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Electron-induced nuclear magnetic ordering in n-type semiconductors
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Nuclear magnetism in n-doped semiconductors with a positive hyperfine constant is revisited. Two kinds
of nuclear magnetic ordering can be induced by resident electrons in a deeply cooled nuclear spin system.
At positive nuclear spin temperature below a critical value, randomly oriented nuclear spin polarons similar
to that predicted by Merkulov [Phys. Solid State 40, 930 (1998)] should emerge. These polarons are oriented
randomly, and within each polaron, nuclear and electron spins are aligned antiferromagnetically. At negative
nuclear spin temperature below a critical value, we predict another type of magnetic ordering—a dynamically
induced nuclear ferromagnet. This is a long-range ferromagnetically ordered state involving both electrons and
nuclei. It can form if electron spin relaxation is dominated by the hyperfine coupling, rather than by the spin-orbit
interaction. Application of the theory to the n-doped GaAs suggests that ferromagnetic order may be reached at
experimentally achievable nuclear spin temperature �N ≈ −0.5 μK and lattice temperature TL ≈ 5 K.
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I. INTRODUCTION

Magnetism is a very broad subject of condensed-matter
physics, actively studied due to its countless applications
and its fundamental interest. Current promising research
directions include nanomagnetism [1], multiferroics [2],
magnetism in graphene [3], molecular magnetism [4], and
magnetism in dielectric oxides [5], to cite just a few.

Nuclear magnetism is a special case, because interactions
between nuclear spins, either dipolar or mediated by hyperfine
interaction, are much weaker than electronic spin interactions.
For this reason, critical temperatures for nuclear spin ordering
in metals or insulators are generally less than 1 μK [6], except
for Van Vleck paramagnets [7] and solid He3 [8], where they
are in the mK range. Nevertheless, since nuclear spin systems
(NSSs) offer a rich playground in the field of magnetism, they
have motivated a large body of research [6,7,9–19]. Because
a NSS reaches an internal equilibrium within a time T2, much
shorter than the spin-lattice relaxation time T2 � T1, nuclear
spins can be cooled down to temperatures much lower than
the lattice temperature [20–22]. NSSs also offer a unique
opportunity to explore the magnetic phase diagram at nega-
tive temperatures [23]. In these quite unusual conditions, the
thermodynamics tells us that the system tends to maximize its
free energy, and antiferromagnetic interactions may lead to a
ferromagnetic order [6,12].

Most of the experimental work has been performed in met-
als, which are better adapted to demagnetization cooling due
to their high thermal conductivity [6]. In insulators, nuclear
spins were first cooled to the milli-Kelvin range by dynamic
nuclear polarization using the solid-state effect. Final cooling
was achieved by adiabatic demagnetization in the rotating

frame to avoid the fast nuclear spin relaxation by paramag-
netic impurities, which takes place at zero magnetic field [11].
For semiconductors, it was shown theoretically that, similarly
to insulators, nuclear magnetic ordering should emerge below
a critical temperature [14,24]. Later, quite different magneti-
cally ordered states were predicted to form in lightly n-doped
semiconductors in the presence of localized electron states.
The localized states could be either those of shallow donors in
n-doped semiconductors in the insulating regime, or weakly
strained quantum dots [25]. It was suggested that hyperfine
interaction between a localized electron spin and a NSS could
give rise to the formation of the antiferromagnetic ordering
in the vicinity of each donor; see Fig. 1(a) [9,18,19]. Such a
state was called a nuclear spin polaron, in analogy with the
magnetic polaron extensively studied (both theoretically and
experimentally) in diluted magnetic semiconductors (DMSs)
[26]. In DMSs, the polaron consists of a cloud of spins of
magnetic impurities (playing the role of nuclei) ordered under
the orbit of a localized electron or hole, and the ordering
is induced by the exchange interaction (rather than hyper-
fine interaction). While the formation of magnetic polarons
in DMSs has been demonstrated in numerous experiments,
the implementation of the polaron in a NSS is still awaiting
experimental demonstration. In the following, the mechanism
underlying the formation of this kind of state will be referred
to as the static mechanism, because it involves electron spin
relaxation toward thermodynamic equilibrium with the crystal
lattice.

In this paper, we extend and amend the existing theory
of magnetically ordered states in n-doped semiconductors.
Our model accounts not only for the electron spin relaxation
toward its thermal equilibrium with the lattice, but also for
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FIG. 1. Two kinds of magnetic ordering. Left: At positive nuclear
spin temperature, local magnetic order (polaron) around each local-
ized electron with spin S may form. The electron spin and the nuclear
spins are antiparallel (a). Polaron spins are oriented randomly, and
there is no long-range ordering (c). Right: At negative nuclear spin
temperature, electron and nuclear spins are parallel (b). Dynamic
polarization of electron spins by the cold NSS may lead to the
emergence of long-range ferromagnetic order (d) if the hyperfine
mechanism of electron spin relaxation dominates over spin-orbit
interaction.

eventual dynamic polarization of electrons by the NSS, which
becomes important when the NSS is cooled down to negative
temperature [27]. We show that if electron spin relaxation via
hyperfine interaction dominates over spin-lattice relaxation,
long-range ferromagnetic order should emerge at negative nu-
clear spin temperature below a critical value. The underlying
mechanism will be referred to as the dynamic mechanism,
since it involves dynamic polarization of the electron spins
by the NSS.

Taking into account both static and dynamic mechanisms,
we construct the magnetic phase diagram of the coupled
electron-nuclei spin system. Its implementation for n-GaAs
is shown in Fig. 2. At positive nuclear spin temperature below
�s

N > 0, the NSS aligns antiferromagnetically with the elec-
tron spin due to the static mechanism, so that the ensemble of
randomly oriented nuclear polarons emerges. �s

N decreases
when the lattice temperature increases, but it does not depend
on the ratio �L/�N; see Fig. 2(a). At negative nuclear spin
temperature below critical �d

N < 0 [Fig. 2(b)], long-range
ferromagnetic order builds up in a wide area of the (�L/�N,
TL) parameter space. This type of ordering is controlled by the
dynamic mechanism, and it has been overseen so far.

This paper is organized in seven sections, including an
Appendix. In the next section, we present a model describing
an ensemble of weakly interacting electron spins localized on
shallow donors in a bulk semiconductor, or in QDs, each of

FIG. 2. Magnetic phase diagram calculated for n-GaAs NSS
cooled down to either positive (a) or negative (b) spin temperature,
as a function of the ratio between spin-orbit and hyperfine electron
spin relaxation rates �L/�N and lattice temperature TL. (a) Randomly
oriented nuclear polarons may form in the entire parameter space; the
critical temperature �s

N > 0 is given by Eq. (6). (b) Ferromagnetic
order emerges in the parameter space given by Eq. (7) at �d

N < 0
given by Eq. (5). Red crosses indicate the points in the parameter
space addressed in Figs. 3 and 5. The right scale shows donor densi-
ties corresponding to the values of �L/�N in GaAs.

them being coupled to the underlying nuclei and an exter-
nal heat bath (crystal lattice). Rate equations describing this
system are derived in the Appendix. They allow us to intro-
duce the basic phenomenology of the magnetically ordered
states and to identify the positive feedback loops that govern
their formation. In Sec. III we go beyond the approximation
of homogeneous magnetization, and we account for spatial
correlations within the NSS. These correlations are critically
important since they determine the nature of the ordered
states: the nuclear polarons ensemble is characterized by zero
correlation length, while the ferromagnetic order extends over
the entire system. The next two sections (Secs. IV and V)
address the possibility of the experimental detection of nu-
clear spin correlations and ordering. They are followed by
concluding remarks.

II. PHENOMENOLOGY OF THE FEEDBACK LOOP AT
POSITIVE AND NEGATIVE TEMPERATURES

Let us consider spin relaxation of an ensemble of localized
electrons interacting with a NSS cooled down to a temperature
�N < TL. Each electron spin interacts with N nuclei. The
electron spin correlation time τc is supposed to be short. This
means that τc at a given localization center (impurity or QD)
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is much shorter than the period of the electron spin precession
in the Overhauser field BN created by the random fluctuations
of nuclear spin in the vicinity of this center. In this case, the
relaxation time of the entire electron spin ensemble is longer
than τc, because electron hopping between centers, as well
as the exchange interaction between localized electrons, are
nearly spin-conserving. Small spin-orbit corrections to the
conduction-band Hamiltonian lead to the relaxation of the
ensemble mean spin at a rate �L << 1/τc. The regime of short
correlation time is relevant in the majority of experiments on
the electron-nuclear spin dynamics in bulk semiconductors
and nanostructures, with the exception of single quantum dots
[28–30].

Due to some fluctuation, the average electron spin 〈�S〉
(which is supposed to be homogeneous in space) may differ
from zero 〈�S〉 = 〈Sz〉 �ez. Then, the Knight field Be created by
nonzero electron spin gives rise to the nuclear spin polariza-
tion and thus the average nuclear spin in the same direction.
The dynamics of this ensemble can be described by the fol-
lowing rate equation:

〈Ṡz〉 = −�S(〈Sz〉 − ST) + �N
〈Jz〉

2〈J2
⊥〉

(
1 − 〈Sz〉ST

S2

)
. (1)

Here 〈J2
⊥〉 is the mean-squared transverse (perpendicular to the

Knight field) fluctuation of the total nuclear spin interacting
with the electron, S = 1/2 is the electron spin value, and ST

is the equilibrium value of the electron spin in the presence
of the spin-polarized nuclei at a given lattice temperature
TL. Derivation of Eq. (1) from the basic laws of quantum
mechanics is provided in Appendix A 1.

In this work, we limit our considerations to the case
of weak polarization of electron and nuclear spins, which
remains relevant until collective electron-nuclei spin states
are formed. In this approximation, 〈Sz〉ST ≈ 0 and 2〈J2

⊥〉 ≈
4I (I + 1)/3 ≡ Q. Thus, Eq. (1) reduces to

〈Ṡz〉 = −�S(〈Sz〉 − ST) + �N
〈Jz〉
Q

. (2)

Its first term on the right-hand side accounts for the relax-
ation of the electron mean spin toward its value at thermal
equilibrium with the lattice, ST, at the rate �S = �L + �N.
The second term is related to electron-nuclei spin flips. This
term was not considered in the nuclear magnetism models
developed previously. It allows for the dynamic polarization
of the electron by the cold nuclei, and it is responsible for
out-of-equilibrium electron spin polarization. Assuming that
the wave function of the localized electron has a spherically
symmetric exponential form characterized by the Bohr radius
aB, we can write the average nuclear spin projection on the
Knight field as

〈Jz〉 = − I (I + 1)

3N
〈Sz〉〈A〉βN. (3)

Here I is the nuclear spin value (assumed to be identical for all
nuclear species in the crystal), βN is the inverse nuclear spin
temperature expressed in energy units, βN = 1/kB�N, kB is
the Boltzmann constant, 〈A〉 = ∑

l AlAl is the hyperfine inter-
action constant averaged over all nuclear species in the crystal,
Al and Al are the hyperfine constant and the abundance of lth
isotope, respectively, N = 27πa3

B/8v0 is the number of nuclei

under the donor orbit, and v0 is the volume of the crystal
elementary cell. Within the same approximation, the electron
spin polarization at equilibrium, ST, reads

ST = −〈A〉βL

4
κ〈Jz〉, (4)

where βL = 1/kBTL is the inverse lattice temperature ex-
pressed in energy units, κ = 27n0/64, and n0 is the number
of atoms in the crystal elementary cell.

Equation (2), with 〈Jz〉 and ST given by Eqs. (3) and (4),
may have nontrivial static solutions. The static solution of
Eq. (2), 〈 �J〉 = 〈�S〉 = 0, becomes unstable at some critical
value of the nuclear spin temperature,

kB�c
N = Qκ〈A〉2βL

16N
− 〈A〉

4N

�N

�S
. (5)

In the case 〈A〉 < 0, �c
N is always positive. The static and

dynamic mechanisms are both acting in concert to achieve a
collective nuclear spin state, whereas if 〈A〉 > 0, �c

N can be
either positive or negative depending on both lattice tempera-
ture and the ratio �N/�L.

In the limit where dynamic polarization of electrons by the
cold NSS can be neglected [the second term in Eq. (2) is close
to zero if �N � 1], Eq. (5) yields the positive value of the
critical temperature

kB�s
N = Qκ〈A〉2βL

16N
(6)

corresponding to the formation of the polaron state via static
mechanism only, as first described by Merkulov [9].

The formation mechanism of the ordered state at positive
nuclear spin temperature is similar to that of the polaron
predicted by Merkulov, or the magnetic polaron in DMSs [26].
It can be understood in terms of effective fields, the nuclear
(Overhauser) field acting on the electron spin and the electron
(Knight) field Be acting on the nuclei. Let us suppose that the
electron spin gets polarized to its thermal equilibrium value in
a fluctuation of the nuclear field. The Knight field created by
such a polarized electron acts on the nuclear spins, enhancing
the initial fluctuation. This closes the feedback loop, and, if
the gain is larger than 1, the initial fluctuation will grow until
a nuclear polaron is formed. If, like in GaAs, the hyperfine
coupling constant 〈A〉 is positive, the electron polarization
is antiparallel to the nuclear spins. We would like to point
out that directions of net spins of different static polarons
need not be correlated, because the electron spin at each site
tends to relax to its equilibrium value in the local Overhauser
field.

However, the formation of randomly oriented polarons
cannot be consistently described by Eq. (5) obtained assuming
homogeneous average spin polarization. Thus, one should go
beyond this approximation and consider spatial correlations
between nuclear spins at different electron sites. This is done
in the next section, where we show that at �N > 0 the mag-
netic ordering occurs in the form of randomly oriented nuclear
polarons even in the presence of dynamic polarization (i.e., at
nonzero �N). The instability arises at �N equal to �s

N > 0
given by Eq. (6); see Fig. 2(a).

The mechanism responsible for magnetic ordering at nega-
tive spin temperature is efficient if the electron spin is loosely
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coupled to the lattice, so that the static mechanism of electron
polarization is overcome by the dynamic one in Eq. (1). In
this case, the electron spin polarization is always parallel
to that of nuclear spins, in contrast with the static polaron
case. At negative �N, this provides a positive feedback loop
[Figs. 1(b) and 1(d)]. The ferromagnetic alignment of the NSS
and electrons builds up below the critical temperature given by
Eq. (5), provided that the ratio �N/�L is big enough. Thus, the
conditions for the ferromagnetic ordering read

kB�d
N = Qκ〈A〉2βL

16N
− 〈A〉

4N

�N

�S
,

�L

�N
<

4

Qκ〈A〉βL
− 1.

(7)

In contrast to the static mechanism, the dynamic mechanism
involves the onset of the net spin polarization in the ensemble
of electrons, since in the regime of short correlation time the
nonequilibrium electron spin is spread over a large number
of localization centers. We will show in the next section that
this kind of magnetic order expands over the entire system, so
that the resulting long-range state can be qualified as a carrier-
induced nuclear ferromagnet [Fig. 2(b)].

The above considerations allow us to make some predic-
tions about magnetic ordering as a function of the nuclear spin
temperature �N, the lattice temperature TL, and the electron
spin correlation time τc that governs the ratio �N/�L. How-
ever, in order to quantify the spatial extension of these states
(which, as was anticipated, depends on the sign of the nuclear
spin temperature), one should address the spatial dependence
of the NSS susceptibility [28,31]. This is the subject of the
next section.

III. SPATIAL DEPENDENCE OF THE
ELECTRON-INDUCED NUCLEAR MAGNETIZATION:

RANDOMLY ORIENTED POLARONS VERSUS THE
NUCLEAR FERROMAGNET

The mean spin of electrons as a function of time and
spatial coordinates (on a spatial scale much greater than
the average distance between donors) obeys the continuity
equation

〈Ṡz( �Rn)〉 = −�S[〈Sz( �Rn)〉 − ST( �Rn)] + �N〈Jz( �Rn)〉
Q

+ div[Ds∇[〈Sz( �Rn)〉 − ST( �Rn)]], (8)

where �Rn defines the nth donor coordinate in space, while
〈Sz( �Rn)〉, ST( �Rn) stand for mean and equilibrium values of the
electron spin projections at the nth donor, respectively, and
〈Jz( �Rn)〉 is the mean nuclear spin at the nth donor; see Eqs. (3)
and (4).

Equation (8) is analogous to Eq. (2), but it includes an addi-
tional term. It accounts for the electron spin diffusion between
donors, which is characterized by the diffusion constant Ds.

In Fourier components, Eq. (8) reads

iω〈Sz〉ω,�k = −�Sϒ + �N

〈Jz〉ω,�k
Q

− Dsk
2ϒ, (9)

where �ϒ = 〈�S〉
ω,�k + κ〈A〉βL〈 �J〉

ω,�k/4 and

〈Jz〉ω,�k = N−1
D

∑
n

〈Jz( �Rn)〉ω exp(i�k · �Ri ), (10)

〈Sz〉ω,�k = N−1
D

∑
n

〈Sz( �Rn)〉ω exp(i�k · �Rn), (11)

where ND is the number of donors in the sample, and we
assume that k << n1/3

D , nD being the concentration of the
donors. Since the number of nuclei interacting with one elec-
tron, N , is large, and electron spin dynamics is much faster
than that of nuclei, the effect of electron-nuclear interaction on
the nuclear spin susceptibility χ (ω, �k) can be considered in the
mean-field approximation. This way, the Fourier components
of nuclear and electron spin at the nth donor are related via

〈Jz( �Rn)〉ω = χ (ω)

NnD
(b1 exp(i�k · �Rn) + be〈Sz( �Rn)〉ω ), (12)

where be = −〈A〉/(Nh̄〈γN〉) is the Knight field at saturation,
b1 is an arbitrary oscillating field parallel to it, γN is the
nuclear gyromagnetic ratio averaged over the nuclear species
in the crystal, and h̄ is the reduced Planck constant.

Since we are interested in the nuclear scale of frequencies,
the condition ω/�S << 1 is always fulfilled, and we can set
the left-hand side of Eq. (9) equal to zero. Then, from Eqs. (9)
and (12) we obtain

〈Sz〉ω,�k = 〈Jz〉ω,�kζ (�k), (13)

〈Jz〉ω,�k = 1

NnD

χ (ω)

1 − ζ (�k)beχ (ω)/(NnD)
b1, (14)

where

ζ (�k) = −〈A〉κβL

4
+ �N

Q(�S + Ds|�k|2)
. (15)

Equation (14) allows one to calculate the �k-dependence of
the total fluctuation power 〈J2

z 〉0,�k , as well as the total static
susceptibility of the nuclear spin χ0,�k :〈

J2
z

〉
0,�k = Q/4

1 + ζ (�k)〈A〉βNQ/4N
, (16)

χ0,�k = NnDh̄〈γN〉〈J2
z

〉
0,�k . (17)

The divergence of the susceptibility is a signature of the
collective state formation. The spatial correlation function
of the nuclear spin fluctuations is given by the Fourier im-
age F (r) of Eq. (16). It contains all the information on the
spatial ordering of the nuclear spin, including its correlation
length rc,

F (r) = δ(r)

1 − βN/βs
N

− 〈A〉�N

4NDs

βN(
1 − βN/βs

N

)2

e−r/rc

4πr
, (18)

with

rs =
√

Ds

�S

1 − βN/βs
N

1 − βN/βd
N

, (19)

where we defined the inverse critical temperatures as βd
N =

1/(kB�d
N) and βs

N = 1/(kB�s
N). The first term in Eq. (18) cor-

responds to the absence of any correlations between nuclear
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FIG. 3. Correlation length rc calculated using Eq. (19) as a func-
tion of nuclear spin temperature �N (upper scale) or inverse nuclear
spin temperature βN (lower scale). Two values of the lattice tem-
perature TL = 5 K (a),(b), TL = 2 K (c),(d), and two different donor
densities nD = 1015 cm−3 (a),(c), nD = 1016 cm−3 (b),(d) are shown.

spins situated under the orbits of two different donors, while
the second gives the contribution of carrier-induced magnetic
ordering on the scale of rc.

It is easy to see that both the correlation length rc and the
static susceptibility to uniform magnetic fields, χ0,�k=0, diverge
at negative critical temperature �d

N, where ferromagnetic or-
dering is expected due to the dynamic feedback mechanism.
Thus, because at �d

N the correlation length rc → ∞, the
dynamic mechanism leads to the formation of a long-range
ferromagnetic order, as sketched in Fig. 1(d).

At �s
N > 0 given by Eq. (6), where the static mecha-

nism dominates over the dynamic one, and the electron spin
aligns antiferromagnetically with nuclei, the correlation func-
tion F (r) diverges, while the correlation length goes to zero,
rc → 0. This means that local nuclear spin fluctuations grow
in amplitude, remaining spatially uncorrelated. Eventually,
these fluctuations develop into magnetic polarons. Thus, the
static mechanism of electron-nuclei interaction leads to the
formation of the individual polaron states with random spin
orientation sketched in Fig. 1(d). Remarkably, the values of
the corresponding critical temperature �s

N given by Eq. (6)
are those that one would obtain by simply neglecting the
dynamic polarization term in Eq. (2) [9,18,19]. This means
that dynamic polarization does not alter the formation of the
individual randomly oriented polarons. The reason for this is

FIG. 4. Color-encoded correlation length rc calculated for n-
GaAs using Eq. (19) at TL = 5 K (a) and TL = 2 K (b) as a function
of donor density and nuclear spin temperature.

that in the ensemble of randomly oriented polarons, the net
nuclear spin is zero, and no directional transfer of angular
momentum into the electron spin system occurs.

The values of positive and negative critical temperature
obtained in this framework are color-encoded in Figs. 2(a) and
2(b) as a function of lattice temperature and �L/�N. These
magnetic phase diagrams represent the main result of this
paper.

Using the parameters of the NSS in n-GaAs (summarized
in Appendix A 2), we represent in Fig. 3 the correlation length
rc calculated for two values of the lattice temperature and two
donor densities (the corresponding points of the parameter
space are indicated by red crosses in Fig. 2). One can see that
the correlation length varies monotonously as a function of
the inverse nuclear spin temperature: from infinity at �d

N < 0
where ferromagnetic order is expected, to zero at �s

N > 0
where nuclear polarons emerge. If the parameters of the sys-
tem are such that the ferromagnetic order can never emerge
[white area in Fig. 2(b)], the correlation length does not di-
verge at negative temperature. This is illustrated in Fig. 3(d).

In the limit of high nuclear spin temperature (βN → 0), the
correlation length is given by r∞

c = √
Ds/�S. It is governed

by the interplay between electron spin flip and diffusion ef-
ficiency. r∞

c depends on the donor concentration (see Fig. 4)
and can be interpreted as a spin diffusion length.

Note also that regardless of the type of magnetic order-
ing, the correlation length varies strongly in the vicinity
of the ordering transition. This is illustrated in Fig. 4. It
shows the correlation length as a function of nuclear spin
temperature and donor density at TL = 5 K (a) and TL = 2 K
(b). The parameters of the calculation are given in Appendix
A 2. One can see that the variation of the correlation length

205207-5



M. VLADIMIROVA et al. PHYSICAL REVIEW B 103, 205207 (2021)

with nuclear spin temperature can reach several micrometers.
This suggests that even above the critical temperature, these
correlations may be detected, e.g., via spin noise spectroscopy.
This possibility is analyzed in the next section.

IV. SENSING NUCLEAR SPIN CORRELATIONS AND
ORDERING BY SPIN NOISE SPECTROSCOPY

One of the promising methods that can be used to evi-
dence electron-induced nuclear spin ordering is the electron
spin noise spectroscopy (SNS) [32–35]. SNS is based on the
fluctuation-dissipation theorem, which states that it is possible
to detect resonances of linear susceptibility by “listening” to
a noise of the medium in its equilibrium state. It allows one
to probe electron spin fluctuations nonperturbatively using
absorption-free Faraday rotation. The Faraday rotation noise
spectrum features a peak at the magnetic resonance frequency
νL corresponding to precession of spontaneous fluctuations of
the spin ensemble at the Larmor frequency. The latter is given
by the total magnetic field acting on the electron, that is, a sum
of the external field and the Overhauser field BN [36]. Thus,
one can expect that the formation of the ordered state at B = 0
will be accompanied by the shift of the electron spin noise
spectrum peak from zero to γeBN, where γe is the electron
gyromagnetic ratio.

Even above the critical temperature, the correlations in-
duced by the electrons in the deeply cooled nuclear spin
system can be detected via SNS. One could detect variations
of the correlation length in the electron spin fluctuations in the
vicinity of the critical temperature by the recently developed
spatiotemporal spin noise spectroscopy [35]. Another possi-
bility would be to detect directly the nuclear spin noise [37].
Below, we study how the correlations in the NSS affect the
shape of the electron spin noise spectrum.

The spectral power density 〈S2
z (ω)〉 of electron spin fluc-

tuations can be expressed in terms of the total nuclear spin
fluctuation power〈J2

z 〉0,�k given by Eq. (16), normalized by the

square of the total spin value 〈J2
z 〉0,�k = 3〈J2〉0,�k/I (I + 1):

〈
S2

z (ω)
〉 =

⎡
⎣

⎛
⎝ �2

N

3π2nD

∫ k′

0

Dsk4
〈
J2

z

〉
0,�k

(Dsk2)2 + ω2
dk

⎞
⎠

2

+
⎛
⎝ω − �2

N

3π2nD

∫ k′

0

ω
〈
J2

z

〉
0,�k

(Dsk2)2 + ω2
dk

⎞
⎠

2⎤
⎦

−1

, (20)

where k′ = 2/3π2n−1/3
D �S/�N. The derivation of this expres-

sion is given in Appendix A 3.
Figure 5 shows electron spin noise spectra calculated in

n-GaAs for the same combinations of doping and lattice tem-
perature (shown by red crosses in Fig. 2) as the correlation
length in Fig. 3. The parameters are given in Appendix A 2.
We compare four values of the nuclear spin temperature:
�N± = 100 μK and �N = ±1 μK.

The two spectra at �N± = 100 μK are almost identical.
Indeed, when nuclear spin correlations are negligibly small,
then the SN spectrum is just a Lorentzian function with the
spectral width at half-maximum inversely proportional to the
electron spin relaxation time HWHM = �S/2π . The latter
does not depend on the sign of the nuclear spin temperature in

FIG. 5. Electron spin noise spectra calculated using Eq. (20)
at four different values of the nuclear spin temperature: �N =
±100 μK (these two spectra are almost identical) and �N = ±1 μK.
Two values of the lattice temperature TL = 5 K (a),(b), TL = 2 K
(c),(d), and two different donor densities nD = 1015 cm−3 (a),(c),
nD = 1016 cm−3 (b),(d) are shown.

the absence of correlations, and it is determined by the donor
density (see Fig. 6).

By contrast, at �N = ±1 μK, when the nuclear spin sys-
tem is cold, but still above the transition temperature, the
correlations build up. They affect the electron spin relaxation
time in a way that depends on the sign of the nuclear spin
temperature. At �N > 0, the electron spin relaxation time
shortens. This is a consequence of the reduction of the corre-
lation length in the vicinity of the polaron transition, making
motional narrowing inefficient. At �N < 0, the electron spin
relaxation time increases due to motional narrowing that ac-
companies the increase of the correlation length. Thus, the
onset of correlations can be detected by measuring electron
spin noise even above the critical temperature.

V. PERSPECTIVES FOR EXPERIMENTAL OBSERVATION
OF THE NUCLEAR MAGNETIC ORDERING

The potential experimental detection of the electron-
induced nuclear correlations and ordering rely on our ability
to efficiently cool the NSS. To be as realistic as possible,
we focus on n-GaAs, where both electron and nuclear spin
dynamics have been extensively explored.

In n-doped GaAs (nD = 2 × 1015 cm−3), nuclear spin tem-
peratures as low as �N ≈ 2 μK have been reported at TL ≈
4 K. This is encouraging, since this value is close to the
critical temperature required to reach the ferromagnetic order
(�d

N ≈ −0.5 μK).
The method usually employed for deep cooling of the

nuclear spin consists of two steps: (i) Optical pumping that
is mediated by the hyperfine interaction with spin-polarized
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FIG. 6. Characteristic times for the electron spin in the insulating
n-GaAs as a function of the donor density (dashed lines): correlation
time (blue), hyperfine relaxation time (red), and spin-orbit relaxation
time (cyan). The inset shows the ratio of two relaxation rates as a
function of donor density. Vertical dotted lines and red crosses (inset)
show the parameters corresponding to Figs. 3 and 5.

electrons. Under a magnetic field Bi = 200 G the achieved
nuclear spin polarization defines an initial temperature �Ni.
(ii) Adiabatic demagnetization to zero field, which provides
further cooling down to �N = �NiBL/Bi. The effective local
field BL determines the actual efficiency of the cooling. It in-
cludes contributions from the dipole-dipole interaction (Bdd ≈
2 G) and the quadrupole interaction that can be induced by
strain.

Keeping the lattice temperature at TL ≈ 4−5 K, the opti-
mization of pumping efficiency, in particular using a higher
pumping field Bi and reducing the strain in the sample, may
be sufficient to reach negative temperatures well below the
critical value required for the formation of the nuclear fer-
romagnet in the sample with nD ≈ 1015 cm−3 (see Fig. 2).
Eventually, choosing the samples with lower donor densities
may increase the absolute value of the critical temperature
and favor the formation of the nuclear ferromagnet, but we
do not yet have enough data on the electron spin relaxation
rates in such low-doped n-GaAs samples. By contrast, the
most straightforward way of reaching the positive critical
temperature for the formation of nuclear polarons is to cool
the crystal lattice in the sample with nD = 1016 cm−3 (see
Fig. 2) well below TL = 2 K.

VI. CONCLUSIONS

We have shown that in n-doped semiconductors with a
positive hyperfine constant, two kinds of magnetically ordered

states can be induced by resident electrons in the deeply
cooled nuclear spin system. The magnetic phase diagram is
determined by three parameters: lattice temperature, donor
density, and the sign of the nuclear spin temperature �N.

When the NSS is cooled down to a positive temperature
below a critical one, �s

N > 0, randomly oriented nuclear spin
polarons form under the orbit of each donor. The underly-
ing mechanism relies on the positive feedback, mediated by
static polarization of nuclear and electron spins by Knight
and Overhauser fields, respectively. The critical nuclear spin
temperature for the formation of a randomly oriented polarons
state decreases when the lattice temperature is increased. The
models of nuclear polarons have been developed previously,
but they neglected the dynamic polarization of the electron
spin by the cold NSS. We have shown that the formation
of nuclear polarons is not impeded by dynamic polarization
even when hyperfine relaxation dominates over the spin-orbit
mechanism.

In a NSS cooled down to a negative temperature below
the critical one, �d

N < 0, we predict the formation of an
original long-range-ordered state, which we call a dynami-
cally induced nuclear ferromagnet. It should manifest itself
when electron spin dynamics is dominated by the hyperfine
coupling, rather than by the spin-orbit interaction. The under-
lying feedback mechanism can be understood as a dynamic
polarization of the localized electron spin by the cold NSS
polarized in the Knight field. The dominance of the hyperfine
coupling in low-doped systems and QDs is well known and
confirmed by numerous experiments, but the positive feed-
back loop that leads in this case to the nuclear ferromagnetic
state has been overseen so far.

The lifetime of the ordered states is limited by the in-
evitable heating of the system, on the scale of the order of
several seconds in n-GaAs. Within this time, after cooling
the NSS to a sufficiently low nuclear spin temperature, the
nuclear spin ordering can be detected by different techniques:
off-resonant Faraday rotation, spin noise spectroscopy, and
photoluminescence combined with radiofrequency absorp-
tion.

The strategy to reach magnetically ordered states may in-
clude lowering the sample temperature down to and below
2 K rather than 4–5 K used in previous experiments, and
cooling the NSS at higher magnetic fields prior to adiabatic
demagnetization. Finally, samples with unstrained QDs may
be promising. Stronger electron localization as compared to
donor-bound electrons in bulk n-GaAs ensures stronger in-
teraction between electron and nuclear spins. This may offer
higher critical temperatures for both nuclear polarons and
dynamically induced nuclear ferromagnetism.
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APPENDIX

1. Derivation of the rate equations for the coupled
electron-nuclei spin system

The populations of electron spin S = 1/2 with projections
±1/2 on the z axis chosen along the Overhauser field are equal
to S ± 〈Sz〉, respectively. The rate equation for the average
electron spin projection 〈Sz〉 reads

〈Ṡz〉 = −〈Sz〉(p+ + p−) + S(p+ − p−), (A1)

where p+ and p− are probabilities of transitions with rising
and lowering the electron spin projection by 1, correspond-
ingly. Such transitions occur with a simultaneous change of
states of the nuclear spin system and the lattice: the angular
momentum is transferred to nuclei, while the energy goes
to the lattice. In fact, these are transitions in the coupled
electron-nuclear spin system, induced by interaction with the
lattice. As shown in [13] (Chap. 8), in the approximation of
short correlation time, the probabilities of such transitions
with mutual electron-nuclear spin flips can be written as

pi
↓m = F−

(
Aiv0�

2
i

)2
τc

h̄2 |〈(mi + 1,−S)|Î+Ŝ−|(mi, S)〉|2,

pi
↑m = F+

(
Aiv0�

2
i

)2
τc

h̄2 |〈(mi − 1, S)|Î−Ŝ+|(mi,−S)〉|2.
(A2)

Here Î± are the rising and lowering nuclear spin operators,
mi is the spin projection of the ith nuclear spin, �i is the
absolute value of the electron wave function at the ith nuclei
position, v0 is the volume of the crystal elementary cell, Ai is
the hyperfine constant of the ith nucleus, and F± characterize
the spectral power density of a random force describing inter-
action of the spin system with the lattice. As follows from the
principle of detailed balance, F+/F− = exp(−h̄�NβL), where
h̄�N is electron spin splitting in the Overhauser field created
by the underlying nuclei. Taking into account that

|〈mi − 1|Î−|mi〉|2 = 〈mi|Î+ Î−|mi〉 = 〈mi|Î2 − Î2
z + Îz|mi〉,

|〈mi + 1|Î+|mi〉|2 = 〈mi|Î− Î+|mi〉 = 〈mi|Î2 − Î2
z − Îz|mi〉,

〈−S|Ŝ+|S〉 = 〈S|Ŝ−| − S〉 = 1, (A3)

and averaging over all the projections of each nuclear spin,
mi, with the distribution function ρm corresponding to the spin
temperature of the nuclear system, we obtain the probabilities
of the electron spin flip transitions due to interaction with the
ith nucleus as

pi
− = F−

(
Aiv0�

2
i

)2
τc

h̄2

[
I (I + 1) − 〈

I2
iz

〉 − 〈Iiz〉
]
,

pi
+ = F+

(
Aiv0�

2
i

)2
τc

h̄2

[
I (I + 1) − 〈

I2
iz

〉 + 〈Iiz〉
]
, (A4)

where

〈Iiz〉 =
∑I

mi=−I miexp
( − mi〈Sz〉Aiv0�

2
i βN

)
∑I

mi=−I exp
( − mi〈Sz〉Aiv0�

2
i βN

) (A5)

is the average spin projection of the ith nucleus on the z-axis
(along Knight and Overhauser fields), and

〈
I2
iz

〉 =
∑I

mi=−I m2
i exp

( − mi〈Sz〉Aiv0�
2
i βN

)
∑I

mi=−I exp
( − mi〈Sz〉Aiv0�

2
i βN

) (A6)

is the mean-squared value of the same projection. To obtain
the full probabilities of flipping the electron spin up or down,
one has to sum Eq. (A2) over all the nuclei situated under the
orbit of a given electron:

p− = (v0〈A〉)2F−
∑

i

�4
i τc

h̄2

[
I (I + 1) − 〈

I2
iz

〉 − 〈Iiz〉
]
,

(A7)

p+ = (v0〈A〉)2F+
∑

i

�4
i τc

h̄2

[
I (I + 1) − 〈

I2
iz

〉 + 〈Iiz〉
]
,

where 〈A〉 = ∑
l AlAl is the hyperfine interaction constant

averaged over all nuclear species in the crystal, and Al and
Al are the hyperfine constant and the abundance of the lth
isotope, respectively. We can now define the electron spin
relaxation rate due to hyperfine interaction as

�N ≡ (v0〈A〉)2(F+ + F−)
∑

i

�4
i τc

h̄2

[
I (I + 1) − 〈

I2
iz

〉]
, (A8)

the thermal equilibrium value of the mean electron spin ST:

2ST = F+ − F−
F+ + F−

, (A9)

the mean z-projection of the ensemble of the nuclear spins
interacting with a given electron

〈Jz〉 =
∑

i �
4
i 〈Iiz〉∑

i �
4
i

, (A10)

and mean-squared transverse (perpendicular to the z-axis)
fluctuation of the ensemble of the nuclear spins interacting
with a given electron,

〈J2
⊥〉 = I (I + 1) −

∑
i �

4
i

〈
I2
iz

〉
∑

i �
4
i

. (A11)

By substituting Eqs. (A7) into Eq. (A1) and using the above
definitions, we obtain

〈Ṡz〉 = −�N(〈Sz〉 − ST) + �N
〈Jz〉

2〈J2
⊥〉

(
1 − 〈Sz〉ST

S2

)
. (A12)

If, in addition to relaxation by nuclei, there is some spin-orbit
relaxation, this equation should be complimented by the term
−�L(〈Sz〉 − ST) on the right-hand side. In this case, the full
equation describing both hyperfine and spin-orbit relaxation
in the ensemble of localized electrons takes the form given by
Eq. (1) in the main test.

As far as collective electron-nuclei spin states are not
formed, both electron and nuclear spin polarizations re-
main weak. Under these conditions, 〈J2

⊥〉 ≈ 2I (I + 1)/3 and
〈Sz〉ST → 0. Assuming the exponential form of the electron
wave function �i ∝ exp(−ri/aB), where aB is the Bohr radius
of the donor-bound electron, we can calculate 〈Jz〉 ≈ −I (I +
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1)βN〈A〉〈Sz〉/3N . Here N is defined as

1

N
≡ v0

∑
i �

6
i∑

i �
4
i

= 8v0

27πa3
B

. (A13)

It can be considered as a number of nuclei under the orbit
of the donor-bound electron, for shallow donors in GaAs
N ≈ 2.4 × 105. Thus, Eq. (1) reduces to the linear differential
equation:

〈Ṡz〉 = −�S(〈Sz〉 − ST) + �N
〈Jz〉
Q

, (A14)

with Q ≡ 4I (I + 1)/3 and

ST = −1

2
tanh

(
h̄�NβL

2

)
≈ −〈A〉〈Jz〉κβL

4
, (A15)

where �N is the angular frequency of electron spin precession
in root-mean-square fluctuation of the Overhauser field,

h̄�N =
√

Qκ〈A〉2/4N, (A16)

κ = 27n0/64, and n0 is the number of atoms in the elementary
cell of the crystal. Note that the factor κ appears in Eq. (A15)
due to the choice that we have made in the definition of N [cf.
Eq. (A13)].

2. Parameters of the coupled electron-nuclear spin system in
n-GaAs: Interaction, diffusion, and relaxation

Electron spin relaxation has been exhaustively studied in
the insulating n-GaAs. The correlation time of the electron
spin was measured over a broad range of donor concentrations
nD [29,30]. Its dependence on nD can be approximated by the
expression

τc(nD) = 0.2

(
nD

1015

)2.3

ln

(
15

nD

1015

)
, (A17)

where nD is expressed in inverse cubic centimeters and τc in
nanoseconds.

The electron spin relaxation rate due to hyperfine coupling
is given by

�N = 2
3�2

Nτc, (A18)

where �N is the angular frequency that characterizes electron
spin precession in the fluctuating Overhauser field defined in
the previous section; see Eq. (A16). The spin-orbit relaxation
rate is also related to the correlation time and donor density:

�L = n−2/3
D

L2
SOτc

, (A19)

where LSO is the so-called spin-orbit length [28]. In GaAs,
LSO ≈ 7 μm. Finally, the electron spin diffusion constant,
determined by electron hopping and exchange interaction in
the impurity band, reads

Ds = n−2/3
D

3τc
. (A20)

Figure 6 shows the low-temperature (TL < 5 K) correlation
time, as well as two relevant electron spin relaxation times
calculated according to Eqs. (A17)–(A19) as a function of
the donor density, while the inset shows the ratio �L/�N. The

TABLE I. Parameters used in numerical calculations for n-GaAs.

Parameter Value

Donor Bohr radius, aB 10 nm
Volume of the elementary cell, v0 4.5 × 109 m−3

Atoms number in the elementary cell, n0 2
Spin-orbit length, LSO 7.5 μm
Electron gyromagnetic ratio, γe 0.64 MHz/G

right scale in Fig. 2 shows the donor densities calculated using
Eqs. (A17)–(A19).

Table I summarizes the values of spin, gyromagnetic ratio,
hyperfine constants, and abundance for each of the three iso-
topes in GaAs. Other parameters used in the calculations are
listed in Table II.

3. Calculation of electron spin noise in the presence of nuclear
spin correlations

To calculate the spectral power density of electron spin
fluctuations in the regime where the fluctuations of nuclear
spin can be correlated, we need to develop a method based
on k-components of the nuclear spin fluctuations. Let us con-
sider a cubic box with the volume V � n−1

D . Electron and
nuclear spin densities in the box can be expanded in the
Fourier series with kσ,n = 2πn/V 1/3, where σ ∈ {x, y, z} and
0 < n < (V nD)1/3. The total number of k-modes V nD is equal
to the number of donors in the volume.

The zero-k mode of the z-component of the electron spin
density under periodic pump SGeiωt can be written as

Ṡz,0 =
∑

k

�x,�kSy,−�k −
∑

k

�y,�kSx,−�k + SGeiωt , (A21)

where �x,�k and �y,�k are Fourier components of the nuclear
fluctuation field in frequency units. Since the spatial har-
monics of the x- and y-components of the electron spin are
much smaller than the z-component, we keep only the terms
containing Sz,0 in the corresponding equations:

Ṡx,−�k = �y,−�kSz,0 − Dsk
2Sx,−�k,

Ṡy,−�k = −�x,−�kSz,0 − Dsk
2Sy,−�k . (A22)

These equations have the following solutions:

Sx,−�k (t ) = �y,−�k

∫ ∞

0
e−Dsk2τ Sz,0(t − τ ) dτ,

Sy,−�k (t ) = −�x,−�k

∫ ∞

0
e−Dsk2τ Sz,0(t − τ ) dτ. (A23)

TABLE II. Values of spin, gyromagnetic ratio, hyperfine con-
stants, and abundance of each of three isotopes in GaAs [38,39].

Isotope 75As 71Ga 69Ga

Spin, Il 3/2 3/2 3/2
Abundance, Al 0.5 0.2 0.3
Hyperfine constant, Al (μeV) 43.5 54.8 43.1
Gyromagnetic ratio, γN,l (107 rad/T s) 4.6 8.1 6.44
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Substituting Eqs. (A23) into Eq. (A21), we obtain

Ṡz,0 = −2

3

∑
k

�2
N,�k

∫ ∞

0
e−Dsk2τ Sz,0(t − τ ) dτ + SGeiωt ,

(A24)

where we assumed that nuclear spin fluctuations are isotropic,
2
3�2

N,�k = �x,�k + �y,�k . The solution of Eq. (A24) has the

form Sz,0(t ) = Sz(ω)eiωt , and we come to the equation
for Sz(ω):

iωSz(ω) = −�(ω)Sz(ω) + SG (A25)

with

�(ω) = −2

3

∑
k

�2
N,�k

Dsk2 + ω2
. (A26)

Replacing in Eq. (A26) the summation by the integration
over k-space, we obtain

�(ω) = V

3π2

∫ αn1/3
D

0

k2�2
N,�k (Dsk2 − iω)

(Dsk2)2 + ω2
dk, (A27)

where the upper integration limit should be determined from
the conditions in the absence of correlations: �(ω = 0) =

�S and �2
N,�k (ω = 0) = �2

N/V nD ≡ �2
0,�k . Recalling that Ds is

given by Eq. (A20), we obtain

�(ω) = �2
N

3π2nD

∫ νn1/3
D

0

k2
(
�2

N,�k/�
2
0,�k

)
(Dsk2 − iω)

(Dsk2)2 + ω2
dk,

(A28)

where ν = 2/3(π2�S/�N) and the ratio �2
N,�k/�

2
0,�k is merely

nuclear spin fluctuation power given by Eq. (16), normalized
by its maximum value,

�2
N,�k/�

2
0,�k = 3

〈
J2

z

〉
0,�k/I (I + 1). (A29)

The solution of Eq. (A25) reads

Sz(ω) = SG

iω + �(ω)
. (A30)

Now, considering SG as a time harmonic of a δ-correlated
random Langevin force, we find the expression for the spectral
power density of the electron spin fluctuations:

〈
S2

z

〉
ω

= 〈Sz(ω)Sz(−ω)〉 = SG
2

[Re(�(ω))]2 + [ω + Im(�(ω))]2 ,

(A31)

where �(ω) is given by Eqs. (A28) and (A29), and 〈J2
z 〉0,�k is

given by Eq. (16).
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[4] J. Mroziński, New trends of molecular magnetism, Coord.
Chem. Rev. 249, 2534 (2005).

[5] M. Venkatesan, C. B. Fitzgerald, and J. Coey, Unexpected mag-
netism in a dielectric oxide, Nature (London) 430, 630 (2004).

[6] A. S. Oja and O. V. Lounasmaa, Nuclear magnetic ordering in
simple metals at positive and negative nanokelvin temperatures,
Rev. Mod. Phys. 69, 1 (1997).

[7] H. Ishii, Nuclear magnetism in Van Vleck metals, J. Low Temp.
Phys. 135, 579 (2004).

[8] M. C. Cross and S. Fisher, Solid SHe: Confrontation, Rev. Mod.
Phys. 57, 881 (1985).

[9] I. Merkulov, Formation of a nuclear spin polaron under optical
orientation in GaAs-type semiconductors, Phys. Solid State 40,
930 (1998).

[10] M. Chapellier, M. Goldman, V. H. Chau, and A. Abragam,
Production and observation of a nuclear antiferromagnetic state,
J. Appl. Phys. 41, 849 (1970).

[11] M. Goldman, M. Chapellier, V. H. Chau, and A. Abragam,
Principles of nuclear magnetic ordering, Phys. Rev. B 10, 226
(1974).

[12] M. Goldman, Nuclear dipolar magnetic ordering, Phys. Rep. 32,
1 (1977).

[13] A. Abragam, The Principles of Nuclear Magnetism (Oxford
University Press, Oxford, 1961).

[14] I. A. Merkulov, Phase transition in the nuclear spin system in
a semiconductor with optically oriented electrons, Sov. Phys.
JETP 55, 188 (1982).

[15] K. I. Juntunen and J. T. Tuoriniemi, Experiment on nuclear
ordering and superconductivity in lithium, J. Low Temp. Phys.
141, 235 (2005).

[16] T. Herrmannsdörfer, P. Smeibidl, B. Schröder-Smeibidl, and F.
Pobell, Spontaneous Nuclear Ferromagnetic Ordering of Nuclei
in Auln2, Phys. Rev. Lett. 74, 1665 (1995).

[17] G. Roumpos, C. P. Master, and Y. Yamamoto, Quantum simu-
lation of spin ordering with nuclear spins in a solid-state lattice,
Phys. Rev. B 75, 094415 (2007).

[18] D. Scalbert, Nuclear polaron beyond the mean-field approxima-
tion, Phys. Rev. B 95, 245209 (2017).

[19] A. Fischer, I. Kleinjohann, F. B. Anders, and M. M. Glazov,
Kinetic approach to nuclear-spin polaron formation, Phys. Rev.
B 102, 165309 (2020).

[20] H. Fröhlich and F. R. N. Nabarro, Orientation of nuclear
spins in metals on JSTOR, Proc. R. Soc. London A 175, 382
(1940).

[21] A. Abragam and W. G. Proctor, Spin temperature, Phys. Rev.
109, 1441 (1958).

[22] V. K. Kalevich, K. V. Kavokin, I. Merkulov, and M. R.
Vladimirova, Dynamic nuclear polarization and nuclear fields,
in Spin Physics in Semiconductors, edited by M. I. Dyakonov
(Springer International, Cham, 2017), pp. 387–430.

205207-10

https://doi.org/10.1088/0022-3727/47/33/333001
https://doi.org/10.1016/j.jmmm.2006.01.238
https://doi.org/10.1103/PhysRevB.75.125408
https://doi.org/10.1016/j.ccr.2005.05.013
https://doi.org/10.1038/430630a
https://doi.org/10.1103/RevModPhys.69.1
https://doi.org/10.1023/B:JOLT.0000029512.02183.a5
https://doi.org/10.1103/RevModPhys.57.881
https://doi.org/10.1134/1.1130450
https://doi.org/10.1063/1.1658984
https://doi.org/10.1103/PhysRevB.10.226
https://doi.org/10.1016/0370-1573(77)90070-9
http://jetp.ac.ru/cgi-bin/e/index/e/55/1/p188?a=list
https://doi.org/10.1007/s10909-005-8539-z
https://doi.org/10.1103/PhysRevLett.74.1665
https://doi.org/10.1103/PhysRevB.75.094415
https://doi.org/10.1103/PhysRevB.95.245209
https://doi.org/10.1103/PhysRevB.102.165309
https://doi.org/10.1098/rspa.1940.0064
https://doi.org/10.1103/PhysRev.109.1441


ELECTRON-INDUCED NUCLEAR MAGNETIC ORDERING IN … PHYSICAL REVIEW B 103, 205207 (2021)

[23] E. M. Purcell and R. V. Pound, A nuclear spin system at nega-
tive temperature, Phys. Rev. 81, 279 (1951).

[24] I. A. Merkulov, Y. I. Papava, V. V. Ponomarenko, and S. I.
Vasiliev, Monte Carlo simulation and theory in Gaussian ap-
proximation of a phase transition in the nuclear spin system of
a solid, Can. J. Phys. 66, 135 (1987).

[25] In this paper we mainly address n-GaAs and GaAs/(Al,Ga)As
QDs, but these ideas apply to other semiconductors with posi-
tive hyperfine constant, such as CdTe or GaN.

[26] P. A. Wolff, Bound magnetic polarons in diluted magnetic
semiconductors, in Semimagnetic Semiconductors and Di-
luted Magnetic Semiconductors, edited by M. Averous and M.
Balkanski (Springer, Boston, 1991), pp. 387–430.

[27] Here we assume the most widespread case of a positive hyper-
fine coupling constant (relevant to all III-V compounds).

[28] K. V. Kavokin, Spin relaxation of localized electrons in n-type
semiconductors, Semicond. Sci. Technol. 23, 114009 (2008).

[29] R. I. Dzhioev, K. V. Kavokin, V. L. Korenev, M. V. Lazarev,
B. Y. Meltser, M. N. Stepanova, B. P. Zakharchenya, D.
Gammon, and D. S. Katzer, Low-temperature spin relaxation
in n-type GaAs, Phys. Rev. B 66, 245204 (2002).

[30] V. V. Belykh, K. V. Kavokin, D. R. Yakovlev, and M. Bayer,
Electron charge and spin delocalization revealed in the optically
probed longitudinal and transverse spin dynamics in n-GaAs,
Phys. Rev. B 96, 241201(R) (2017).

[31] T. Henn, T. Kiessling, W. Ossau, L. W. Molenkamp, D. Reuter,
and A. D. Wieck, Picosecond real-space imaging of electron
spin diffusion in GaAs, Phys. Rev. B 88, 195202 (2013).

[32] M. Romer, J. Hubner, and M. Oestreich, Spin noise spec-
troscopy in semiconductors, Rev. Sci. Instrum. 78, 103903
(2007).

[33] J. Hübner, F. Berski, R. Dahbashi, and M. Oestreich, The rise
of spin noise spectroscopy in semiconductors: From acoustic to
GHz frequencies, Phys. Status Solidi B 251, 1824 (2014).

[34] S. Cronenberger and D. Scalbert, Quantum limited heterodyne
detection of spin noise, Rev. Sci. Instrum. 87, 093111 (2016).

[35] S. Cronenberger, C. Abbas, D. Scalbert, and H. Boukari, Spa-
tiotemporal Spin Noise Spectroscopy, Phys. Rev. Lett. 123,
017401 (2019).

[36] I. I. Ryzhov, S. V. Poltavtsev, K. V. Kavokin, M. M. Glazov,
G. G. Kozlov, M. Vladimirova, D. Scalbert, S. Cronenberger,
A. V. Kavokin, A. Lemaître, J. Bloch, and V. S. Zapasskii, Mea-
surements of nuclear spin dynamics by spin-noise spectroscopy,
Appl. Phys. Lett. 106, 242405 (2015).

[37] F. Berski, J. Hübner, M. Oestreich, A. Ludwig, A. D. Wieck,
and M. Glazov, Interplay of Electron and Nuclear Spin Noise
in n-Type GaAs, Phys. Rev. Lett. 115, 176601 (2015).

[38] E. A. Chekhovich, A. Ulhaq, E. Zallo, F. Ding, O. G. Schmidt,
and M. S. Skolnick, Measurement of the spin temperature
of optically cooled nuclei and GaAs hyperfine constants in
GaAs/AlGaAs quantum dots, Nat. Mater. 16, 982 (2017).

[39] R. K. Harris, E. D. Becker, S. M. Cabral De Menezes, R.
Goodfellow, and P. Granger, NMR nomenclature: Nuclear
spin properties and conventions for chemical shifts (IU-
PAC recommendations 2001), Concepts Magn. Res. 14, 326
(2002).

205207-11

https://doi.org/10.1103/PhysRev.81.279
https://doi.org/10.1139/p88-019
https://doi.org/10.1088/0268-1242/23/11/114009
https://doi.org/10.1103/PhysRevB.66.245204
https://doi.org/10.1103/PhysRevB.96.241201
https://doi.org/10.1103/PhysRevB.88.195202
https://doi.org/10.1063/1.2794059
https://doi.org/10.1002/pssb.201350291
https://doi.org/10.1063/1.4962863
https://doi.org/10.1103/PhysRevLett.123.017401
https://doi.org/10.1063/1.4922771
https://doi.org/10.1103/PhysRevLett.115.176601
https://doi.org/10.1038/nmat4959
https://doi.org/10.1002/cmr.10035

