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We present a coupled-wire construction of a model with chiral fracton topological order. The model combines
the known construction of ν = 1/m Laughlin fractional quantum Hall states with a planar p-string condensation
mechanism. The bulk of the model supports gapped immobile fracton excitations that generate a hierarchy
of mobile composite excitations. Open boundaries of the model are chiral and gapless, and can be used to
demonstrate a fractional quantized Hall conductance where fracton composites act as charge carriers in the bulk.
The planar p-string mechanism used to construct and analyze the model generalizes to a wide class of models
including those based on layers supporting non-Abelian topological order. We describe this generalization and
additionally provide concrete lattice-model realizations of the mechanism.
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I. INTRODUCTION

Fracton phases are a new class of topological states of
matter characterized by “subdimensional” quasiparticles with
emergent mobility restrictions (see Refs. [1,2] for a recent
review). Initially of interest for their glassy features [3,4]
and utility as topological quantum memories [5–11] due to
constrained quasiparticle dynamics [12,13], the subject has
grown to challenge the classification of topological phases
of matter via topological quantum field theory [14–18] and
demonstrated the possibility of heretofore unforeseen field
theories [19–37].

While many constructions of fracton phases have been pro-
posed, a systematic understanding of all possible phases is yet
to be rigorously established. Most works so far have relied on
constructing exactly solvable “commuting-projector” models
the Hamiltonians of which are sums of commuting terms
[3–6,38–54]. However, many topological phases, including
chiral phases with broken time-reversal symmetry, cannot be
realized by such models [55]. Such phases include many of the
most famous (2+1)-dimensional topological orders, including
fractional quantum Hall (FQH) phases [56,57]. Different tools
are thus required to build, study, and classify models of chiral
fracton phases, the prospect of which has only recently been
raised [58,59].

Chiral topological phases nevertheless admit analytically
tractable microscopic models in the form of coupled-wire
constructions. These constructions model topological phases
as arrays of (1+1)-dimensional quantum wires with suitably
chosen many-body interactions. Coupled-wire constructions
allow for the use of powerful techniques from (1+1)-
dimensional systems, including bosonization and conformal
field theory (CFT), to describe strongly interacting phases of
matter in higher dimensions. They have been used to build

and analyze numerous models of topological phases in (2+1)
[60–69], (3+1) [70,71], and higher dimensions [70], includ-
ing both Abelian and non-Abelian examples.

In this paper, we show that the coupled-wire formalism can
be applied to realize new chiral fracton phases in (3+1) di-
mensions. We focus primarily on a model inspired by the wire
construction of the ν = 1/m Laughlin FQH states [62,63] that
realizes subdimensional excitations with anyonic statistics in-
herited from those of Laughlin quasiparticles. The models
we consider have a useful interpretation in terms of anyon
condensation, wherein stacks of ν = 1/m Laughlin phases on
x-z and y-z planes are coupled by condensing “p-strings” com-
posed of Laughlin quasiparticles at the lines of intersection of
each pair of planes. This planar p-string condensation mech-
anism allows for the rapid determination of broad classes of
new fracton phases, including examples based on non-Abelian
topological orders.

The paper is laid out as follows. In Sec. II we introduce
our coupled-wire model and study the topological properties
of its bulk and boundary. In Sec. III we provide a high level
description of planar p-string condensation. In Appendix A we
provide detailed calculations on the coupled-wire model that
complement the discussion in the main text. In Appendix B
we generalize our coupled-wire construction to a non-Abelian
model. In Appendix C we present further details about planar
p-string condensation, including examples and relations to
existing mechanisms to generate fracton topological order.

II. CHIRAL FRACTON PHASE IN A LAUGHLIN
COUPLED-WIRE MODEL

In this section we introduce and analyze a coupled-wire
model that realizes a chiral fracton phase. In Sec. II A

2469-9950/2021/103(20)/205301(25) 205301-1 ©2021 American Physical Society

https://orcid.org/0000-0003-1893-850X
https://orcid.org/0000-0002-5145-6441
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.205301&domain=pdf&date_stamp=2021-05-03
https://doi.org/10.1103/PhysRevB.103.205301


SULLIVAN, IADECOLA, AND WILLIAMSON PHYSICAL REVIEW B 103, 205301 (2021)

FIG. 1. Schematic depiction of the coupled-wire array with ver-
tex and plaquette terms UV

r (purple) and U P
r (orange). Gray circles

represent the wires, and crossed and dotted circles represent right
and left movers, respectively. The labels q = 1, 2 arise from viewing
each wire as the intersection of a vertical and horizontal plane,
respectively.

we define the model, starting from a decoupled array of
two-component Luttinger liquids and then introducing two
types of sine-Gordon terms to produce a strongly coupled
phase. In Sec. II B we explore an interpretation of the model
through the lens of the planar p-string condensation mech-
anism. The bulk excitations are discussed in Sec. II C. In
Sec. II D we discuss the surface theory of the model. Finally,
the topological degeneracy is addressed in Sec. II E.

A. Model definition

We consider a set of (1+1)-dimensional quantum wires
oriented along the z axis and placed on the vertices r = (x, y)
of an Lx × Ly square lattice � in the x-y plane (see Fig. 1).
Each vertex contains two quantum wires labeled by q = 1, 2,
and each wire contains two chiral channels labeled by η =
L, R. The wires consist of free fermions, which we write
in bosonized form as �

q
η,r ∼ eiφq

η,r , where the chiral bosonic
fields φ

q
η,r(z) obey the equal-time canonical commutation re-

lations

[
φ

q
L/R,r(z), φq′

L/R,r′ (z′)
] = ±δq,q′δr,r′ iπ sgn(z − z′), (1)

where we associate the signs + and − with η = L and R, re-
spectively. To specify the couplings between wires, we define
new fields and commutation relations

φ̃
q
L/R,r = [(

φ
q
L,r + φ

q
R,r

)± m
(
φ

q
L,r − φ

q
R,r

)]
/2,[

φ̃
q
L/R,r(z), φ̃q′

L/R,r′ (z′)
] = ±δq,q′δr,r′ iπm sgn(z − z′), (2)

with m an odd integer, which are appropriate for describ-
ing Laughlin quasiparticles at filling ν = 1/m. In these new
variables, the local vertex operator eiφ̃q

η,r defines a chiral quasi-
particle with fermionic statistics, while the nonlocal vertex
operator eiφ̃q

η,r/m defines a chiral Laughlin quasiparticle with
anyonic statistical angle 2π/m.

We now couple the wires with interactions
Hint = −∑r

∫ Lz

0 dz (λV UV
r + λP U P

r ), where

UV
r = cos

[
1

m

(
φ̃1

L,r − φ̃1
R,r + φ̃2

L,r − φ̃2
R,r

)] ≡ cos
(
θV

r

)
,

U P
r = cos

[
2
(
θ̃1

r,ŷ + θ̃2
r+ŷ,x̂ − θ̃1

r+x̂,ŷ − θ̃2
r,x̂

)] ≡ cos
(
θP

r

)
, (3)

and 2θ̃
q
r,â = φ̃

q
L,r − φ̃

q
R,r+â, with â = x̂, ŷ the unit vectors in

the x and y directions. Importantly, these interactions are
local when written in terms of the “fundamental” fermions
�

q
η,r; this can be checked explicitly using Eq. (2) (see also

Ref. [63]). Furthermore, it is straightforward to check using
Eq. (2) that the interaction terms UV

r and U P
r commute among

themselves and can therefore be simultaneously diagonalized.
In the strong-coupling limit λP, λV → ∞, the ground-state
manifold is obtained by pinning the arguments of UV

r and U P
r

to integer multiples of 2π .
We remark that, strictly speaking, the vertex terms UV

r
appearing in Eq. (3) are not translation invariant in the z
direction when written in terms of the original fermions due
to the presence of oscillatory factors ≈ei 4kF z, where kF is the
Fermi wave number. These factors can be removed by making
a global change of variables φ̃2

η,r → −φ̃2
η,r, which amounts

to choosing different bosonization conventions depending on
the index q = 1, 2. This effectively redefines kF → −kF for
the q = 2 layers, leading to the pairwise cancellation of the
2kF factors giving rise to the oscillations, while maintaining
commutativity of the vertex and plaquette terms and preserv-
ing the canonical commutation relations. This transformation
does not affect any of the properties of the model considered
here, so we continue to use the original convention of Eq. (3).

B. Planar p-string condensation interpretation

The interactions (3) have an appealing interpretation in
terms of coupled layers. Consider a system of initially de-
coupled ν = 1/m Laughlin FQH systems stacked along y-z
and x-z planes of the cubic lattice. We assign the labels
q = 1, 2 to y-z and x-z planes, respectively. Now define a
square lattice in the x-y plane the vertices r of which are the
locations of the lines of intersection of pairs of x-z and y-z
planes. We can now couple pairs of Laughlin planes where
they intersect by condensing a bosonic bound state of local
excitations. The simplest nontrivial object we can condense is
a bound state of two quasiparticle-quasihole pairs, one pair for
each q = 1, 2. A microscopic model for this setup is obtained
by representing each Laughlin plane using a coupled-wire
construction. Within this construction, the local operator that
creates a Laughlin quasiparticle-quasihole pair within a layer
is given by [63]

Qq
r = ei 1

m (φ̃q
L,r−φ̃

q
R,r ). (4)

Adding −λV
∑

r

∫ Lz

0 dz UV
r to the Hamiltonian and tak-

ing λV → ∞ thus condenses the bound state of two such
quasiparticle-quasihole pairs for all z along the intersection
line r. This four-body composite can be viewed as a small
loop composed of Laughlin quasiparticles (i.e., a p-string,
see below), which fluctuates in the presence of condensation
terms UV

r′ located at lattice sites r′ �= r. The plaquette terms
U P

r emerge by performing degenerate perturbation theory in
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the coupling g that couples the wires within a given x-z or y-z
plane to form the Laughlin FQH layer building blocks (see
Appendix A2).

The coupled-wire model with interactions (3) is thus one
simple instance of a large class of models obtained by
coupling two interpenetrating stacks of (2+1)-dimensional
topological phases. The condensation process implemented
by the vertex terms UV

r is an example of p-string condensa-
tion [42,43,47], because it proliferates closed loops composed
of Laughlin quasiparticles. This distinguishes p-string con-
densation from standard anyon condensation [72], which
proliferates pointlike anyon composites. Anyon condensation
has also been used to build three-dimensional (3D) topo-
logical orders from two-dimensional (2D) building blocks
[59,71,73], but such constructions do not yield totally im-
mobile fracton excitations. In contrast, p-string constructions
generically lead to fractons (for a summary, see Sec. III).

The present class of models is distinguished from other
p-string condensation constructions [42,43,47,58] by the fact
that p-strings are only allowed to fluctuate within x-y planes.
This new restriction enables the condensation of p-strings
composed of anyons with nontrivial mutual statistics—the
Laughlin p-strings defined above being a simple example.
In prior p-string constructions, such condensates cannot be
consistently defined due to the nontrivial braiding of p-strings
from intersecting planes. The construction introduced here
thus enables a host of new fracton phases not obtainable
by other means that are explored further in Sec. III and
Appendix C.

C. Bulk excitations of the coupled-wire model

The coupled-wire array supports two kinds of excitations:
charged solitons, i.e., abrupt jumps of the pinned fields θV

r , θP
r

between integer multiples of 2π , and neutral Gaussian fluc-
tuations of these fields around their minima. The solitons
constitute gapped topological excitations of the theory. The
Gaussian fluctuations become gapless in the thermodynamic
limit Lx, Ly → ∞ [74] (see Appendix A3). However, they
are topologically trivial and do not contribute to the charge
response at the level of Eq. (3). Furthermore, numerical results
indicate a scaling limit Lx = Ly → ∞, U � L2.8

x in which they
are gapped (see Appendix A3). We defer further analysis of
the Gaussian fluctuations and their stability to future work.

Pointlike charged excitations of the coupled-wire array are
identified with solitons:

∂zθ
V,P
r → ∂zθ

V,P
r + 2πn δ(z − z0), (5)

for n ∈ Z and some 0 � z0 < Lz. A basis for these excitations
is obtained by considering the action of all local vertex op-
erators in a given wire. The vertex operators at our disposal
are the Laughlin quasiparticle-quasihole pair operator Qq

r (z)
[Eq. (4)], the chiral “electron” operator

�̃q
η,r = eiφ̃q

η,r , (6)

and the chiral operator

Qq
η,r(z1, z2) = exp

(
i

m

∫ z2

z1

dz ∂zφ̃
q
η,r

)
, (7)

FIG. 2. Action of (a) the Laughlin quasiparticle operator (4),
(b) the chiral electron operator (6), and (c) the composite chiral
quasiparticle operator Q12

LL,r (7). Integer charges of the vertex and
plaquette solitons are indicated in purple and orange, respectively.

which moves a Laughlin quasiparticle from z = z1 to z2.
(Note that Q2

r = eiθV
r Q1†

r , so that Q1†
r 
 Q2

r when acting on
the ground state, where θV

r is pinned). Of these three operator
types, the first two create genuine integer solitons in UV,P

r
[see Figs. 2(a) and 2(b)]. Qq

η,r(z1, z2) creates pairs of integer
solitons in U P

r , but a pair of fractional solitons in UV
r . This

constitutes a linelike excitation, because it shifts UV
r by a non-

integer multiple of 2π in the region between z1,2. However,
one can build composite operators

Qqq′
ηη′,r(z1, z2) = Qq

η,r(z1, z2)
[
Qq′

η′,r(z1, z2)
]†

(8)

for which such linelike excitations cancel; for example,
Q12

LL,r(z1, z2) creates a pair of three integer plaquette solitons
separated by z2 − z1 along a wire [see Fig. 2(c)].

A hierarchy of quasiparticle mobility restrictions follows
from the observation that a single plaquette excitation cannot
be moved by a local operator. This mobility restriction in the
x-y plane is visible in Fig. 2, which demonstrates that pla-
quette solitons of strength ±1 are created in groups of at least
four. Immobility of the plaquette solitons in the z direction can
be deduced from a “Gauss’s-law” constraint; for any compact
region M in the x-y plane, we have∑

r∈M

θP
r (z) =

∑
(r,â)∈∂M

2 θ̃
q
r,â(z), (9)

where the sum on the right-hand side runs over bonds con-
tained in the boundary ∂M of M. [Note that q and â are
correlated in this sum: â = x̂ (ŷ) implies q = 2 (1).] Suppose
there exists a local operator O that moves a single ±1 plaque-
tte soliton from z1 to z2. Such an operator shifts the left-hand
side of Eq. (9) by ±2π . However, because O is local, we can
always choose M larger than O’s support; hence, O commutes
with the right-hand side of (9), a contradiction. Thus all local
operators must create plaquette solitons in pairs of charge ±1
at fixed z, establishing charge neutrality as a necessary (but
not sufficient) condition for mobility in z.

The immobility of a single plaquette soliton implies that
these excitations are fractons. Since they are created by
the same operators Qq

r that create Laughlin quasiparticle-
quasihole pairs in the ν = 1/m FQH state, we conclude that
the condensation transition described in the coupled-layer
picture transmutes quasiparticles with planar mobility into
immobile subdimensional excitations. A group of four frac-
tons created by applying, e.g., Q2

r to the ground state can
be separated from one another by sequential application of
Q2 operators on contiguous vertices, creating a rectangular
membrane operator with fractons at its corners [see Fig. 3(a)].
Alternatively, Q2

r can be used to propagate pairs of fractons
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FIG. 3. Subdimensional excitations of the coupled-wire array
include (a) immobile fractons, (b) lineons mobile only along fixed
lattice directions, and (d) planons mobile only within 2D planes.
Panel (c) depicts the fusion of x and y lineons into a z lineon, while
panel (d) depicts a pair of operators that can be multiplied to allow a
planon to “turn a corner” between the x and z directions.

in the x or y direction, indicating that such pairs become “li-
neons,” i.e., quasiparticles mobile only along one-dimensional
(1D) submanifolds of the wire array [see Fig. 3(b)]. As
shown in Fig. 3(c), lineons mobile in the x and y directions
can “fuse” to become a lineon mobile in the z direction.
Figure 3(d) shows how pairs of lineons can be combined to
form “planons” with mobility in, e.g., x-z planes. This hier-
archy of quasiparticle mobility is a familiar feature of many
fracton models and also follows directly from the planar p-
string condensation interpretation of the coupled-wire model
(see Sec. III).

Finally, we note that the braiding statistics of these sub-
dimensional quasiparticles reveals their fractionalized nature.
The notion of mutual and self-statistics of fractons, lineons,
and planons has been defined [75,76] and follows from the
phase acquired upon exchanging the membrane and string op-
erators used to propagate the corresponding excitations. In the
present case, this exchange phase follows from the commuta-
tion relations (2) and reflects the relationship between fractons
and Laughlin quasiparticles. For example, the statistical angle
obtained from braiding two lineons [e.g., those depicted in
Figs. 2(c) and 3(b)], or two planons in vertically offset x-z
planes [Fig. 3(d)], is ±2π/m.

D. Surface theory

We now show that the coupled-wire model with interac-
tions (3) possesses chiral surface states that are gapless at any
system size, evoking a (3+1)-dimensional generalization of
FQH physics. To see this, we consider a square lattice with
LxLy vertices, each containing four chiral modes, and place
periodic boundary conditions (PBCs) in the z direction and
open boundary conditions (OBCs) in the x and y directions.
This leaves a 2D boundary with the topology of a two-torus.
Next, we apply a counting argument due to Haldane [77] to
determine how many of the 4LxLy chiral modes are gapped
by the interactions (3). Recalling that a single cosine term
gaps out two modes with opposite chirality in the strong-
coupling limit, and noting that there are LxLy vertex terms
UV

r and (Lx − 1)(Ly − 1) plaquette terms U P
r , we conclude

that the interactions (3) are sufficient to gap out all but N =
2(Lx + Ly − 1) modes in the array. For the remainder of this
paper we assume a fixed finite Lx, Ly.

FIG. 4. Schematic of the surface termination obtained by adding
auxiliary boundary wires (gray ovals) and new boundary couplings
(green, blue, and red). Dangling chiral gapless modes on the top and
right surfaces are clearly visible.

In Appendix A1, we show that these N gapless modes are
strictly localized on the 2D surface of the array by explicitly
identifying a set of surface modes that commute with the
bulk couplings. Here, we summarize several notable features
of these modes. First, they are chiral, with modes localized
on opposite faces of the wire array having opposite chirality.
Second, they are spatially overlapping and have nontrivial
commutation relations that follow directly from Eq. (2) and
can be encoded in an N × N integer matrix K . Third, the K
matrix for modes living on the same face of the array closely
resembles that of a stack of fractional quantum Hall states
coupled by long-range Coulomb interactions [78–81].

The spatially overlapping and noncommuting chiral gap-
less surface modes discussed above can be disentangled by
coupling additional boundary wires into the array as shown
in Fig. 4. We add 2(Lx + Ly) wires, each carrying one right
and one left mover governed by the commutation relation
(2). The number of gapless modes in the array then increases
to N + 4(Lx + Ly) = 3N + 4. We now add additional strong
commuting interaction terms to the Hamiltonian until N + 2
gapless chiral modes remain. First we introduce 2(Lx − 1) +
2(Ly − 1) truncated plaquette terms along the left, right, top,
and bottom (L, R, T, B) faces of the array. For example, on
the T face we add the couplings [compare to Eq. (3)]

U T
(x,Ly ) = cos

[
2
(
θ̃1

(x,Ly ),ŷ − θ̃1
(x+1,Ly ),ŷ − θ̃2

(x,Ly ),x̂

)]
(10)

for x = 1, . . . , Lx − 1, and likewise for the remaining
three faces. Here, 2θ̃1

(x,Ly ),ŷ = φ̃1
L,(x,Ly ) − φ̃1

R,(x,Ly+1), where

φ̃1
R,(x,Ly+1) is one of the additional boundary fields. This re-

moves 2N − 4 gapless modes, leaving six outstanding gapless
modes. To dispose of these modes, it suffices to add truncated
plaquette terms to three “corners” of the array; for example,
on the top-left (TL) corner we add the coupling [compare to
Eq. (3)]

U TL
(1,Ly ) = cos

[
2
(
θ̃1

(1,Ly ),ŷ + θ̃2
(0,Ly ),x̂

)]
, (11)

and likewise for the TR and BR corners. Here θ̃2
(0,Ly ),x̂ =

φ̃2
L,(0,Ly ) − φ̃2

R,(1,Ly+1), where φ̃2
L,(0,Ly ) is one of the additional
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boundary fields. Note that we could also add a truncated
plaquette term to the BL corner, but the argument of this
plaquette term is linearly dependent with the other plaque-
tte terms in the array and hence is not necessary for the
construction.

The modified surface theory constructed above is that
of N + 2 = 2(Lx + Ly) commuting chiral gapless modes—
precisely what one would obtain for a stack of Lx + Ly

decoupled ν = 1/m Laughlin states. In fact, the surface theory
defined above arises perturbatively within the coupled-layer
interpretation of the model when the underlying Laughlin
layers are arranged such that their chiral edges do not undergo
p-string condensation (see Appendix A2).

One advantage of this alternative surface termination is
that it makes the system’s nontrivial Hall response transpar-
ent. Since the low-energy theory consists of N + 2 decoupled
chiral gapless modes that are identical to ν = 1/m Laughlin
edge states, inserting a vector potential in the z direction
corresponding to one flux quantum pumps a fractional charge
eLx/m (eLy/m) between the T/B (L/R) faces of the array [82],
corresponding to quantized fractional Hall conductivity σyz

(σxz) [83,84]. This response is ultimately mediated by the bulk
fractons, which descend from Laughlin quasiparticles and the
bound states of which are the only charged bulk excitations.

E. Topological degeneracy

In order to calculate the topological degeneracy of the
ground-state manifold, we add additional couplings to remove
the remaining chiral gapless surface modes. Starting from
the surface termination shown in Fig. 4, we add N/2 + 1 =
Lx + Ly strong interaction terms of the form cos(2θ̃

q
r,â) that

couple gapless chiral modes on opposing faces of the array.
The resulting model can be viewed as a three-torus containing
two intersecting surface defects, each with the topology of a
two-torus, on which the final interaction terms reside. This
unusual boundary condition simplifies the analysis relative to
the case of standard PBCs without auxiliary boundary wires
(see Appendix A6).

We calculate (in Appendix A5) the topological degen-
eracy using the method of Ref. [69], starting from the
set of strong-coupling ground states labeled by the values
of the pinned bulk fields θV,P

r ∈ 2πZ and their boundary
counterparts. Naively, this implies an infinite-dimensional
ground-state manifold; however, many of these ground states
are equivalent since the bosonic fields φ

q
η,r are only defined

modulo 2π . Accounting for this redundancy, we find that the
ground-state manifold has dimension mLx+Ly . This subexten-
sive ground-state degeneracy is a hallmark of “type-I” fracton
phases. We remark that the model also exhibits a subexten-
sive number of superselection sectors with standard PBCs,
as shown in Appendix A6. In Appendix C2b we define an
exactly solvable lattice model containing a chiral sector the
bulk topological excitations and ground-state degeneracy of
which exactly match those of the coupled-wire model.

III. PLANAR P-STRING CONDENSATION MECHANISM

In this section we expound upon the planar p-string
condensation mechanism for constructing fracton phases of

matter. This was introduced in the context of the coupled-
wire model in the previous section, but here we study the
mechanism more abstractly from the point of view of coupled
layers of topological orders that support nontrivial anyonic
excitations. In Sec. III A, we discuss how to perform the
planar p-string condensation procedure at the level of the
anyon theory of the underlying 2D layers. In Sec. III B, we
apply this condensation procedure to the example of chi-
ral ZN anyon layers, providing a high-level description of
the topological fracton sectors in the coupled-wire model
from the previous section. A lattice model that is foliated
equivalent [14] to this chiral fracton theory is described
in Appendix C alongside further examples, as well as the
connection between planar p-string condensation, gauging
planar subsystem symmetries [58], and topological defect
networks [17].

To date, several constructions of fracton models from cou-
pled layers have appeared in the literature. They can all
be understood as some form of p-string condensation on a
stack of 2D layers with topological order. First we review
Refs. [42,43,47], where the authors consider stacking topolog-
ical layers along x-y, y-z, and x-z planes of the cubic lattice.
These layers must support a group (under fusion) of Abelian
bosons A. The authors consider abstract A-net configurations,
which correspond to general stringlike objects that satisfy
A fusion rules (for Z2 these are simply loops). Composite
p-string excitations, with fusion rules given by A, are formed
along these A nets in three-dimensional space by pinning
the appropriate Abelian g boson in a topological layer to its
intersection point with a string segment labeled by g in the
A net. These p-string excitations are then condensed to form
a cage-net fracton phase. This is achieved by adding local
perturbations to the edges where layers intersect that fluctuate
small loops of the p-string excitations, by creating particle-
antiparticle pairs of g bosons in both intersecting layers. The
effect of the condensation is to confine any particles that
braid nontrivially with the p-strings, and to promote the defect
appearing at the open end of a p-string into a deconfined frac-
ton excitation. Particles that braid trivially with the p-strings
remain deconfined planons, and the A bosons in particular
become equivalent to a pair of fractons (they can be viewed as
a small segment of p-string). Particles that braid nontrivially
with the p-string can be paired up across different layers to
form deconfined lineons (for perpendicular layers) or planons
(for parallel layers).

More recently, in Ref. [58], a construction was presented
for a single stack of topological layers along the x-y planes of
a cubic lattice, also supporting a group A of Abelian bosons
or fermions. Once again p-string excitations with fusion rules
given by A can be constructed. However, in this construc-
tion, the p-strings are only condensed within y-z and x-z
planes of the cubic lattice (this can be done simultaneously
as the p-strings braid trivially). This renders particles that
braid nontrivially with the p-strings immobile fractons, as
their movement in the x̂ and ŷ directions becomes confined.
Pairs of such fractons, separated along x̂ or ŷ, are equivalent to
charges under the condensing p-strings, and have planon mo-
bility. The defects that appear at the ends of p-strings become
lineons. Again particles that braid trivially with the p-strings
remain deconfined planons. The A particles in particular are

205301-5



SULLIVAN, IADECOLA, AND WILLIAMSON PHYSICAL REVIEW B 103, 205301 (2021)

FIG. 5. (a) A loop of p-string excitation, confined to the x-y plane
(green), at the junction of two topological layers. Anyons (red) are
pinned to the p-string where it pierces through a topological layer.
The p-string, and attached anyons, fluctuates over the x-y plane
(shown by red arrows). (b) A system of topological layers in x-z and
y-z planes with an extended p-string excitation fluctuating over an
x-y plane (green), as indicated by red arrows. (c) A fracton model
obtained from topological layers in x-z and y-z planes via p-string
condensation within x-y layers (green).

equivalent to a pair of lineons, as they can be viewed as small
segments of p-string.

Here, we describe yet another p-string construction. We
consider topological layers stacked along the x-z and y-z
planes of the cubic lattice that support a group A of Abelian
anyons that do not need to be bosons or fermions (to construct
a consistent lattice model they must have on-site string opera-
tors, which excludes semions in particular). We then consider
condensing p-strings, made up of A excitations, within x-y
planes of the cubic lattice only. This promotes particles in the
layers that braid nontrivially with the Abelian A anyons into
lineons. The defect at the open end of a p-string is promoted to
a fracton. Particles in the layers that braid trivially with the A
anyons remain planons. In particular, an A anyon in an x-z or
y-z plane is equivalent to a pair of fractons, as it can be viewed
as a small segment of p-string.

A. Anyon theory description

We consider layers described by an emergent anyon theory
(modular tensor category) M [85,86] that contains a group A
of Abelian anyons. The anyon theory can be broken up into
a direct sum according to the braiding phases of the anyons
with the Abelian particles in A, which form characters χ of
the group A:

M =
⊕
χ∈Â

Cχ . (12)

Specifically, an anyon aχ ∈ Cχ and an Abelian anyon g ∈ A
have S-matrix element Saχ ,g|Saχ ,g|−1 = χ (g).

We start from a system of decoupled topological layers,
stacked along the x-z and y-z planes of a cubic lattice, that
support anyon theories denoted by Mxz and Myz, respectively
(the anyon theories need not be the same in every layer, so
long as each supports a subgroup of Abelian anyons isomor-
phic to A). We utilize the cubic lattice to label anyons by
their position, where axỹz denotes an anyon in the y-z layer
at coordinate x, located between x-z layers at y and y + 1, and
contained within the x-y plane at coordinate z. Since the axỹz

anyon is free to move throughout the y-z layer with coordinate
x (before the layers are coupled) we also utilize the notation

FIG. 6. (a) The red × depicts a fracton excitation in the planar
p-string condensed layer model. It appears at the end of a p-string
that has been condensed in an x-y plane (indicated by red arrows)
and so does not incur an energy penalty except at the open end
point. Hence the excitation is pointlike. (b) A fracton dipole oriented
along x̂. This is equivalent to an open p-string piercing a single y-z
layer, which pins a single Abelian anyon (red sphere). For bosonic
(fermionic) p-strings this composite excitation is a y-z planon. For
p-strings consisting of Abelian anyons with a modular braiding this
excitation is a ŷ lineon as it cannot pass through the p-string con-
densates on the x-y planes without incurring an energy penalty.(c) A
fracton dipole oriented along ŷ. Similar to (b) for bosonic (fermionic)
p-string condensation this is an x-z planon. For modular Abelian
anyon p-strings this is an x̂ lineon.

ax to indicate the anyon is located somewhere in that layer.
Similarly, we use the notation axz̃ to denote that the anyon is
located in a strip of the y-z layer with coordinate x, between
the x-y planes at z and z + 1. We employ similar notation
throughout this section and Appendix C.

Next, we add coupling terms to the decoupled-layer Hamil-
tonians, at every triple intersection point of an x-z and y-z
layer with an x-y plane, that simultaneously create g-g pairs,
for g ∈ A, in both Mxz and Myz [see Fig. 5(a)]. In the limit
of infinitely strong coupling this induces p-string excitations,
formed by composites of A anyons, to fluctuate and condense
in the x-y planes [see Fig. 5(b)]. For the planar p-string con-
densate to lead to a consistent gapped phase the F symbols
restricted to A must be trivial. The limit of the interplane
spacing along ẑ going to zero is particularly relevant for the
coupled-wire construction from the main text.

In the p-string condensed phase, the topological excitations
are generated by fusion products of the following.

(1) Fractons f g
x̃ỹz ∼ ∏

a<x̃ gaỹz, with A fusion rules, that
appear on x-y plaquettes of the cubic lattice, where x̃ denotes
the point between layers x and x + 1, and similarly for ỹ.
These fractons appear at the open end points of p-strings that
consist of a line of g anyons, such as the fusion product of all
gaỹz with a < x̃ [see Fig. 6(a)].

(2) Lineons along x̂ given by (aχ )xz̃ and similarly along ŷ
given by (bχ )yz̃, for anyons aχ , bχ ∈ Cχ [see Figs. 7(a) and
7(b)]. There are also composite lineons along ẑ, given by
�ab

xy ∼ (aχ )xz̃(bχ )yz̃ [see Fig. 7(c)].
(3) Planons (a1)x/y. For bosonic or fermionic p-string ex-

citations this includes any nontrivial (g1)x = f g
x̃ỹz f g

(x̃−1)ỹz [see
Fig. 6(b)], and similarly for y [see Fig. 6(c)]. For p-strings
formed by more general Abelian anyons with a modular braid-
ing the fracton composites (gχ )xz̃ = f g

x̃ỹz f g
(x̃−1)ỹz are in fact

ŷ lineons, and similarly (gχ )yz̃ are x̂ lineons. (Since modu-
lar subtheories of an anyon model factor out [87], this case
corresponds to the chiral ZN fracton model described below
stacked with some other layers). There are also composite
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FIG. 7. (a) An anyon in an x-z layer that braids nontrivially with
the p-strings becomes an x̂ lineon after condensation. (b) Similarly
an anyon in a y-z layer that braids nontrivially with the p-strings
becomes a ŷ lineon. (c) A composite of x̂ and ŷ lineons that, together,
braid trivially with the p-strings is a ẑ lineon. (d) A dipole of x̂ (or
ŷ) lineons that can be created by a local string operator oriented
along ẑ is an x-y planon. (e) A dipole of x̂ lineons separated along
ŷ that, together, braid trivially with the p-strings is an x-z planon. (f)
Similarly a dipole of ŷ lineons separated along x̂ that, together, braid
trivially with the p-strings is a y-z planon.

planons (aχ )x(bχ )(x−1) [see Fig. 7(f)], and similarly for y and
z [see Figs. 7(e) and 7(d), respectively].

In this class of models the fractons are Abelian, while
the lineons may be non-Abelian. The braidings of the quasi-
particles are inherited from the M layers. In particular,
the fracton-composite planons may have nontrivial mutual
braidings. Similarly the lineon-composite planons may have
nontrivial mutual braidings. Single lineons and planons may
also have nontrivial topological spin [76].

In the limit that the interplane spacing goes to zero there is
no space for excitations supported between layers. However,
all the topological excitations can be pushed onto p-string lay-
ers and these representatives survive the limit. This is required
to match the excitations with those arising in the coupled-wire
model from the previous section.

B. Example: ZN anyon layers

We now present an example of the construction outlined
above that reproduces the topological fracton sectors found
in the Abelian coupled-wire construction from Sec. II C. We
consider Abelian chiral topological layers with Z(n)

N anyons, in
the notation of Ref. [88], for N an odd integer and n coprime
to N . For n = 2, N = m, this describes the anyon theory of
a Laughlin FQH state at filling fraction ν = 1

m , modulo the
physical fermion. The topological charges, and their fusion,
are described by the cyclic group ZN under addition. The S
matrix and topological spins of the anyons are

Sa,b = 1√
N

ei 4πn
N ab, θa = ei 2πn

N a2
, (13)

while the quantum dimensions and F symbols are trivial. The
obvious ZN grading on the anyons is induced by braiding

with the 1 anyon that generates the ZN under fusion with
itself (using additive notation for the composition rule, i.e.,
0 denotes the vacuum). The 1 anyon is not a boson or fermion
as it has topological spin ei 2πn

N .
A fracton model is constructed by driving a ZN p-string

condensation transition within the x-y planes of a stack of ZN

anyon theories along the x-z and y-z planes of a cubic lattice.
This case is slightly degenerate and unusual in an interesting
way, since there are no nontrivial particles in the trivial sector
(i.e., the sector containing the particles that braid trivially with
1), as n is coprime to N . Even the generating particle 1 braids
nontrivially with itself. The resulting model contains topolog-
ical charges with a hierarchy of subdimensional topological
excitations generated by the following.

(1) ZN fractons that appear on the open ends of condensed
p-strings. These fractons are more exotic than the usual frac-
tons appearing in p-string condensation, as the p-strings are
formed by anyons and impart a vestige of the anyonic statistics
onto the fractons.

(2) x̂ lineons from nontrivial anyons in an x-z layer, trapped
between p-string planes. Similarly there are ŷ lineons from
the y-z layers. There are also ẑ lineons from composites of an
x̂ and ŷ lineon trapped between the same p-string planes. A
pair of fractons adjacent on either side of a p-string plane is
equivalent to a single p-string condensed anyon, and hence is
also a lineon in this example. These lineons can be obtained
by moving an x̂ or ŷ lineon onto a p-string plane. We remark
that this behavior is due to the anyonic nature of the p-strings,
and does not occur for bosonic or fermionic p-string conden-
sations.

(3) Planons that arise from pair composites of lineons,
which are themselves composites of fractons, that have op-
posite braiding phases with the condensed p-strings. In this
example a composite formed by only a pair of fractons is not
a planon due to the anyonic nature of the p-strings.

In this example we have considered a planar p-string con-
densation involving anyonic p-strings. Attempting to apply
the conventional 3D p-string condensation to these anyonic
p-strings would not succeed in producing a gapped phase
due to their nontrivial braidings. This is even true for planar
p-string condensation with intersecting planes, again due to
the nontrivial braidings. However, as we have only considered
the anyonic p-string planes to be nonoverlapping, and the F
symbols are trivial, there is no inconsistency in the above
construction. This inconsistency can be formulated as the
anomaly of a subsystem symmetry in the gauging formulation
of planar p-string condensation [58] (see Appendix C).

A lattice model with fracton topological order that is fo-
liated equivalent to the example in this section is presented
in Appendix C2b where it is used to calculate the ground
space degeneracy of the current example for various boundary
conditions.

IV. CONCLUSION

In this paper we have introduced a coupled-wire construc-
tion for a family of chiral fracton phases in (3+1) dimensions
with chiral gapless boundary modes. This construction in-
spired a planar p-string condensation mechanism which we
elaborated upon in the main text, as well as Appendix C,
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where it is shown to yield a wide variety of fracton models, in-
cluding ones based upon non-Abelian layers. In Appendix B,
we also propose a coupled-wire realization of such non-
Abelian models.

The models constructed here motivate further exploration
of coupled-wire constructions for fracton phases and new
potential paths towards experimental realizations of fracton
physics. They also raise the challenge of developing a deeper
theoretical understanding of chiral fracton phases. In partic-
ular, further analysis of the gapless Gaussian fluctuations of
the model is necessary—for example, it may be possible to
add interactions to gap these fluctuations. We expect that such
interactions exist, since one can construct a gapped lattice
model realizing the same topological order (see Appendix C).

Finally, this paper points towards intriguing field theories
obtained by taking the continuum limit in the remaining two
directions that were left discrete in the current paper. This
brings to the forefront challenging technical issues surround-
ing the continuum limit of a system with an exponentially
scaling topological degeneracy.
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APPENDIX A: DETAILS ON THE COUPLED-
WIRE MODEL

In this Appendix we provide some of the details for cal-
culations relating to the wire model. First, in Appendix A1
we review the 2D coupled-wire construction for the Laughlin
state. In Appendix A2 we analyze, via perturbation theory, a
model of intersecting Laughlin layers with pairs of Laugh-
lin quasiparticles condensed at vertices and show that the
leading-order effective Hamiltonian for this model is the one
presented in Sec. II. The gap to neutral Gaussian fluctuations
is discussed in Appendix A3. We give a thorough discussion
of the surface theory in Appendix A4. Lastly, we calculate
the ground-state degeneracy of the model with the alterna-
tive boundary conditions considered in the body of the text
(Appendix A5) and with fully periodic boundary conditions
(Appendix A6)

1. Coupled-wire construction of the Laughlin state

Here we review the coupled-wire construction of the ν =
1/m Laughlin state, first presented in Refs. [62,63]. The build-
ing blocks of this construction are a collection of 1D quantum
wires of free fermions oriented along the z direction and
labeled by a site index j. Upon bosonization, one has

�η, j (z) ∼ eiφη, j (z) for sites j and chirality η = L, R. This con-
struction involves only a single species of fermion on each
wire so there is no need for the additional superscript q used
in the main text. Any local vertex operator must be decom-
posable into an integer combination of φη,i. The chiral bosons
have the familiar commutation relations:

[φL/R, j (z), φL/R,i(z
′)] = ±iπδi jsgn(z − z′)

and [φL, j (z), φR,i(z
′)] = 0. (A1)

Next, for m ∈ 2Z + 1, consider the new composite fields

φ̃L/R, j = (φL, j + φR, j ) ± m(φL, j − φR, j )

2

with [φ̃L/R, j (z), φ̃L/R,i(z
′)] = ±imπδi jsgn(z − z′). (A2)

Note that because m is odd eiφ̃η is a local operator and creates
a chiral quasiparticle with fermionic statistics. The nonlocal
vertex operator eiφ̃η/m creates an anyonic quasiparticle with
self-statistics 2π/m. Finally consider the field defined by

2θ̃ j,â = φ̃L, j − φ̃R, j+â (A3)

where â is a unit vector indexing the lattice site direction. In
this situation one can equivalently think of the site j + â as
j + 1. More generally, and in the case of the main text, one
may consider unit vectors â in more than one direction and so
the notation used here is chosen so as to reinforce the notation
used in the main text. With all of the relevant fields defined
consider a collection of evenly spaced parallel wires with the
following Hamiltonian:

H = H0 + Hint

=
∑

j

∫ Lz

0
dz[(∂zφL, j )

2 + (∂zφR, j )
2]

− λ
∑

j

∫ Lz

0
dz cos (2θ̃ j,â). (A4)

In the λ → ∞ limit, the interaction term condenses and
2θ̃ j,â = 0 ∀ i. In this regime the model is gapped and has
an m-fold ground-state degeneracy. The gapped excitations
correspond to solitons in the condensed fields: 2θ̃ j,â(z) →
2θ̃ j,â(z) + 2πn�(z − z0). The model has anyonic excitations
corresponding to minimal strength solitons (kinks of size
2π ) which are fully mobile in two dimensions. The anyons
are moved along the wire direction by an operator such as

e
i
m

∫ z2
z1

dz ∂z φ̃η, j and are moved along the lattice direction by the
operator ei(φ̃L, j−φ̃R, j )/m = ei(φL, j−φR, j ). Using these quasiparticle
translation operators one can compute the anyonic braiding
statistics of 2π/m by considering, e.g., the commutator(∏

j

e
i
m (φ̃L, j−φ̃R, j )

)
e

i
m

∫ L
0 dz ∂zφ̃L,i

= e
i
m

∫ L
0 dz ∂zφ̃L,i

(∏
j

e
i
m (φ̃L, j−φ̃R, j )

)
e−2π i/m, (A5)

which follows directly from Eq. (A2).
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FIG. 8. (a) Dipole configurations are created in the vertex terms
by the Laughlin interaction operators exp(2isθ̃ ). (b) To avoid being
projected out of the low-energy subspace, these operators must enter
the effective Hamiltonian in the form of a plaquette term. In such
configurations, the vertex solitons generated by different Laughlin
interaction operators cancel.

2. Perturbation theory

We claim that the model discussed in the main text emerges
as the lowest (fourth) order term in perturbation theory in a
model of interpenetrating stacks of ν = 1/m Laughlin planes
coupled by condensing Laughlin quasiparticles using the ver-
tex terms UV

r . Heuristically one can see that the plaquette
terms are related to products of four Laughlin interaction
terms, cos(2θ̃

q
r,â) (see Appendix A1).

Let us see how this emerges. The Hamiltonian can be
decomposed into two parts:

H0 = Hkin − λV

∑
r

∫ Lz

0
dz cos

(
2θ1

r + 2θ2
r

)
, (A6a)

H1 = g
∑

r

∫ Lz

0
dz
[

cos
(
2θ̃1

r,ŷ

)+ cos
(
2θ̃2

r,x̂

)]
, (A6b)

where Hkin is the kinetic term for the wires in the absence of
the couplings λV , g.

In the limit λV → ∞, solitons in the argument of the vertex
term in H0 do not lie in the spectrum of low-energy states. The
aim is to find an effective theory which describes the physics
in this low-energy subspace. This can be accomplished using
Wigner-Brillouin perturbation theory: we introduce the oper-
ator P which projects onto the ground-state subspace of H0

and in particular throws out any states with solitons in the λV

terms. Our effective Hamiltonian is then given by H0 + Heff,
where

Heff = PH1

∞∑
n=0

{[E0 − (1 − P)H0(1 − P)]−1H1}nP. (A7)

In the limit λV → ∞, eigenstates of H0 can be labeled
schematically by occupation numbers associated with solitons
in each vertex term. Occupied states will be projected out, so
we need to determine the lowest-order term in the series which
does not excite any vertices. Suppressing the integral over z,
we can express H1 as

H1 = g

2

∑
r,s=±

[
exp

(
2isθ̃1

r,ŷ

)+ exp
(
2isθ̃2

r,x̂

)]
.

As one can see from Fig. 8(a), exp(2isθ̃1) creates a ±s dipole
of vertex solitons in the y direction while exp(2isθ̃2) creates
an analogous dipole in the x direction. The terms in Heff

correspond to products of these dipoles. One needs to go to
fourth order to create a dipole configuration that leaves behind
no vertex solitons and avoids being projected out:

H (4)
eff = P

∑ g4

16�3
kink

[
exp

(
2isθ̃1

r,ŷ + 2is′θ̃2
r′,x̂ + 2is′′θ̃1

r′′,ŷ + 2is′′′θ̃2
r′′′,x̂
)+ H.c.

]
P

+ terms w/unequal numbers of x and y dipoles that get projected out,

(A8)

where �kink is the energy gap to creating a vertex-soliton
dipole. Applying the projection operators one can see that the
only terms that survive form a unit square with s = −s′ =
−s′′ = s′′′ [see Fig. 8(b)]. This yields

Heff ∼ g4

�3
kink

∑
r

cos
(
2θ̃1

r,ŷ − 2θ̃2
r,x̂ − 2θ̃1

r+x̂,ŷ + 2θ̃2
r+ŷ,x̂

)
+ higher-order terms, (A9)

which is, up to subleading corrections, precisely the plaquette
term defined in Eq. (3) in the main text.

The above analysis can be extended to describe the case
where strong vertex terms are only turned on in a bounded
subregion, which we take to be an Lx × Ly rectangle for
simplicity, of the full lattice of wires. In the perturba-
tive treatment, strong vertex terms on the boundary of this
subregion generate truncated plaquette operators which con-
tain the only edges of a full plaquette that touch one of
the strong vertex terms. For example, vertex terms along
the top boundary of the subregion generate the interaction
cos [2(θ̃1

(x,Ly ),ŷ − θ̃1
(x+1,Ly ),ŷ − θ̃2

(x,Ly ),x̂)], while the vertex term

in the top-right corner of the subregion generates the in-
teraction cos [2(θ̃1

(Lx,Ly ),ŷ − θ̃2
(Lx,Ly ),x̂)]. These are precisely the

boundary interactions used in the surface termination dis-
cussed in the main text, which can be viewed as a minimal
example in which the topmost and bottommost q = 2 Laugh-
lin layers and the leftmost and rightmost q = 1 Laughlin
layers are omitted.

Given this perturbative analysis, we can try to under-
stand the excitations of the model from the perspective of
p-string condensation, as discussed in the main text. The term
λV condenses two pairs of anyons created by exp 2iθ1

xy and
exp 2iθ2

xy. This condensate proliferates in the limit λV → ∞.
Low-energy excitations must commute with the condensate
and so the emergent mobility restrictions can be understood as
stemming from this constraint. For more on this perspective,
we refer the reader to Appendix C.

3. Scaling of the gap

While gapped to charged topological excitations (solitons),
the model studied in the main text possesses gapless neutral
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FIG. 9. A plot of the smallest eigenvalue at a given kz along the
wire direction with U = 100 and system size L = 15. One can see
that the gap �kz→0 → 4.8380 + ε (ε 
 1), reflecting the fact that
the model is gapped at finite system size.

excitations in the thermodynamic limit. These neutral excita-
tions, which we refer to as “phonons,” correspond to Gaussian
density fluctuations and do not participate in the transport of
charge.

In this Appendix we present numerical results on the
phonon spectrum for PBCs in the z direction and the boundary
conditions in the x-y plane used to calculate the topological
degeneracy in the main text and in Appendix A5. For these
calculations, we set Lx = Ly ≡ L and consider a vertex cou-
pling λV = 100U , with all other couplings including λP and
the boundary and corner couplings set to U ; in turn, we take
U � v, where v is the kinetic-energy scale of the decoupled
wires. We set v = 1 unless specified otherwise. This hierarchy
of energy scales is consistent with the perturbative treatment
of Appendix A2. We analyze the scaling of the phonon gap
with the momentum kz along the wire direction, the system
size L, and the strong coupling U . Our results indicate that the
phonons are gapped at finite system size, and in a particular
scaling limit in which U scales at least as a sufficiently large
power of L as L → ∞.

Following Ref. [74], for each pinning term we make the
replacement cos(� · �) ∼ 1 − (�·�)2

2 and analyze the corre-
sponding Bogoliubov–de Gennes (BdG) mean-field theory.
The alternate boundary conditions break translation symmetry
in the discrete directions x, y so the model must be solved
using a mixed basis {a†

r (kz ), ar(kz )}, which creates/destroys
bosonic fluctuations of momentum kz on wire r = (x, y).
Since kz is a well-defined quantum number, let us define
�kz (U, L) to be the smallest energy eigenvalue with momen-
tum kz at system size L and coupling strength U (note that we
identify this quantity with the phonon gap since the Hamilto-
nian is positive semidefinite). We suppress the arguments U
and L when convenient.

First let us consider the behavior of �kz as we let kz →
0. Since the real-space calculation is done numerically one
cannot actually evaluate the �kz at kz = 0 because the BdG
Hamiltonian will involve terms proportional to 1

|kz | coming

from factors φ2 and θ2 (see Ref. [74]). An analytical expres-
sion for the eigenenergies is prohibitively complicated but
should be a function f (vkz, vU ) in order to prevent divergence
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FIG. 10. Log-log plot of �δkz (L) vs L at U = 100. We see that
the scaling relation �δkz (L) ∼ Lα with α ≈ −1.4118.

as kz → 0. Figure 9 shows �kz at system size L = 15. Evi-
dently, at this system size �kz→�0 ∈ [4.380 − ε, 4.380 + ε]
with ε 
 1, reflecting the fact that the model is gapped at
finite L. In other words, at finite L, �kz (L) → �0(L) > 0 as
kz → 0. With this justification, we henceforth approximate �0

by �δkz with a small δkz = 10−5.
We now consider the scaling of the gap with L and U .

Determining how �0(L) depends on L enables us to check
if the gap persists in the thermodynamic limit. We find that
�δkz (L) → 0 as L → ∞. Thus, while gapped at finite L, the
phonons become gapless in the limit of infinite system size. In
Fig. 10 we see a power-law dependence of the form �δkz (L) ∼
Lα with α ∼ −1.412. Lastly, the scaling of �δkz (U ) with U
is shown in Fig. 11: �δkz ∼ U 0.500 023. Since we use a δk
of order 10−5, our numerical results are consistent with the
dependence �kz→0 ∼ √

U , which is also found in Ref. [74]’s
analysis of translation-invariant coupled-wire models with
gapless fluctuations. Putting these dependences together, we
conclude that �kz→0 ∼ √

ULα .
One interesting takeaway from this analysis is that there ex-

ists a scaling limit, in which the strong-coupling limit U → ∞
is taken alongside the thermodynamic limit L → ∞ such that
U � L−2α , in which the fluctuations are gapped. In this limit,
one has �0 � L

1
2 (−2α)Lα ∼ O(1). At first glance this may

seem a somewhat artificial limit to take. Recall though that the
U → ∞ limit has been assumed throughout in our discussion
of both the charged and neutral sectors of the theory. Thus the
scaling limit merely demands that the U → ∞ limit be taken
sufficiently “fast” compared to the L → ∞ limit.

4. Details on surface theory

In this Appendix we provide further details on the con-
struction of the surface theory for the case of open boundary
conditions in x and y and periodic boundary conditions in
z. In particular, we construct the 2(Lx + Ly)-dimensional K
matrix of the surface theory, which encodes the commutation
relations among the gapless surface modes, and show that it
has two zero modes that correspond to bulk degrees of free-
dom that are gapped in the strong-coupling limit. This leaves
N = 2(Lx + Ly − 1) gapless modes residing on the surface, as
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FIG. 11. Log-log plot of �δkz (U ) vs U at L = 20. We see that the
scaling relation �δkz (U ) ∼ U β with β ≈ 0.500 023. This points to a
scaling �δkz (U ) ∼ √

U .

expected from the counting argument presented in the main
text.

We identify the chiral gapless boundary modes by finding
linear combinations of bosonic fields on the surface that com-
mute with the bulk interaction terms (3). The boundary of the
coupled-wire array can be divided into left, right, top, and bot-
tom (L, R, T, B) faces. The L and R faces each contain Ly − 1
bonds, and the T and B faces each contain Lx − 1 bonds. Each
such bond is associated with a chiral mode that commutes
with the bulk interactions. For example, on the L surface
[r = (1, y), y = 1, . . . , Ly − 1], one finds using Eq. (2) that
the Ly − 1 chiral modes

φ̂L
R,r = φ̃2

R,r − φ̃1
R,r + φ̃1

L,r−ŷ − φ̃2
R,r−ŷ (A10)

all commute with the interactions (3). Analogous definitions
for the R, T, B surfaces can be read off from Fig. 12. In addi-
tion to the 2(Lx + Ly − 2) chiral modes from the L, R, T, B
surfaces, there are four gapless modes associated with the
TL, TR, BL, BR corners of the array; for example, at the BL
corner we have

φ̂BL
R = φ̃2

R,(1,1) − φ̃1
R,(1,1), (A11)

and similar expressions for the other corners can be read off
from Fig. 12. We thus find a total of 2(Lx + Ly) = N + 2
boundary modes that commute with the bulk interactions. Of
these, all but the modes at the TL and BR corners are chiral,
i.e., contain an excess of right or left movers.

Each of the surface modes identified above has a nontrivial
commutation relation both with itself and with its immediate
neighbors; these commutation relations follow directly from
Eq. (2). We organize these commutation relations into an
(N + 2)-dimensional square matrix K defined by

[φ̂α (z), φ̂β (z′)] = iπ Kαβ sgn(z − z′), (A12)

where α, β = 1, . . . , N + 2 label the surface modes identi-
fied above. We compute K as an 8 × 8 block matrix the
diagonal blocks of which describe the L, R, T, B faces and
the TL, TR, BL, BR corners, and the off-diagonal blocks of
which encode nontrivial commutation relations among the
corners and faces.

FIG. 12. Pictorial definition of the gapless surface (L, R, T, B)
and corner (TL, TR, BL, BR) modes with open boundary conditions
in the x and y directions. Chiral modes belonging to the same surface
or corner mode are encircled, and ± indicates the relative sign with
which each chiral mode appears [see, e.g., Eq. (A10)].

We first focus on the block-diagonal part of K . Each of
the L, R, T, B faces has an (La − 1)-dimensional (a = x, y) K
matrix for the modes identified in Eq. (A10) that is propor-
tional to

Ka =

⎛⎜⎜⎜⎜⎝
−2m m 0 . . . 0 0

m −2m m 0 . . .

0 m −2m m 0 . . .
...

...
...

...
...

...

0 0 . . . 0 m −2m

⎞⎟⎟⎟⎟⎠. (A13)

This K matrix is (up to an unimportant sign on the diagonal
entries) proportional to that of the so-called 121 phase of a
stack of fractional quantum Hall layers identified in Ref. [80].
The K matrices for the T, B, L, and R surfaces are

KT = −Kx, KB = Kx, KL = Ky, KR = −Ky, (A14)

indicating that opposite surfaces have opposite chiralities,
as expected. The remaining diagonal blocks of K describe
the self-commutation relations of the TL, TR, BL, BR corner
modes identified in Eq. (A11); they are

KTL = 0, KTR = 2m, KBR = 0, KBL = −2m. (A15)

Note that KTL = KBL = 0 because these modes are nonchiral.
We now determine the off-diagonal blocks of K . Each of

the corner modes has a nontrivial algebra with neighboring
modes from the two surfaces it touches. This algebra is en-
coded in the 1 × (Lx − 1) K matrices

KTLT = (−m 0 . . . 0) = −KBRB, (A16a)

the (Lx − 1) × 1 K matrices

KTTR =

⎛⎜⎜⎝
0
...

0
−m

⎞⎟⎟⎠ = −KBBL, (A16b)
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FIG. 13. Schematic depiction of the expressions for the zero
modes ϒ+ (a) and ϒ− (b) in terms of pinned bulk fields θV,P

r at system
size Lx = Ly = 4. Integers appearing in a plaquette or vertex of the
square lattice signify the coefficient with which the corresponding
θP

r or θV
r field (respectively) enters the expression of ϒ± as a linear

combination of these fields.

the 1 × (Ly − 1) K matrices

KTRR = (m 0 . . . 0) = −KBLL, (A16c)

and the (Ly − 1) × 1 K matrices

KRBR =

⎛⎜⎜⎝
0
...

0
m

⎞⎟⎟⎠ = −KT
TLL. (A16d)

Combining Eqs. (A13), (A14), (A15), and (A16), we can write
the full 2(Lx + Ly)-dimensional K matrix in block form as

K =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

KTL KTLT 0 0 0 0 0 KTLL

KT
TLT KT KTTR 0 0 0 0 0
0 KT

TTR KTR KTRR 0 0 0 0
0 0 KT

TRR KR KRBR 0 0 0
0 0 0 KT

RBR KBR KBRB 0 0
0 0 0 0 KT

BRB KB KBBL 0
0 0 0 0 0 KT

BBL KBL KBLL

KT
TLL 0 0 0 0 0 KT

BLL KL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A17)

The existence of the 2(Lx + Ly)-dimensional K matrix (A17) seems to imply the existence of 2(Lx + Ly) = N + 2 gapless
modes that commute with the bulk interaction terms, rather than the N modes expected based on counting the bulk interaction
terms. However, it is possible that some linear combinations of these surface modes can be rewritten in terms of pinned bulk
fields, since these bulk fields also commute with the interaction Hamiltonian. Indeed, we find that the K matrix (A17) has two
zero modes at any system size, and that these zero modes correspond to linear combinations of pinned bulk fields. The first zero
mode can be written compactly in (N + 2)-dimensional vector form as

ϒ+ = (−1 −1Lx−1 −1 +1Ly−1 −1 −1Lx−1 −1 +1Ly−1)T
, (A18)

where 1d is a d-dimensional vector with unit entries. The second is

ϒ− = ( Lx+Ly

2 C+−
Ly−Lx

2 C−+ − Lx+Ly

2 −C+−
Lx−Ly

2 −C−+
)T

, (A19a)

where the (Lx − 1)-dimensional vector

C+− = ( Lx+Ly

2 − 1 Lx+Ly

2 − 2 . . .
Ly−Lx

2 + 1
)

(A19b)

and the (Ly − 1)-dimensional vector

C−+ = ( Lx−Ly

2 + 1 Lx+Ly

2 + 2 . . .
Lx+Ly

2 − 1
)
. (A19c)

Writing these zero modes as linear combinations of the under-
lying bosonic surface fields defined by Eqs. (A10) and (A11)
and their analogs, we find that they can be reexpressed as
linear combinations of the pinned bulk vertex and plaquette
fields. For example,

ϒ+ =
∑
r∈�

θP
r , (A20)

where the sum runs over all vertices r in the square lattice �

with OBCs and where θP
r is the pinned (i.e., gapped) plaquette

field. ϒ− can also be expressed as a linear combination of
pinned vertex and plaquette fields θV

r and θP
r , respectively, but

the expression is more complicated (in particular, it depends

on system size) and we omit it here. Pictorial examples of
the expressions for ϒ± in terms of pinned bulk fields for
Lx = Ly = 4 are shown in Fig. 13. In summary, while a naive
identification of surface modes commuting with the bulk inter-
action terms finds N + 2 such modes, a closer look shows that
two of these modes can be reexpressed as linear combinations
of pinned bulk fields. We thus find N gapless surface modes,
as expected from the counting of bulk interaction terms.

We note in passing that the Lagrangian for the surface
theory constructed in this Appendix can be written as

Lbdy =
∫ Lz

0

dz

4π
[(∂t φ̂)TK+(∂zφ̂) − (∂zφ̂)TV (∂zφ̂)], (A21)

wherein we have collected the boundary modes into an (N +
2)-component vector φ̂, and where the (N + 2)-dimensional
symmetric rational matrix K+ is the pseudoinverse of K . The
matrix V encodes the kinetic energy of the boundary modes
and depends on microscopics. This surface theory is unusual
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FIG. 14. (a) A representation of the model with the alternative boundary conditions discussed in the main text. The gray circles correspond
to the vertex terms θV

r and the squares (both complete and partially complete) correspond to the plaquette terms θP
r . The blue and red ovals,

which are shared between the left/right and top/bottom faces, respectively, correspond to the argument of the Laughlin interaction term,
2θ̃ 1,2. Note that the bottom-left corner does not have a plaquette term, as discussed in the main text. (b) Here we provide examples of some
useful phase-shift patterns which are employed to clean a general configuration in the ground-state manifold. Note C′ in particular, which is a
special case of pattern C in the bottom-left corner where the plaquette term is absent. This will be key for cleaning the entire configuration of
plaquettes.

because K+ is generically not sparse, and deserves further
study.

5. Topological ground-state degeneracy

Here we compute the topological ground-state degener-
acy (GSD) for the coupled-wire model with the alternative
“unusual” boundary conditions defined in the main text. The
method used is presented in Ref. [69]. The closed model is
shown in Fig. 14(a). Note that in the strong-coupling limit
any configuration in the ground-state manifold is labeled by a
set of integers defined by θV,P

r , 2θ̃
q
i ∈ 2πZ where r ∈ � labels

wires in the original 2D array and i = 1, . . . , N/2 + 1 labels
pairs of added boundary wires. Naively then, a general ground
state can be labeled by assigning each plaquette, vertex, and
oval in Fig. 14(a) a value in Z. However, because of the
compact nature of the degrees of freedom (φq

η,r ≡ φ
q
η,r + 2π ),

many of these ground-state configurations should, in fact, be
identified. Starting with an arbitrary configuration, one can
“clean” the set of ground-state labels by using local shifts
φ

q
η,r → φ

q
η,r + 2π to set extraneous labels to zero. The pat-

terns of these local 2π shifts are the same as those produced
by the application of vertex operators, some of which are dis-
played in Figs. 2 and 3. Patterns of particular use are displayed
in Fig. 14(b); we refer to the patterns therein by the labels A–E
in the cleaning argument below.

First we address the configuration of the vertex terms
which are represented in Fig. 14(a) by the gray circles. We
claim that any configuration of vertex terms is trivial and can
by cleaned so that θV

r = 0 at each r while the other terms
remain unchanged. First note that, by repeated application of
D, all vertex terms except one can be set to zero. Suppose the
remaining nonzero vertex term is in the top edge and has value
θV = q. Then, by combining B and C, we can set θV = 0 at the
expense of shifting the red oval directly above, corresponding
to θ̃1, by mq. Finally, using E , this factor of mq can be
cleaned.

Next we consider the plaquette terms θP
r . First we assign

some value in Z to each square in Fig. 14(a) except for the
bottom-left corner, which is assumed to be free of a truncated
plaquette term as discussed in the main text. Observe that
by using pattern A one can set all plaquettes to zero except
those in an “L”-shaped region on the perimeter. Suppose all
nonzero plaquettes are confined to the top and right edge. By
applying C from left to right and then top to bottom, the values
of the plaquettes can be shifted onto the red or blue ovals.
This procedure leaves one remaining nonzero plaquette in the
bottom-right corner. For this term, we can apply C to shift its
value to the left until it reaches the bottom-left corner, where
it can be removed using C′.

At this point all plaquettes and vertices have been set to
zero, leaving only the integers corresponding to interaction
terms represented by the red and blue ovals in Fig. 14. Using
E one can now clean the red and blue ovals modulo m. This
analysis yields

GSD = mLx+Ly (A22)

where Lx × Ly is the size of the square lattice � of vertices in
the array. Another method for computing topological ground-
state degeneracies for coupled-wire models was introduced in
Ref. [89]. Applying it here produces the same answer.

6. Periodic boundary conditions

We now briefly comment on the coupled-wire model when
the natural PBCs are imposed in all directions, so that the
coupled-wire array has the topology of a three-torus. In this
case, the Gauss law defined in Eq. (9) in the main text can be
applied with M = �, leading to the global constraint∑

r∈�

θP
r = 0. (A23)

Now we can apply the Haldane counting argument summa-
rized in the main text. The number of chiral gapless modes in
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the array is 4LxLy, and with PBCs there are LxLy vertex terms
and LxLy plaquette terms. Since each interaction term gaps a
pair of chiral modes, the number of interaction terms at first
appears sufficient to fully gap all chiral modes. However, the
constraint (A23) reduces by one the number of linearly inde-
pendent interaction terms in the Hamiltonian. We thus arrive
at the conclusion that the model retains one pair of gapless
chiral modes with opposite chirality when PBCs are imposed
in all directions. We remark that the model with OBCs also
has chiral gapless modes, but, as shown in Appendix A4, these
modes are associated entirely with the surface. We expect
that local bulk properties of the coupled-wire array—e.g., the
energy gap for local excitations—cannot depend on bound-
ary conditions. We therefore expect that the remaining chiral
gapless modes cannot be excited by any local operator. We
attribute these modes to an infinite ground-state degeneracy
that occurs when the continuum limit of a closely related
fracton lattice model (see Appendix C) is taken in the wire
direction. This subtlety, which is also present in Ref. [70] but
was overlooked there, will be investigated in future work.

Under the plausible assumption of an energy gap to all
topological excitations created by local operators, the topo-
logical ground-state degeneracy with PBCs can be computed
using the techniques of Appendix A5. This calculation finds
that the ground-state manifold has dimension

GSD = mLx+Ly−2 gcd(Lx, Ly ). (A24)

This differs from Eq. (A22) by the factor gcd(Lx, Ly)/m2. The
numerator of this factor comes from the fact that the final
vertex in the vertex-cleaning procedure described in Appendix
A5 can no longer be eliminated in the case of PBCs, and
the minimal shift of this remaining vertex is 2π gcd(Lx, Ly).
The denominator of this factor comes from relations among
the plaquette terms that only arise for PBCs. One factor of
m comes from the fact that cleaning all plaquettes into an
“L” shape as in Appendix A5 yields only Lx + Ly − 1 unique
plaquette terms for PBCs. The remaining factor of m comes
from the global constraint (A23), which reduces by one the
number of independent plaquette terms.

APPENDIX B: GENERALIZATION TO NON-ABELIAN
COUPLED-WIRE MODELS

We now propose a direct generalization of the coupled-
wire construction depicted in Fig. 1 that yields models
with non-Abelian excitations. The idea is to promote each
Luttinger-liquid wire in Fig. 1 to a rational CFT, and to couple
these CFTs in such a way that chiral non-Abelian topological
phases (rather than Abelian Laughlin ν = 1/m phases) reside
on x-z and y-z planes of the square lattice. We then couple the
planes by adding strong local interactions at the vertices where
they intersect; similar to the Laughlin construction, these
interactions condense p-strings consisting of fractionalized
excitations from different planes. This condensation process
generates plaquette terms that give rise to subdimensional
non-Abelian excitations. For a high-level analysis of related
models, we refer the reader to Appendix C.

A relatively simple and very interesting class of examples
uses SU (2)k CFTs as building blocks. These CFTs can be
realized using spin chains at criticality or fermionic wires

with 2k fermion species. They can be coupled using current-
current interactions within the x-z and y-z planes of the square
lattice to yield chiral SU (2)k topological phases in each plane.
Specifically, we define the SU (2)k current operators using the
decomposition SU (2)k = Zk × U (1)k as [68]

Jq,+
η,r =

√
k ψq

η,r e+iφ̃q
η,r/k, (B1)

Jq,−
η,r =

√
k ψq †

η,r e−iφ̃q
η,r/k, (B2)

Jq,z
η,r = i

√
k

2
∂zφ

q
η,r, (B3)

where r ≡ (x, y), q = 1, 2 labels whether the CFT belongs to
a vertical or horizontal plane, respectively, and η = L, R labels
the chirality. Here, ψ

q
η,xy and ψ

q †
η,xy are parafermion operators

that are the simple currents in the Zk CFT, and φ
q
η,xy are

chiral boson operators from the U (1)k CFT. The parafermion
operators in a given wire obey the exchange algebra

ψ
q
L/R,r(z)ψq′

L/R,r′ (z′) = ψ
q′
L/R,r′ (z′)ψq

L/R,r(z) e±i π
k δq,q′ δr,r′ sgn(z−z′ ),

(B4)

ψ
q †
L/R,r(z)ψq′ †

L/R,r′ (z′) = ψ
q′ †
L/R,r′ (z′)ψq †

L/R,r(z) e±i π
k δq,q′ δr,r′ sgn(z−z′ ),

(B5)

ψ
q
L/R,r(z)ψq′ †

L/R,r′ (z′) = ψ
q′ †
L/R,r′ (z′)ψq

L/R,r(z) e∓i π
k δq,q′ δr,r′ sgn(z−z′ ),

(B6)

while the chiral bosons obey the algebra[
φ̃

q
L/R,r(z), φ̃q′

L/R,r′ (z′)
] = ±iπ k δq,q′δr,r′ sgn(z − z′). (B7)

We can then couple the wires using current-current interac-
tions of the form

H = λ
∑
x,y

3∑
a=1

(
U 1

r,r+ŷ + U 2
r,r+x̂

)
, (B8)

where

U q
r,r′ = Jq,+

L,r Jq,−
R,r′ + Jq,−

L,r Jq,+
R,r′ (B9)

= k
[
ψ

q
L,rψ

q †
R,r′ ei(φ̃q

L,r−φ̃
q
R,r′ )/k + H.c.

]
. (B10)

The interactions (B8) are marginally relevant under the renor-
malization group, so the coupling constant λ flows to infinity
when it has the appropriate sign. Each plane then enters
a gapped phase with SU (2)k non-Abelian topological order
[67,68].

Next we seek vertex terms that couple intersecting x-z
and y-z planes. The simplest local operators are products of
primary operators �

q,(�)
r in each CFT, from which we can

construct Hamiltonian terms

UV,��′
r = �1,(�)

r �2,(�′ )
r + H.c. (B11)

Here, the index � = 0, . . . , k labels the k + 1 primary fields of
the SU (2)k CFT. These primary operators can be expressed in
terms of operators in the Zk and U (1)k CFTs as (suppressing
the labels q and r for compactness) [90]

�(�) = ��
L��

R ei �2

4k φ̃L e−i �2

4k φ̃R , (B12)
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where ��
L��

R is a primary operator in the Zk CFT. (Note
that �0

L�0
R = �k

L�k
R = 1). The primary operators �(�) are in

one-to-one correspondence with anyons in the gapped bulk of
the coupled-wire array, creating quasiparticle-quasihole pairs
consisting of anyons with label �. The vertex terms (B11) thus
create bound states of anyonic excitations in the intersecting
layers; adding such a term to the Hamiltonian and manually
imposing a large coupling λV � λ leads to condensation of
p-strings composed of these anyons. The natural anyon to con-
dense in this fashion is the one with label � = k. This anyon is
always Abelian and carries topological spin ei πk

2 —thus, it is a
boson when k = 0 mod 4, a fermion when k = 2 mod 4, and a
semion or antisemion when k = 1 or 3 mod 4. To condense
p-strings composed of these anyons, we choose � = �′ = k in
Eq. (B11).

Implementing p-string condensation using the vertex terms
UV,kk

r leads to modified couplings between wires arising from
perturbation theory in λ/λV . Based on our understanding of
the Abelian case, it is clear that the current-current couplings
(B9) generically excite the vertex terms (B11)—this can be
seen, for example, by inspection of the Abelian components
of the current operators (B1) and the primary operators (B12),
the commutation of which is governed by Eq. (B7). Thus,
perturbation theory generates products of the current-current
interactions (B9). An example of a term generated at fourth
order is

U P
r ∼ J1,+

L,r J1,−
R,r+ŷJ2,+

L,r+ŷJ2,−
R,r+ŷ+x̂J1,+

R,r+ŷ+x̂J1,−
L,r+x̂J2,+

R,r+x̂J2,−
L,r +H.c.,

(B13)

the sign structure of which mimics that of its Abelian coun-
terpart [see Eq. (3)]. To see that this indeed commutes with
UV,kk

r , we first consider the Abelian sector. The commutator of
the Abelian parts of the current operators in Eq. (B13) with the
Abelian part of UV,kk

r can be shown to vanish using (B7). Next,
we consider the non-Abelian sector. In order for the non-
Abelian parts of Eqs. (B13) and UV,kk

r to commute, we must
demand that the combination of Zk primary operators entering
Eq. (B11) with � = �′ = k has trivial monodromy with the
parafermion operators entering Eq. (B13). For general �, �′,
this is achieved when the following two relationships hold:

��� + �ψ − ���×ψ = −(���′ + �ψ† − ���′ ×ψ† ) mod 1,

(B14)

��� + �ψ† − ���×ψ† = ���′ + �ψ − ���′ ×ψ mod 1,

(B15)

where �O is the chiral scaling dimension of the operator O
and O × O′ denotes the fusion product of the operators O and
O′. Using the data [90]

��� = �(� + 2)

4(k + 2)
− �2

4k
, (B16)

�ψ = −1

k
, (B17)

�ψ† = − (k − 1)2

k
, (B18)

���×ψ = �(� + 2)

4(k + 2)
− (� + 2)2

4k
, (B19)

���×ψ† = �(� + 2)

4(k + 2)
− (� + 2k − 2)2

4k
, (B20)

we see that Eq. (B14) reduces to � = �′ mod k, while
Eq. (B15) reduces to � = −�′ mod k. The only nontrivial
solution satisfying both constraints is � = �′ = k.

We thus arrive at the interesting conclusion that condensing
p-strings composed of � = k SU (2)k anyons yields a class
of models that naturally generalizes the Abelian construction
depicted in Fig. 1.

Having constructed a nontrivial class of models, we now
discuss how to determine the allowed quasiparticles after
condensation. Here we can take advantage of the connection
between anyon condensation in topological quantum field the-
ories (TQFTs) and chiral algebra extensions in CFTs [72].
Namely, when a primary operator in a CFT is “condensed”
(or, algebraically speaking, added to the representation of
the vacuum sector) by adding a term of the form (B11) to
the Hamiltonian, the operator content of the CFT reorganizes
itself in a manner reminiscent of anyon condensation in TQFT.
In particular, the new primary operators in the “extended”
CFT are in one-to-one correspondence with deconfined quasi-
particles after condensation in the TQFT. Each new primary
operator corresponds to a quasiparticle species, as we saw in
the Abelian case where each local nonchiral product of vertex
operators makes a bound state of fractons. Non-Abelian exci-
tations are created by primary operators in the extended CFT
that have a nontrivial fusion algebra, i.e., if their fusion with
one or more other primary operators has multiple possible
channels.

As an example, consider a wire construction based on
SU (2)4 CFTs coupled by current-current interactions (B9)
and vertex terms (B11) with � = �′ = 4. The effect of adding
the vertex terms at strong coupling can be understood heuris-
tically by viewing the p = 1, 2 copies of SU (2)4 as two
separate SU (2)4 × SU (2)4 topological orders, the anyons of
which we label by (�, �′)p with �, �′ = 0, . . . , 4 and p = 1, 2.
In this analogy, each anyon with integer topological spin in
either of the two copies, including the “diagonal” anyons
(�, �)p, corresponds to a local operator in the associated CFT.
These two topological orders are then coupled by condensing
the anyon (4, 4)1(4, 4)2. One can verify by explicit calculation
along the lines of Ref. [72] that the condensed theory hosts
a pair of diagonal non-Abelian anyons that can be labeled
by (1, 1)1(0, 0)2 and (0, 0)1(1, 1)2. The corresponding local
operators in the CFT thus create non-Abelian quasiparticles.

Although it is interesting that we can generate non-Abelian
generalizations of the coupled-wire model studied in the main
text, the analysis of this model is cumbersome to carry out at
the level of the underlying CFTs. In Appendix C, we introduce
a general algebraic prescription for carrying out the planar
p-string condensation procedure discussed here. Applying
this construction to SU (2)k layers allows for a much more
rapid analysis of quasiparticle mobility in the resulting fracton
models.
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APPENDIX C: FURTHER ASPECTS OF PLANAR
p-STRING CONDENSATION

In this Appendix we present further details about examples
of and connections between planar p-string condensation and
existing mechanisms that generate fracton topological order.

In Appendix C1, we present further high-level examples of
planar p-string condensation, one of which is non-Abelian. In
Appendix C2, we introduce several spin lattice models con-
structed via planar p-string condensation, including a model
that is foliated equivalent [14] to the chiral fracton theory that
emerges in the bulk of the coupled-wire model introduced in
the main text. We go on to discuss in Appendix C3 how this
mechanism is related to gauging planar subsystem symmetries
[58], and in Appendix C4 how it fits into the recently devel-
oped framework of topological defect networks [17].

1. Further high-level examples

In this section we present a pair of examples, the first
generalizing the ZN layer examples to even N , the second
realizing non-Abelian fracton sectors that emerge from the
coupled-wire construction in Appendix B.

a. Semion layers

There is a closely related family of examples to those
presented in Sec. III with N even. These correspond to the
semion theory (and related theories). Again the topological
charges and their fusion are given by ZN with N an even
integer in this case. The S matrix and topological spins are

Sa,b = 1√
N

ei 2π
N ab, θa = ei π

N a2
, (C1)

and the quantum dimensions are all 1. However, in this case
the F symbols are nontrivial, namely,

F abc
[a+b+c] = ei π

N a(b+c−[b+c]), (C2)

where [ ] denotes addition modulo N .
There is an obvious ZN grading generated by braiding with

the 1 anyon, which is semionic (or a generalization thereof).
The planar p-string condensation construction of a fracton
model can be formally followed through exactly as above.
However, in this case the string operators for the anyonic
p-strings being condensed in disjoint layers do in fact have
a nontrivial anomaly due to the nontrivial F symbol. This
F symbol implies that the string operators making up the
membrane operator that creates a p-string cannot be realized
as on-site operators, and hence cannot be condensed in a
consistent way (see Appendix C3). Another way to say this
is that the p-strings cannot be condensed into the vacuum of
a gapped phase, as that would allow a vacuum to vacuum
process involving the creation and annihilation of p-strings
resulting in the vacuum state being equal to minus itself due
to the nontrivial F symbol, which takes values ±1.

b. SU (2)k anyon layers

For an example that is related to the non-Abelian coupled-
wire construction proposed in Appendix B, we consider chiral
topological layers supporting SU (2)k anyons. The topological
charges of the SU (2)k anyon theory are labeled by half inte-

gers {0, 1
2 , . . . , k

2 }. Their fusion rules, quantum dimensions, S
matrix, and topological spins are

j1 × j2 =
min( j1+ j2,k− j1− j2 )∑

j=| j1− j2|
j, d j = sin (2 j+1)π

k+2

sin π
k+2

,

S j1, j2 =
√

2

k + 2
sin

(2 j1 + 1)(2 j2 + 1)π

k + 2
, θ j =e2π i j( j+1)

k+2 ,

(C3)

respectively. See Ref. [88] for a review of the F and R symbols
of the SU (2)k anyon theory.

The k
2 particle is an Abelian Z2 anyon; it is a boson

for k = 0 mod 4, a semion for k = 1 mod 4, a fermion
for k = 2 mod 4, and an antisemion for k = 3 mod 4. The
braiding phases Sj, k

2
|S j, k

2
|−1 = ±1 with k

2 induce a Z2 grading
on the topological charges, organizing them into integers and
half integers {0, 1, . . . }+ ⊕ { 1

2 , 3
2 , . . . }−. The half-integer −1

sector contains a non-Abelian anyon for any k > 1.
We construct a fracton model by driving Z2 p-string con-

densation of k
2 anyons within x-y planes of a stack of SU (2)k

anyon layers along the x-z and y-z planes of the cubic lattice.
The resulting fracton model has a hierarchy of subdimensional
topological excitations generated by the following.

(1) Abelian Z2 fractons that appear on the open ends of
condensed p-strings.

(2) Non-Abelian (and Abelian) x̂ lineons from the half-
integer anyons in an x-z layer, trapped between p-string
planes. Similarly there are ŷ lineons from the y-z layers. There
are also non-Abelian ẑ lineons from composites of an x̂ and ŷ
lineon trapped between the same p-string planes.

(3) Planons, that may be non-Abelian, coming from the
integer anyons in an x-z or y-z layer or from composites of
fractons or lineons that have an overall trivial braiding with
the p-strings.

We remark that for odd k there is an anomaly of the string
operators preventing the p-strings from condensing to form a
consistent condensate, due to the nontrivial F symbols of the
semions or antisemions. For this reason we do not expect that
driving such a p-string condensation in odd-k SU (2)k planes
can lead to a gapped phase. In Appendix C3, this is expressed
as an anomaly of the planar subsystem symmetry that applies
semion or antisemion string operators to layers intersected by
the plane.

For k/2 an odd integer, the p-strings being condensed in
layers are made up of emergent fermions. For conventional p-
string condensation throughout the whole 3D bulk this would
be anomalous, due to the nontrivial topological spin of the
emergent fermions. However, as was shown in Ref. [58], a
planar subsystem symmetry generated by fermion string oper-
ators is not anomalous and can be gauged. This is equivalent to
the condensation of p-strings consisting of emergent fermions
(see Appendix C3 for a further discussion).

2. Lattice models

We now present several lattice-model constructions using
the planar p-string condensation mechanism. We highlight in
particular that the lattice model discussed in Appendix C2b is
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closely related to the coupled-wire model studied in the main
text and to the abstract model discussed in Sec. III B.

a. X-cube from Z2 gauge theory layers

As a warm up we consider 2D layers of toric code, i.e., Z2

lattice gauge theory, stacked along the x-z and y-z planes of
the cubic lattice. We introduce couplings that induce p-loop
condensation of m anyons on the x-y planes. The resulting
planar p-string condensed model is simply the well-known X-
cube model [41].

The Hamiltonian governing the edge qubits in each 2D
layer is

HTC = −
∑

v

∏
e�v

Ze −
∑

p

∏
e∈p

Xe, (C4)

where e � v denotes the edges e containing a vertex v and p
is used to denote plaquettes. The layers are stacked along the
x-z and y-z planes of the cubic lattice, leading to a single qubit
per edge in each x-y plane and two qubits per ẑ edge e, which
we label exz and eyz. The m anyon p-string creation operators
are given by Zexz Zeyz . These couplings are introduced to the
decoupled layer Hamiltonian

Hλ =
∑
�xz

H �xz

TC +
∑
�yz

H
�yz

TC − λ
∑
e⊥ẑ

Zexz Zeyz , (C5)

where �xz and �yz denote x-z and y-z planes, respectively. In
the limit of infinitely strong coupling λ → ∞ the two-qubit
Hilbert space on each x-y -plane edge is projected onto a
single qubit described by the operators Zexz ∼ Zeyz �→ Ze and
Xexz Xeyz �→ Xe. The resulting strongly coupled Hamiltonian
has cube terms, given by products of four plaquette terms,
arising at leading order in degenerate perturbation theory
(higher-order terms are not independent and hence simply
shift the energetics of gapped excitations). This is simply the

X-cube model at leading order:

Hcondensed = −
∑

v

∏
e�v,e⊥x̂

Ze +
∏

e�v,e⊥ŷ

Ze −
∑

c

∏
e∈c

Xe. (C6)

The anyons in the toric code layers have Z2 × Z2 fusion
generated by the Z2 electric charge e, which are created by
X string operators along edges of the graph, and magnetic
flux m, which are created by Z string operators along dual
edges. Since the m particles are planar p-string condensed in
this example, the e particles are promoted to lineons, while m
becomes a planon composite of a pair of fractons, as described
in the general treatment above.

We remark that this example extends directly to planar
p-loop condensing ZN lattice gauge theory layers to obtain
the ZN X-cube model. In the next example we introduce an
alternate anyonic planar p-loop condensation transition that
drives ZN lattice gauge theory layers to a twisted ZN X-cube
model that is foliated equivalent to the chiral fracton model
introduced in the main text and discussed in Sec. III B.

b. Anomalous string operators in ZN gauge theory

For our next example we consider anyonic planar p-string
condensation in layers containing ZN gauge theory. The re-
sulting fracton model is equivalent to the coupled-wire fracton
model introduced in the main text and Sec. III B, up to
stacking with decoupled 2D layers (also known as foliated
equivalence).

To describe the model we denote the ZN clock and shift
matrices by X and Z . They satisfy the relations

X N = ZN = 1, XZ = ωZX, (C7)

where ω is a primitive N th root of unity. The 2D layer Hamil-
tonians act on edge qubits of a square lattice via

H2D = −
∑

v

Av −
∑

p

Bp + H.c. (C8)

where the vertex and star terms are given by

(C9)

The above terms generate Z string operators on the dual
lattice, and X string operators on the lattice. These string
operators create emergent anyons corresponding to gauge flux
and charge, which we denote by m and e, respectively, that
generate ZN × ZN fusion rules. The anyon theory describing
these particles is formally denoted by the Drinfeld center
Z (VecZN ), which is discussed further in the next section. The
braiding S matrix of this anyon theory is

Seim j ,ekm� = 1

N
ωi�+ jk . (C10)

For N odd this theory can be decomposed into layers of
opposite chirality, Z (VecZN ) ∼= Z(n)

N � Z(−n)
N , for n = 1, 2, or

any other integer coprime to N , where we have used the no-
tation of Ref. [88]. The � notation we have used refers to the
operation of stacking decoupled layers. The generating anyon
for the Z(n)

N chiral layer is given by enm, while the generator of
the antichiral Z(−n)

N layer is enmN−1. Denoting anyons in terms
of the chiral-antichiral generators as (i, j) the S matrix is then
written

S(i, j),(k,�) = 1

N
ω2n(ik− j�) = S(n)

i,k S(−n)
j,� , (C11)

where S(n)
i,k , S(−n)

j,� , are the S matrices of the chiral and antichiral
layers, respectively.
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The anyon theory describing the superselection sectors of
the Laughlin state at filling fraction ν = 1

m , modulo the phys-
ical fermion, is Z(2)

N for N = m (see Ref. [88] for example).
Below we utilize the embedding of the Z(2)

N anyons into the
Z (VecZN ) anyons of the ZN lattice gauge theory to construct
a lattice model via p-string condensation that is foliated equiv-
alent [14] (i.e., equivalent up to stacking decoupled Z(−2)

N
layers) to the fracton model arising from the coupled-wire

construction in the main text when a lattice cutoff is intro-
duced in the wire direction. We explicitly consider n = 2,
which is relevant to the Laughlin case, but a more general
family of models starting from hierarchy FQH states can be
obtained using n �= 2.

The string operators for the chiral Abelian anyons in
a given 2D layer, as viewed from above, are of the
form

(C12)

For convenience we conjugate the model by the following local unitary circuit to simplify the horizontal string operators:

U =
∏
v

Hv+ x̂
2
CX 2

v+ x̂
2 ,v+ ŷ

2
H†

v+ x̂
2

, (C13)

where x̂ and ŷ denote the axes of the square lattice depicted above. where Hi is a generalized Hadamard matrix, or ZN Fourier
transform, which satisfies

HXH† = Z†, HZH† = X, (C14)

while CXi, j is a generalized controlled-X matrix, which satisfies

CX (XI )CX † = XX, CX (IX )CX † = IX, CX (ZI )CX † = ZI, CX (IZ )CX † = Z†Z, (C15)

where XI , IX denote Xi, Xj , and similarly for Z . The conjugated string operator becomes

(C16)

The Bp terms in the Hamiltonian are left invariant under con-
jugation by U , while the Av terms become

(C17)

To facilitate the coupled-layer construction we modify our
choice of the Hamiltonian vertex terms by multiplying the
above operators with plaquette terms, which preserves the
topological phase, as follows:

(C18)

The planar p-string coupled-layer model is obtained by
stacking the 2D Hamiltonian along x-z and y-z planes of the
cubic lattice, such that there are two qudits per ẑ edge coming
from the vertical edges of the intersecting 2D layers, and

driving a phase transition with a strong uniform ZZ† field
applied to these edges, i.e.,

H (α) =
∑

xz, yz planes

H2D − α
∑
e‖ẑ

ZZ† + H.c. (C19)

In the planar p-string condensed limit, as α → ∞, the low-
energy subspace has one effective qudit per ẑ edge with
logical operators ZI ∼ IZ �→ Z, XX �→ X and the leading-
order Hamiltonian on this Hilbert space is given by

H = −
∑

v

(
Ãxz

v + Ãyz
v

)−
∑

c

Bc + H.c., (C20)

where Ãxz
v and Ãyz

v are modified star terms that now act on a
common set of qubits on the ẑ edges, and

Bc =
∏
e∈c

X σe
e (C21)

is the cage term of the ZN X-cube model, where σe = ±1
depending upon the edge. Hence we refer to the Hamiltonian
(C20) as a twisted ZN X-cube model, though we remark
that the way this model is twisted is distinct from previously
considered generalizations of X-cube [42,47].

We now discuss the ground space degeneracy of the model
(C20) with periodic and open boundary conditions and de-
scribe how these results compare with the coupled-wire model
discussed in the main text and Appendices A5 and A6.

i. Periodic boundary conditions. On an L1 × L2 × L3 torus
there are an equal number of qubits and local stabilizer
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generator terms in the Hamiltonian and so we can compute the
ground space degeneracy by counting the number of indepen-
dent relations between the generators, i.e., nontrivial products
of generators equal to the identity. The cube terms are identi-
cal to those in the X-cube model, where it is known that the
product over any dual lattice plane gives rise to a relation.
Furthermore, there are two redundancies in these relations as
the product over all dual x-y planes is identical to the product
over all dual y-z planes, and similarly for dual x-z planes. The
vertex terms in Eq. (C20) are twisted relative to those in the
X-cube model, however a similar set of relations still holds:
the product of the Ãxz

v terms over an x-z plane gives a relation,
and similarly for the product of the Ãyz

v terms over a y-z plane.
Finally, we can take the product of Ãxz

v (Ãyz
v )† over an x-y plane,

leaving a product of Pauli X ±2 operators over the edges in a
pair of x-y planes, which can be canceled out by multiplication
with cube terms Bc between the planes, provided Lx, Ly are
multiples of N . There is one redundancy in these relations as
the product of the Ãxz

v relations over all x-z planes, and the
(Ãyz

v )† relations over all y-z planes is identical to the product
of the Ãxz

v (Ãyz
v )† relations over all x-y planes.

The counting of the relations modulo redundancies gives
a total ground space degeneracy of N2(Lx+Ly+Lz )−3, matching
that of the untwisted X-cube model. As explained above,
the lattice model in this section is foliated equivalent to the
topological phase of the coupled-wire model, up to stacking
with Lx + Ly decoupled Z(−2)

N layers, which are not affected by
the p-string condensation. The degeneracy of the decoupled
antichiral layers after planar p-string condensation is NLx+Ly ,
leaving a degeneracy of NLx+Ly+2Lz−3 associated to the chiral
fracton model.

To match with the degeneracy of the wire model we must
take the continuum limit in the ẑ direction, which sends the
number of sites in that direction to infinity, i.e., Lz → ∞.
Hence we see from the lattice model that there is necessarily
some infinite topological degeneracy due to the continuum
limit along ẑ. This infinite degeneracy is quite subtle, although
a similar phenomenon can already be seen to occur for the
continuum limit of decoupled topological layers stacked along
ẑ. It is topologically protected in the sense that splitting by
local operators is exponentially suppressed as a function of Lx

and Ly but it can be lifted by local operators to give a non-
trivial dispersion in the ẑ direction within the exponentially
suppressed window. We leave a more in-depth study of this
limit to future work. In the continuum limit along ẑ, relations
that limit to a product over a continuum are lumped into the
infinite degeneracy, i.e., we separate out the component of
the degeneracy that becomes infinite via N2Lz−2 → ∞. This
leaves a degeneracy of NLx+Ly−1 which matches that of the
coupled-wire model with PBCs (see Appendix A6) for N = m
and Lx, Ly such that gcd(Lx, Ly) = N .

ii. Open boundaries. It is simple to modify the above ex-
ample to match the alternative boundary conditions used to
calculate the ground space degeneracy in the main text and in
Appendix A5. To see this, we first note that by picking gapped
open boundary conditions at x = 0, Lx, for an x-z layer, and
y = 0, Ly, for a y-z layer, we can induce the chiral layer to
fold over and become the antichiral layer. Equivalently, with
electric charge-condensing rough boundaries [91] we have
that pairs of chiral and antichiral anyons condense at the
boundary. Combining this with periodic boundary conditions
in the ẑ direction we have a system that can be viewed as
decoupled tori on x-z and y-z planes supporting chiral Z(2)

N
anyons. Inducing p-string condensation on the chiral layers
only, as described above, drives the chiral layers to enter
the phase of the fracton model described in the main text,
but with gapped boundary conditions where the x = 0 and
x = Lx (y = 0 and y = Ly) boundaries of the fracton model
are connected via a stack of 2D antichiral layers.

To construct the lattice model we again start from decou-
pled 2D Hamiltonians that we write as

HRBC
2D = −

∑
v

Av −
∑

p

Bp −
∑
p∈L

BL
p −

∑
p∈R

BR
p + H.c.,

(C22)

where the Av terms are the same as above, and the Bp terms
on plaquettes not touching the left or right open boundaries
(as viewed from above) are also the same. The plaquette terms
touching the left, or right, boundaries (viewed from above) are
given by

(C23)

respectively. At this rough boundary, e anyons condense as
single vertex terms Av can be excited by an open string of X
operators ending on the boundary. In terms of the decompo-
sition into chiral and antichiral layers Z(2)

N � Z(−2)
N generated

by e2m and e2mN−1, respectively, this gapped boundary corre-
sponds to a simple fold, since e2m × e2mN−1 = e4 generates
the condensate there.

As above, we apply the local unitary circuit from
Eq. (C13), restricted to the vertices not on the boundaries.
All but the leftmost vertex terms take the same form as in

Eq. (C17). After a phase preserving redefinition of the vertex
terms they are all brought into the form of Eq. (C18) (in-
cluding the leftmost vertex terms, by way of multiplication
with the BL

p terms). The coupled-layer model is found by
driving planar p-string condensation on the x-y planes of a
stack of Z(2)

N layers in x-z and y-z planes with rough boundary
conditions on the x = 0, Lx and y = 0, Ly planes:

H (α) =
∑

xz, yz planes

HRBC
2D − α

∑
e‖ẑ

ZZ† + H.c. (C24)
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Taking the planar p-string condensed limit, α → ∞, projects
each edge into a single-qudit subspace spanned by operators
ZI ∼ IZ �→ Z, XX �→ X . The Hamiltonian on this Hilbert
space is given by

H = −
∑

v

(
Ãxz

v + Ãyz
v

)−
∑

c

Bc −
∑
c∈∂

B∂
c + H.c. (C25)

where Ãxz
v , Ãyz

v , and Bc are as above and

B∂
c =

∏
e∈c

X σe
e (C26)

is a partial cage term of the X-cube model in the presence
of a rough gapped boundary [75], where c contains eight
edges for a boundary term and five edges for a corner term,
while σe = ±1 depending upon the edge. To count the ground
space degeneracy in the above stabilizer Hamiltonian we first
note that with the gapped open boundary conditions there are
3LxLy + Lx + Ly edge qubits, 2LxLy star terms, and LxLy +
Lx + Ly + 1 cube terms (including truncated edge and corner
cubes) per x-y layer. There are (Ly + 1) + (Lx + 1) + Lz con-
straints from products of cube terms over dual x-z, y-z, and
x-y planes that give identity. However, there are two global
redundancies between the product of the relations over all dual
x-z and y-z planes, and all x-z and x-y planes, respectively.
Combining the above contributions yields a ground-state de-
generacy of

NLx+Ly = N (3LxLy+Lx+Ly )Lz−(3LxLy+Lx+Ly+1)Lz+(Lx+1+Ly+1+Lz )−2

(C27)

which for N = m matches the result quoted in the main text
and derived in Appendix A5.

c. String-net layers

Finally, we consider a class of examples based on inducing
planar p-string condensation on decoupled layers supporting
models from the general class of 2D string-net Hamiltonians.

Any nonchiral anyon theory that admits a gapped boundary
to vacuum (technically Witt trivial [92]) can be realized by a
string-net lattice model [93]. The starting point is a theory C
consisting of a finite number of string types {s}, including the
vacuum 1, together with a fusion operation described by co-
efficients Nc

ab that is not strictly associative, which is captured
by F symbols. This mathematical object is formalized by a
unitary fusion category (UFC) [94].

The string-net Hamiltonian based on C is defined on a hon-
eycomb lattice (and more generally on any directed trivalent
planar graph):

HSN = −
∑

v

Av −
∑

p

Bp, (C28)

where the vertex term enforces the fusion rule at every vertex
of the lattice

(C29)

with

δc
ab =

{
0 Nc

ab = 0,

1 Nc
ab > 0,

(C30)

and the plaquette term further decomposes as

Bp = 1

D2

∑
s∈C

dsB
s
p, (C31)

where ds is the quantum dimension of string type s, D2 =∑
s d2

s is the total quantum dimension of C, and

(C32)

inserts a loop of string type s into the plaquette p, which is
then fused into the lattice.

The emergent anyons in the topological phase containing
the string-net model based on the UFC C are described by
the Drinfeld center Z (C). In the special case that C already
describes an algebraic theory of anyons, known as a modular
tensor category, the Drinfeld center is simply given by stack-
ing the anyon theory with its time reverse, Z (C) ∼= C � C.
Another important special case is where the string types are
given by elements of a finite group G and the F symbols are
trivial, denoted VecG, in which the emergent anyons Z (VecG)
correspond to the charges, fluxes, and dyons of G gauge the-
ory.

If the emergent anyon theory Z (C) contains a group G of
Abelian bosons that are closed under fusion, then the above
lattice model can be constructed so as to have an on-site
one-form G symmetry [95–98]. This is achieved by taking an
input UFC CG that is G graded, without loss of generality. This
simply means that the string types decompose into nonempty
g sectors Cg containing string types we denote {sg}. The full
UFC is recovered by a direct sum over these sectors, i.e.,

CG =
⊕

g

Cg, (C33)

and the fusion rule respects the grading, i.e.,

Nck
agbh

= δghk̄Nck
agbh

, (C34)

where k̄ = k−1. The plaquette terms of the string-net Hamil-
tonian can then be rearranged to form a projection onto the
symmetric sector of a G representation:

Bp = 1

|G|
∑

g

Bg
p, (C35)

where

Bg
p = 1

D2
0

∑
s∈Cg

dsB
s
p, (C36)

and D2
0 = ∑

s∈C0
d2

s is the total quantum dimension of the
trivial sector.

To describe the one-form symmetry we first fix a decom-
position of the Abelian group

G ∼= Zp
n1
1

× · · · × Zp
nk
k
, (C37)
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for primes pi, and their powers ni ∈ N. Using this decom-
position we can express an arbitrary group element and its
inverse as

g = (g1, . . . , gk ), ḡ = (−g1, . . . ,−gk ), (C38)

where gi = 0, . . . , pni
i − 1 and group composition is given by

addition in Zp
ni
i

. We can now define a generalized clock matrix
on the G-graded vector space of string types. Denoting a basis
element from sector g as |ag〉, the generalized clock matrix
acts via

Z̃g |ah〉 =
k∏

i=1

ω
gihi
i |ah〉 , (C39)

where ωi is a primitive pni
i th root of unity and gihi denotes

multiplication in Zp
ni
i

. This clock operator has commutation
relation

Z̃g
e Bh

p =
k∏

i=1

ω
σ

p
e gihi

i Bh
pZ̃g

e , (C40)

with the plaquette representation of G, where e ∈ ∂ p and
σ

p
e = 1 if the orientation of e matches p and −1 otherwise.

The one-form symmetry is then generated by string opera-
tors

Z̃g
γ :=

∏
e∩γ

(Z̃g
e )σ

γ
e , (C41)

where γ denotes a closed curve in the dual lattice, and σ
γ
e = 1

if γ intersects e at a right-handed crossing, and −1 otherwise.
When applied to an open curve γ , running from plaquette γ−
to γ+, the string operator Z̃g

γ creates a ḡ boson at γ− and a g
boson at γ+.

We now utilize this one-form symmetry, and the Abelian
bosons created by open string operators, to construct a lattice
model by layering graded string nets along the x-z and y-z
planes of a cubic lattice and inducing p-string condensation
of these bosons in x-y planes. We consider layers of graded
string-net models on the square lattice, where each vertex is
resolved into a pair of trivalent vertices, making it equivalent
to the honeycomb lattice. The decoupled layer model is then
described by the Hamiltonian

Hdecoupled =
∑
�x

Hyz,�x

SN +
∑
�y

H
xz,�y

SN , (C42)

where the sums are taken over y-z and x-z planes of the cubic
lattice, respectively. This system has one qudit per x̂ and ŷ
edge; two qudits per ẑ edge of the cubic lattice, one coming
from each layer intersecting at that edge; and several qudits
per vertex, coming from the resolved vertices of the 2D square
lattice string net. A basis for the qudits on each ẑ edge of
the cubic lattice is given by a pair of string types, one from
each intersecting layer, which we take to share a common
orientation.

To induce p-string condensation we first note that Z̃g
exz Z̃

ḡ
eyz

creates two pairs of g bosons adjacent to e that are equivalent
to a small loop of the p-string excitation in the x-y plane
labeled by g. Hence adding these operators to the Hamiltonian
and taking the limit of large coupling strength induces conden-
sation of these p-strings within x-y planes. The coupled-layer

Hamiltonian is

H (�) = Hdecoupled − �
∑
e‖ẑ

∑
g∈G

Z̃g
exz

Z̃ ḡ
eyz

, (C43)

and in the limit of large � it enters the planar p-string
condensed phase. For � → ∞ the on-site Hilbert space is
projected into the subspace given by

⊕
g Cxz

g � Cyz
g which is

spanned by pairs of strings with matching sector label |sg, s′
g〉.

At leading order in perturbation theory the p-string condensed
Hamiltonian on this Hilbert space is

Hcondensed = −
∑

v

Axz
v + Ayz

v −
∑

c

Bc, (C44)

where Axz
v includes the vertex terms for the resolved vertex

in the x-z layers, and similarly for Ayz
v . We remark that the

Av terms appear unchanged as they commute with the Z̃ ḡ
e

operators. The cube term Bc is given by

Bc = 1

|G|4
∑

g

Bg
c, (C45)

where Bg
c = Bg

pxzB
g
p′xzB

g
qyzB

g
q′yz with p, p′ the x-z plaquettes in

∂c and similarly for q, q′ and y-z .
The emergent excitations of the model are described by the

general theory of excitations that arise by applying planar p-
string condensation to the g bosons in layers of Z (C) anyons
(see Sec. III A).

i. SU (2)k string-net layers. When the input UFC is given
by the SU (2)k anyon theory introduced in Appendix C1b,
the string types are Z2 graded into integer and half-integer
sectors with the generalized clock operator given by Z̃ | j〉 =
(−1)2 j | j〉, where j = 0, 1

2 , . . . , k
2 . The plaquette terms in the

SU (2)k string-net model can be written as Bp = 1
2 (B+

p + B−
p )

where

B+
p = 1

D2
0

∑
j integer

d jB
j
p, B−

p = 1

D2
0

∑
j half integer

d jB
j
p. (C46)

The planar p-string condensation on layers of SU (2)k string
nets is induced by driving a phase transition with large Z̃Z̃
couplings on every ẑ edge. This projects into a subspace where
the string types on the ẑ edges are forced to both be integers,
or both be half integers. The cage operators in the condensed
model are given by products B±

c = B±
pxzB

±
p′xzB

±
qyzB

±
q′yz using the

same notation as above.
The emergent anyon theory in each string-net layer is

described by SU (2)k � SU (2)k , the elements of which we
denote by (i, j). The Z2 one-form symmetry utilized in the
p-string condensation is generated by the (k/2, k/2) boson
in this anyon theory. The anyons that braid nontrivially with
this boson, and hence are promoted to lineons in the planar
p-string condensed model, are of the form ( i

2 , j) or ( j, i
2 ),

for i, j integers, whereas pairs of integers or half integers
braid trivially with (k/2, k/2) and hence remain planons. The
(k/2, k/2) boson itself is a planon that is equivalent to a
composite of fractons.

3. Construction from gauging planar subsystem symmetries

In this section we describe how planar p-string condensa-
tion can be induced by gauging planar subsystem symmetries.
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FIG. 15. (a) A subsystem symmetry on an x-y plane (green),
consisting of a product of Abelian anyon string operators (red) where
the plane intersects topological layers in the x-z planes. (b) The
domain wall created by applying a partial subsystem symmetry is
a p-string excitation. Gauging the subsystem symmetry condenses
these domain walls within the plane, hence inducing planar p-string
condensation. The connection between subsystem symmetries and
p-string excitations depicted in panels (a) and (b) holds similarly
when topological layers in y-z planes are also included; the simpler
case has been depicted for clarity of presentation.

The planar p-string condensation introduced above can be
realized by gauging a planar subsystem symmetry [41,99–
101] along a stack of planes, as introduced in Ref. [58] (see
Ref. [102] for a related discussion). The particular planar
subsystem symmetries are generated by a stack of Abelian
string operators [see Fig. 15(a)]. The domain wall of such a
planar symmetry corresponds to a p-string, and gauging the
symmetry condenses these domain walls [see Fig. 15(b)]. This
provides insight into the possible anomalies of the subsystem
symmetry which prevent it from being gauged, and render the
corresponding p-string condensation inconsistent. In particu-
lar, anomalies of the one-form symmetries, generated by the
string operators involved in the planar symmetries, that arise
due to braiding are no obstacle to gauging these symmetries as
the string operators involved do not intersect, hence fermionic
Z2 and arbitrary ZN anyons (for N > 2) can be planar p-
string condensed. Only anomalies arising from the non-on-site

nature of the string operators present obstacles to gauging
planar symmetries, such as for those generated by a stack of
semionic string operators.

We consider a local Hamiltonian on the cubic lattice H =∑
v hv with planar subsystem symmetries in the x-y planes of

the cubic lattice generated by∏
x,y

Ux,y,z(g), (C47)

where each on-site action is given by a product of string opera-
tors segments on the intersecting layers U (g) = V xz(g)W yz(g).
That is,

∏
x V xz

x,y,z(g) is an on-site string operator for an Abelian
G anyon on an x-z layer, and similarly

∏
y W yz

x,y,z(g) is a string
operator on a y-z layer. The domain wall obtained by truncat-
ing this symmetry corresponds to a p-string excitation formed
by a loop of Abelian g anyons. We can gauge each planar
symmetry following the standard procedure for gauging a
global 2D symmetry [103–106]; this is known to condense the
domain walls, and hence induce planar p-string condensation.
Although the symmetries described here are Abelian, the pla-
nar gauging can be applied also to non-Abelian symmetries.
We describe the general gauging procedure below as it may
be useful in future work.

To gauge the symmetry we first introduce C[G] gauge spins
onto the x̂ and ŷ edges of the cubic lattice, which are given an
orientation. Next we introduce projectors on each vertex that
implement a generalized Gauss law within each plane:

Pxy
v = 1

|Gxy|
∑

g∈Gxy

Pxy
v (g), (C48)

Pxy
v (g) = Uv (g)

∏
e→v,e⊥ẑ

Le(g)
∏

e←v,e⊥ẑ

Re(g), (C49)

where e → v (e ← v) denotes adjacent edges that are ori-
ented towards (away from) the vertex v, and L(g), R(g),
denote the left and right regular representations, respectively.
We also introduce projectors onto zero flux through each x-y
plaquette:

F xy
p =

∑
g1,g2,g3,g4

δ
(
g
σ

p
e1

1 g
σ

p
e2

2 g
σ

p
e3

3 g
σ

p
e4

4 = 1
)
πe1 ẑ(g1)πe2 ẑ(g2)πe3 ẑ(g3)πe4 ẑ(g4), (C50)

where πeẑ(g) = |g〉eẑ 〈g| and the edges e1, e2, e3, e4 ∈ ∂ p are
in order starting from some vertex in ∂ p and following the
orientation induced by p with σ

p
ei = 1 if the orientation of ei

matches and −1 otherwise.
To gauge a local term in the Hamiltonian we extend it onto

the gauge qubits and then project onto the subspace of gauge
invariant operators as follows:

G[hv] = P

⎡⎣hv

∏
e∈TOm

πeẑ(1)

⎤⎦, (C51)

where Thv
is a tree, within an x-y plane, that contains the

vertices in Shv
, the support of hv . The projection onto the

subspace of gauge invariant operators is

P[O] =
∑
{gv}

∏
v∈SO

Pxy
v (gv )|SO O

∏
v∈SO

Pxy
v (gv )|†SO , (C52)

where SO is the set of sites in the support of O. The gauged
Hamiltonian is then

Hgauged =
∑

v

G[hv] − ε
∑

p

F xy
p − λ

∑
v

Pxy
v , (C53)

and the Gauss law constraints become strict in the limit of
λ → ∞.

By gauging the planar symmetries, all operators that do
not commute with them are projected out. In particular the
hopping operators for any anyons in the 2D layers that braid
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nontrivially with the string operators in each planar symmetry
are projected out. This causes these anyons to become stuck
between a pair of plains, hence becoming lineons. Any anyons
that braid trivially with the planar symmetry string operators
remain planons. The gauge charges are equivalent to pairs
of anyons that are created by a string operator along ẑ that
violates the planar symmetry, and hence are planons given by
a composite of lineons. The gauge fluxes are given by gauged
twist defects [58,98,106], obtained by terminating a domain
wall of the symmetry, and hence correspond to fractons. A pair
of such fractons separated by a unit along x̂ or ŷ is equivalent
to one of the g anyons that is being p-string condensed, and
hence is a planon if the anyon is bosonic or fermionic, and a
lineon if the anyon has a nontrivial self-braiding phase.

Honeycomb model example

We now present an example lattice construction based on
fermionic planar p-string condensation induced by gauging
planar subsystem symmetries on layers of Kitaev’s honey-
comb model [86].

We consider layers supporting chiral Ising anyons, realized
by Kitaev’s honeycomb model [86], and apply planar p-string
condensation to the Z2 fermions in each layer. This realizes
a model that is closely related to the SU (2)2 example from
Appendix C1b, since the anyons only differ by the Frobenius-
Schur indicator for the non-Abelian particle [107], which is
+1 for Ising and −1 for SU (2)2. Hence the resulting fracton
models differ only in the Frobenius-Schur indicators of the
non-Abelian lineons.

For the lattice model we consider Kitaev’s honeycomb
model [86] in the chiral Ising anyon phase with a perturbation
that respects the fermionic one-form symmetry and opens an
energy gap:

H (J,�) = −J
∑
〈i j〉

Ki j − �
∑

〈i j〉〈ik〉
Ki jKik

−�
∑

〈i j〉〈ik〉〈i�〉
Ki jKikKi�,

where i, j, k, l, denote distinct points and 〈i j〉 denote edges in
the honeycomb lattice. The chirality of the gapped Ising anyon
phase is given by ν = sgn�. The edge operators Ki j depend
on the orientation of 〈i j〉 which we denote by α = x, y, z, i.e.,

Ki j = σα
i σα

j , (C54)

where σ x = X, σ y = Y, σ z = Z. Abusing notation to only
keep track of the edge orientation and after coarse graining
to a square lattice with two qubits per site we have

(C55)

The fermionic one-form symmetry restricted to the x̂ axis is
given by ∏

i

(ZZ )i j, (C56)

and truncating this symmetry operator to a finite line creates
emergent fermion excitations at the end points.

We consider a stack of perturbed honeycomb layers (that
have been coarse grained to the square lattice) along the x-z
and y-z planes of a cubic lattice such that the ẑ axes of the
layers align: ∑

�x

Hyz
�x

(J,�) +
∑
�y

Hxz
�y

(J,�), (C57)

where Hyz
�x

indicates the honeycomb Hamiltonian in a y-z
plane at x = �x. This model obeys a large symmetry group
given by the product of the fermionic one-form symmetries
within each layer; this contains a 3D one-form symmetry
given by taking products of the fermionic string operators over
codimension-1 surfaces [58]. Within the one-form symmetry
group is a subgroup of planar subsystem symmetries along
the x-y planes of the cubic lattice, generated by products of
the fermionic string operators over such a plane:∏

i, j

(ZZ )yz
i jk (ZZ )xz

i jk, (C58)

where yz, xz denote the plane from which the qubits at co-
ordinate i jk originate. The domain walls of these planar
symmetries are p-strings formed by the fermion excitations
in each layer that the p-string intersects.

To induce planar p-string condensation we gauge the
subsystem symmetries defined above. This introduces an ad-
ditional qubit to each x̂ and ŷ link of the cubic lattice, which
we index with half-integer coordinates. The gauged Hamilto-
nian is then given by∑

�x

H̃ yz
�x

(J,�) +
∑
�y

H̃ xz
�y

(J,�) − ε
∑
i jk

Fi jk − λ
∑
i jk

Gi jk,

(C59)

where

Fi jk = X(i+ 1
2 ) jkX(i+ 1

2 )( j+1)kXi( j+ 1
2 )kX(i+1)( j+ 1

2 )k (C60)

energetically penalizes nonflat Z2-gauge connections,

Gi jk = (ZZ )yz
i jk (ZZ )xz

i jkZ(i+ 1
2 ) jkZ(i− 1

2 ) jkZi( j+ 1
2 )kZi( j− 1

2 )k (C61)

energetically enforces the planar Gauss law, which becomes
strict in the λ → ∞ limit, and the gauged Hamiltonians within
each layer are defined by

H̃ (J,�) = −J
∑
〈i j〉

K̃i j − �
∑

〈i j〉〈ik〉
K̃i j K̃ik

−�
∑

〈i j〉〈ik〉〈i�〉
K̃i j K̃ikK̃i�,

with minimally coupled local terms

(C62)

This produces a fracton model the emergent excitation theory
of which is closely related to the SU (2)2 model described in
Appendix C1b up to the Frobenius-Schur indicator of the non-
Abelian lineons being −1.
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4. Topological defect network construction

The planar p-string condensed models introduced in this
paper can be described by the recently introduced topological
defect network construction, providing support for the con-
jecture made in Ref. [17] that all gapped fracton topological
orders fit into this framework. We follow the procedure used
in Ref. [58] to turn a gauged layer construction into a defect
network by introducing layers of gauge theory on the subsys-
tem symmetry planes and gapped boundaries where the planes
intersect the initial stacks of topological layers.

The defect network construction is given by trivial three-
strata, 2D topological orders described by the anyon theory
M on the x-z and y-z oriented two-strata, and A gauge the-
ory [denoted Z (VecA)] on the x-y oriented two-strata. The
codimension-2 defects on the ẑ oriented one-strata are simply
given by the trivial identity domain wall between the pairs of
x-z two-strata, and y-z two-strata, meeting there, respectively
[see Fig. 16(c)]. This is described by the following Lagrangian
algebra of bosons that condenses on the defect:

L =
∑

a,b∈M
(a, ā, b, b̄), (C63)

where we have used the folding trick to view the defect as a
gapped boundary to vacuum of Mxz � Mrev

xz � Myz � Mrev
yz ,

with the layer subscripts included for guidance. Simi-
larly, the defects on the x̂ and ŷ oriented one-strata
are equivalent to gapped boundaries to vacuum of

FIG. 16. (a) A ŷ-oriented one-strata where x-y -oriented two-
strata supporting ZN gauge theory (green) and y-z -oriented
two-strata supporting a general topological order that contains ZN

Abelian anyons meet. (b) A ŷ-oriented one-strata where x-y -oriented
two-strata supporting ZN gauge theory (green) and x-z -oriented
two-strata supporting a general topological order that contains ZN

Abelian anyons meet. (c) A ẑ-oriented one-strata linking x-z -
oriented two-strata and y-z -oriented two-strata, by a tensor product
of identity domain walls.

M � Mrev � Z (VecA) � Z (VecA)rev via the folding trick.
The following Lagrangian algebra describes the appropriate
gapped boundary:

L =
∑
a∈M

∑
b∈Z (VecA )

∑
χ∈Â

∑
g∈A

(aχ , ḡ ⊗ āχ̄ , χ ⊗ bg, b̄ḡ), (C64)

where we have utilized the A grading of A gauge theory by
flux sectors g [see Figs. 16(a) and 16(b)]. This construction
presents an immediate generalization of the construction by
replacing the gauge theory layers Z (VecA) with more general
A-graded anyon theories.
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