the Gaussian
prefactor for the oscillatory part of the envelope implies that
it decays much faster than the standard exponential approx-
imation often associated with noise. It is interesting to note
that the coefficient of the oscillatory part of the envelope
vanishes at the point σJt = 4√

3
F−1( 2√

3
) ≈ 2.13, and the co-

efficient changes sign as t crosses this point. This means that
there will always be a node at this point due to the shape
of the envelope, which can be seen in Fig. 2. We also give
the short-time behavior by expanding [P(t )] with t � σ−1

J ,
yielding the following:

[P(t )] =
(

5

9
− σ 2

J t2

6

)
+

(
4

9
− σ 2

J t2

3

)
cos

3J0t

2
+ O

(
σ 4

J t4).
(15)

Because coherence time T ∗
2 is formally defined in terms

of the decay constant of an exponential curve, it is often
implied that noise induces an exponential decay of coherence.
In Ref. [19] it was shown that quasistatic charge noise in a
two-level system produces a Gaussian decay rather than an
exponential decay. We extend that result to our system of three
qubits, where the oscillation envelope for the return probabil-
ity is also Gaussian-like in nature, with its exact functional
form given in Eq. (10). The exponential decay approximation
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FIG. 2. Top left: The return probability plotted against time with σJ held constant. Top right: The oscillation envelope plotted alongside
the static part [P(t )]st. Note the node at t = 2.13σ−1

J . Bottom left: The oscillatory part of the envelope and its closest exponential fit. Bottom
right: The return probability plotted for small t , with J0 held constant.

simply is invalid here. In Fig. 2, we show the half-width of
the oscillation envelope alongside its closest exponential fit
using a least-squares fit. Note that the exponential curve is
a very poor approximation of the oscillation envelope. Thus,
we define T ∗

2 as the point where the envelope width reaches
1/e of its original value, and we stress that this gives only
the relative timescale on which the system decoheres and
does not imply exponential behavior. This T ∗

2 is simply an
operational coherence time. Having a well-defined effective
“coherence time,” T ∗

2 is not dependent on the actual details
of the decoherence process (i.e., exponential versus Gaussian)
as long as it is clearly defined as we do here. Experiments
are operationally easier to characterize and describe by a
single phenomenological parameter such as T ∗

2 , and this is
typically done independent of the details of the decoherence
mechanism. Our definition of T ∗

2 does not make any assump-
tion about the decay of coherence (exponential, Gaussian, or
any other functional form) in our system, which we calculate
exactly. Note that the oscillation envelope is asymmetric due
to the tF (t ) term in Eq. (10), and thus, defining T ∗

2 based on
the envelope width versus the total envelope height will give
slightly different results, and either is perfectly acceptable as
long as it is made clear how T ∗

2 is being defined. We choose to
define T ∗

2 based on the envelope width, and by this definition,
T ∗

2 depends only on the oscillatory part of [P(t )].
Using this definition, T ∗

2 is given by

T ∗
2 = 1.127σ−1

J . (16)

It is interesting that T ∗
2 is defined only by σJ , with J0

playing no role. Note from Eq. (10) that the only effect that
J0 has on the return probability [P(t )] is to set the frequency
of oscillations. The shape of the oscillation envelope itself
is completely independent of J0. This is evident in Fig. 2,
where curves with different ratios of σJ/J0 fill exactly the
same envelope. This phenomenon is due to the symmetry of

the system. Specifically, for a pair of qubits, an equilateral
triangle, or any number of qubits with a complete graph of
equal exchange interactions between every pair of qubits, the
unperturbed Hamiltonian H0 will be proportional to the total
spin operator S2. In order for the shape of the envelope to
be affected by J0, there must be some noise term that mixes
states with energy difference on the order of J0. However, S2

is conserved regardless of the disorder realization, and thus,
only states with the same spin (and therefore the same energy
under H0) can mix. In order for J0 to affect the shape of
the oscillation envelope, it is necessary that the unperturbed
Hamiltonian have eigenstates with the same spin and differing
energies.

III. THREE-QUBIT LINEAR ARRAY

To demonstrate how qubit geometry affects decoherence,
we now consider a linear array of three dots in the open
geometry, given by the following Hamiltonian:

H = J12 �S1 · �S2 + J23 �S2 · �S3. (17)

Because the system lacks the same symmetry as before,
an exact analytical expression for [P(t )] is not obtainable. We
approach the problem in two ways: first, analytically by using
perturbation theory for σJ � J0 and, second, by showing the
results of direct numerics.

A. Perturbative approach

We begin with the unperturbed Hamiltonian H0 given
by Eq. (17) with J12 = J23 = J0. We then add perturbations
�i j = Ji j − J0 and find the energies of the eigenstates to order
�. We also find the overlap ai of each eigenstate with the
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initial state |↑↓↑〉. These are given by

E1 = J0

2
+ �12 + �23

4
+ O

(
�2

J0

)
,

E2 = O

(
�2

J0

)
,

E3 = −J0 − �12 + �23

2
+ O

(
�2

J0

)
,

|a1|2 = 1

3
+ O

(
�3

J3
0

)
,

|a2|2 = (�12 − �23)2

8J2
0

+ O

(
�3

J3
0

)
,

|a3|2 = 2

3
− (�12 − �23)2

8J2
0

+ O

(
�3

J3
0

)
. (18)

The return probability for a particular disorder realization
is given by

P(t ) =
∣∣∣∣∣
∑

n

|an|2e−iEnt

∣∣∣∣∣
2

=
∑
n,m

|anam|2 cos(En − Em)t .

(19)
Then calculating the disorder average as in Eq. (3), we

obtain [P(t )] as follows:

[P(t )] = 5

9
− σ 2

J

3J2
0

+ e−σ 2
J t2/16 σ 2

J

6J2
0

cos
J0t

2

+ e−σ 2
J t2/4 σ 2

J

3J2
0

cos J0t + e−9σ 2
J t2/16

(
4

9
− σ 2

J

6J2
0

)

× cos
3J0t

2
+ O

(
σ 3

J

J3
0

,
σ 2

J t

J0

)
. (20)

In the limit where J0/σJ → ∞, this reduces to 5
9 +

4
9 e−9σ 2

J t2/16 cos 3J0t
2 , and thus, the time T ∗

2 for the envelope
width to drop to 1/e times its initial width is given by

T ∗
2 = 4

3σ−1
J , (21)

which is within 20% of the corresponding T ∗
2 in Eq. (16) for

the triangular ring arrangement of the qubits. Note that there
are three frequencies present in the expression for [P(t )]. In
general, they correspond to the energy differences between
pairs of eigenstates of the unperturbed Hamiltonian H0. The
Gaussian decay factor for each frequency is determined by the
first-order correction to the energies. We show this by letting
the cosine term of Eq. (19) take the form

cos(En − Em)t = cos(δJ + c12�12 + c23�23)t

= cos δJ t cos(c12�12 + c23�23)t

− sin δJ t sin(c12�12 + c23�23)t . (22)

Then for each variable � integrated over to compute the
disorder average, the cos c�t term produces a Gaussian factor
of e−c2t2/2σ 2

J . There is physical meaning behind the connec-
tion of these factors to the energies of the system. Because
the oscillation frequencies are determined by the unperturbed
energies, a disordered system will oscillate with the same
frequencies as a clean system, independent of the disorder

0.0 0.5 1.0 1.5 2.0 2.5 3.0 J t
0.2
0.4
0.6
0.8
1.0

[P]

J /J0=0.1

J /J0=0.2

J /J0=0.3

J /J0=0.5
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J /J0=1

J /J0=2

FIG. 3. Top: The expectation of return probability [P(t )] for
different values of σJ , calculated from the perturbative result given
by Eq. (20). Bottom: The same quantities calculated exactly with
numerics from Eq. (23).

strength present. However, the rate at which these oscillations
decay is determined by the sensitivity of these energies to
disorder. Energy gaps which are less affected by disorder will
produce longer-lasting oscillations. This result is the essence
of noise-induced decoherence in general.

B. Numerical results

An alternative approach is to use the same expressions
as the case in Sec. II with the equilateral triangle but en-
force J13 = 0 to be consistent with the topology of the linear
chain. This approach will correspond to setting �13 = −J0

throughout the calculation. Then we arrive at an integral cor-
responding to Eq. (9):∫

P(t )
1

(
√

2πσJ )2
e−(�2

1+�2
3 )/2σ 2

J δ(�2 + J0)d�1d�2d�3

=
∫

P(t )
1

(
√

2πσJ )2
e−(�2

�+2|ξ�|2−3J2
0 )/6σ 2

J
2|ξ�|
3
√

3

× δ

(
�� + 2|ξ�| cos ϕ�

3
+ J0

)
d��d|ξ�|dϕ�, (23)

where P(t ) is given by Eq. (8). This integral is difficult to eval-
uate analytically but can be done numerically. In Fig. 3, we
show the plot of [P(t )] obtained perturbatively from Eq. (20)
alongside the same numerical results. For σJ/J0 of 0.1 and 0.2,
the plots are nearly identical; however, significant differences
can be seen for larger values such as 0.5, where the assumption
σJ � J0 is no longer valid, making the perturbation theory in-
accurate. From the numerical results, we note that for different
values of J0, the oscillation envelopes tend to be mostly the
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FIG. 4. The expectation of return probability [P(t )] given by
Eq. (25) for J0/σJ = 10 (top) and J0/σJ = 2 (bottom).

same in shape. However, there is some small dependence on
J0 in the linear chain, as is most evident from the fact that the

asymptotes of [P(t )] are different as J0 differs. Additionally,
comparing the locations of the peaks in Fig. 3, we see that
the peaks corresponding to σJ/J0 = 0.1 (yellow) are slightly
higher than the corresponding peaks for other values of σJ/J0.
This demonstrates that the strict independence of [P(t )] from
J0 observed in the case of the equilateral triangle above is a
result of the symmetry of the system, as breaking this symme-
try causes some deviance of the envelopes with J0. However,
the results are still reasonably independent of J0, making the
analytical results of the triangular ring model approximately
applicable even in the absence of the ring symmetry.

IV. FOUR-QUBIT SQUARE

For comparison, we also consider a system of four dots in a
square configuration, which gives the following Hamiltonian:

H = J12 �S1 · �S2 + J23 �S2 · �S3 + J34 �S3 · �S4 + J41 �S4 · �S1. (24)

There is some choice of initial state, but we will use an
antiferromagnetic state of alternating ↑ and ↓ spins since it
will capture the dynamics of the exchange interaction between
adjacent spins. This is a reasonable choice, but a different
choice would not change the theory at all, only the quanti-
tative details of the results. Then beginning with the initial
state |
0〉 = |↑↓↑↓〉 and following a perturbative approach
identical to that in Sec. III A, we obtain the following disorder-
averaged return probability:

[P(t )] = 7

18
− 13σ 2

J

24J2
0

+
(

1

3
e−σ 2

J t2/8 + 2σ 2
J

3J2
0

e−σ 2
J t2/4 − 5σ 2

J

16J2
0

e−σ 2
J t2/8

)
cos J0t

+
(

1

6
e−σ 2

J t2/2 + σ 2
J

3J2
0

e−5σ 2
J t2/8 − σ 2

J

8J2
0

e−σ 2
J t2/2

)
cos 2J0t

+
(

1

9
e−9σ 2

J t2/8 − σ 2
J

48J2
0

e−9σ 2
J t2/8

)
cos 3J0t + O

(
σ 3

J

J3
0

,
σ 2

j t

J0

)
. (25)

The unperturbed Hamiltonian has energies of J0, 0, −J0, and
−2J0, the differences of which lead to the three frequencies
present in [P(t )] (see Fig. 4). A four-qubit linear array breaks
some symmetry of the system and causes degenerate states to
split into six different energies, causing many more frequen-
cies to appear.

V. DISCUSSION

Using exact analytical methods, we have derived expres-
sions for the disorder-averaged return probability from a given
initial state for a system consisting of a ring of three exchange-
coupled qubits. We have also calculated quantities such as the
normalized Hamming distance, qubit spin expectation values,
and entanglement entropy for each qubit. We then used a
perturbative approach to analyze a linear array of three qubits,
comparing our results to direct numerics, and extended the
same perturbative approach to a ring of four qubits. The fre-
quencies by which the disorder-averaged return probability
oscillates are determined by the energy differences present

in the unperturbed Hamiltonian. These frequencies have a
Gaussian-like decay, in contrast to the usually assumed ex-
ponential decoherence ansatz, with their decay rate generally
dependent on the first-order correction to the corresponding
energies. For the system with a three-qubit ring, the high
degree of symmetry in the Hamiltonian protects states of
different energies from mixing due to disorder, so the shape
of the oscillation envelope is completely independent of the
mean exchange strength J0, instead depending only on the
strength of the disorder σJ .

We compare our results to the analogous two-qubit calcu-
lation in Ref. [19], where the return probability was found to
be given by

[P(t )] = 1
2 + 1

2 e−σ 2
J t2/2 cos J0t . (26)

Here, the oscillation envelope is strictly Gaussian, and we
showed that with higher-qubit systems, the envelope keeps its
Gaussian-like characteristics, though the shape is no longer
exactly Gaussian. In Table I, we calculate the time tc needed
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TABLE I. Decay rates for the oscillation envelopes for systems with various numbers of qubits. The values give the time tc, in units of σ−1
J ,

for the envelope width to decay to a given fraction of its original value. The fraction 1/e corresponds to the value of T ∗
2 for the given system.

For the three-qubit linear array and the four-qubit ring, values are given for the limit J0/σJ → ∞.

Fraction Two-qubit tcσJ Three-qubit ring tcσJ Three-qubit line tcσJ Four-qubit ring tcσJ

0.9999 0.0141 0.0115 0.0133 0.0163
0.999 0.0447 0.0365 0.0422 0.0517
0.99 0.142 0.116 0.134 0.164
0.9 0.459 0.374 0.433 0.550
1/e 1.41 1.127 1.333 2.389

for the width of the envelope to reach a fraction of its initial
value for each system and for various coherence fractions. T ∗

2
is given by the time required for the envelope width to decay
to 1/e of its original value (the bottom row in Table I), and
the times corresponding to values such as 0.99 are used to
benchmark gates with that fidelity. For the three-qubit line
and four-qubit ring, the envelope shape depends partly on
J0, so we give results in the limit that J0/σJ → ∞. Because
of the Gaussian-like nature of the envelopes, for t � σ−1

J ,
the envelopes have a parabolic shape, as demonstrated by
expansions such as Eq. (15). This is evident in Table I, as
changing the target decoherence by a factor of 100 changes
tc by roughly a factor of 10. We also see that increasing the
number of qubits from two to three decreases the coherence
time, but the four-qubit ring has increased coherence time
from the others. It is important to note that the three-qubit
line and four-qubit ring have multiple frequencies present in
[P(t )] which decay at different rates, and thus, the coherence
times are heavily dependent on the initial state, as a different

initial state will lead to different weights for each frequency.
The fact that the coherence time decreases by roughly 10%
in going from two to three qubits is of considerable signif-
icance, indicating that maintaining coherence in larger qubit
systems would be increasingly a challenge unless the sys-
tem has special symmetries (e.g., three- and four-qubit rings)
which can be exploited to enhance coherence. In addition, the
fact that decoherence happens through a Gaussian temporal
decay and not exponentially is also of substantial significance.
We should mention that scaling up the number of qubits ne-
cessitates careful consideration of how decoherence changes
since a short decoherence time generates larger errors, mak-
ing fault-tolerant quantum gate operations increasingly more
challenging.
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