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Cohesion and excitations of diamond-structure silicon by quantum Monte Carlo:
Benchmarks and control of systematic biases
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We have carried out quantum Monte Carlo (QMC) calculations of silicon crystal focusing on the accuracy
and systematic biases that affect the electronic structure characteristics. The results show that 64 and 216 atom
supercells provide an excellent consistency for extrapolated energies per atom in the thermodynamic limit for
ground, excited, and ionized states. We have calculated the ground state cohesion energy with both systematic and
statistical errors below ≈0.05 eV. The ground state exhibits a fixed-node error of only 1.3(2)% of the correlation
energy, suggesting an unusually high accuracy of the corresponding single-reference trial wave function. We
obtain a very good agreement between optical and quasiparticle gaps that affirms the marginal impact of excitonic
effects. Our most accurate results for band gaps differ from the experiments by about 0.2 eV. This difference is
assigned to a combination of residual finite-size and fixed-node errors. We have estimated the crystal Fermi level
referenced to vacuum that enabled us to calculate the edges of valence and conduction bands in agreement with
experiments.
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I. INTRODUCTION

Quantum Monte Carlo calculations have been very suc-
cessful in addressing the challenges of electron-electron
correlations in many real materials as well as in important
models. Real-space QMC samples the particle coordinates
and it typically relies on the fixed-node or fixed-phase ap-
proximations to avoid fundamental difficulties from negative
or complex quantum amplitudes. We can perhaps say that the
fixed-node/phase QMC has become a “standard model” for
many-body wave function electronic structure calculations,
especially for condensed and periodic systems. Despite the
burden of the fixed-node/phase bias, the QMC methods are
evolving into highly accurate approaches that are viable for a
number of properties and types of systems.

QMC calculations of band gaps in periodic systems have
been pioneered more than two decades ago [1–3]. At that
time, the size of simulation supercells and achieved statisti-
cal quality of the results were very limited by the available
computational resources. Since then, the calculations have
advanced to strongly correlated systems such as MnO, FeO,
NiO [4–7], and more complex materials [8–11]. Recent efforts
progressed to calculations of defects, magnetic states, and
systems under strain [12–15].

Recently, larger supercells have been employed in more
extensive calculations of promotion and quasiparticle gaps,
cohesion energies, and other quantities for previously studied
semiconductor systems [16,17]. Most of the ground state (GS)
calculations reaffirmed the accuracy of the QMC results, how-
ever, consistent high accuracy for excited states (EX) proved
to be rather laborious. In particular, some band gaps appeared

to be overestimated with a possible culprit being finite-size
effects. However, other reasons could not be ruled out either,
such as slow and nonmonotonous convergence of total energy
and/or different rates of convergence for kinetic vs potential
energy components. Further considerations that complicate
accurate estimations involve basis set effects, methods to gen-
erate single-particle orbitals, and ultimately, fixed-node (FN)
errors.

Here we present extensive calculations and insights into
several of these issues. For the sake of comparison with pre-
vious results, we study the Si solid in diamond structure.
Another reason for this choice is the fact that the fixed-
node errors in Si systems with single bonds appear to be
appreciably small [18,19]. The intention is to provide more
transparency to enable one to clearly understand the rest of
the systematic biases. We pay significant attention to certain
aspects of finite-size errors that complicate QMC studies in a
major way. It is fair to say that these errors are not fully under-
stood despite a number of thorough previous studies [20–24].
Note that this is not only the case for many-body methods. In
fact, even in density functional theory (DFT) and post-DFT
approaches, this is still a subject of substantial effort, despite
decades of dedicated research, see Refs. [25–29] and refer-
ences therein. We probe for the agreement between the band
gap calculations through promotion (optical) vs quasiparticle
gaps using the differences between the cation (CA), anion
(AN), and neutral systems. Instead of introducing new or more
sophisticated corrections, we focus on some rather ordinary
aspects of such calculations and how they can affect the re-
sults. Lastly, the obtained gaps combined with an estimation
of the Fermi level (FL) are employed to derive the ionization
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potential and electron affinity of the Si solid. Overall, and not
very surprisingly, we find that desirable increases in accuracy
and statistical resolution of the results require correspondingly
thorough effort to better understand and analyze the system-
atic errors inherent to QMC methods.

The paper is structured as follows. Section II describes
the general methodology and possible sources of systematic
biases related to QMC calculations. In Sec. III, the results,
data, and analysis are presented. Section IV includes the con-
clusions and discussions.

II. METHODS

A. QMC methods and trial functions

For calculations we use variational Monte Carlo (VMC)
and fixed-node diffusion Monte Carlo (DMC) methods in
their commonly used formulations [5,30]. We employ single-
reference Slater-Jastrow trial wave functions with Jastrow
factors that include one-body (eI), two-body (ee), and three-
body (eeI) terms. One exception appears in probing the
effect of proper symmetry for the open-shell singlet excited
state where we tested two configurations, as explained later.
The orbitals were calculated by Hartree-Fock (HF) and DFT
methods that included hybrid functionals. The calculations
are labeled as QMC/DFT where the first acronym denotes
the corresponding QMC approach while the second acronym
refers to the method used to generate the corresponding or-
bitals.

The Jastrow factors were optimized for ground states,
and we verified that reoptimization in excited states with
single-electron promotion produced negligible changes. We
used QWALK [31] and QMCPACK [32,33] for the various
QMC calculations and NEXUS [34] for workflow manage-
ment. The T-moves algorithm as implemented in QWALK [35]
and QMCPACK [36] was used for DMC calculations so that
the resulting energies were variational. The Si crystal was
represented by a periodic supercell with a potential energy
given by the well-known Ewald expression [30,37,38]. The
charged supercells have been calculated with a neutralizing
background to ensure the convergence of the corresponding
Ewald sums.

We have chosen a very conservative time step of 0.0025
Ha−1 to avoid extrapolations (note that even larger time steps
were shown to have only negligible impact on Si solid en-
ergies [39]). We used repeated independent runs to probe for
walker population bias on the resulting energies and error bars
as it is pertinent for DMC of larger systems [40]. The detailed
information about the time-step and walker population biases
can be found in Supplemental Material [41].

Throughout the paper, we show one standard deviation as
the statistical error (in parenthesis). In some cases, the errors
are given with two digits in order to keep the same number of
significant digits for all presented energies.

B. Sources of systematic biases

One of our goals was to shed more light on the systematic
errors involved in QMC calculations. This aspect is becoming
more prominent as the accuracy of QMC calculations in-
creases. It calls for a more thorough look at sources of possible

biases that could compromise the quality of QMC outcomes.
In what follows, we identify the origins of possible biases and
outline some of the choices we have made in order to address
these. Further analysis is presented in the results section.

1. Accuracy of valence-only Hamiltonians

The efficiency of QMC calculations is significantly im-
proved when the cores of heavier atoms are replaced by
effective core potentials (ECPs). Of course, that requires
verification and testing of fidelity of valence vs all-electron
Hamiltonians. Here we use the recently generated Si atom
correlation consistent ECP (ccECP) that has been tested
on molecular systems such as hydride, oxide, and dimer
molecules [42]. Corresponding exact atomic valence energies
have been analyzed previously in detail [43] as well. Addi-
tionally, we have carried out comprehensive accuracy tests
for molecular silicon systems (SixHy) [19] that have similar
bonding patterns as the Si crystal structure. The sizes of these
systems enabled us to benchmark the fixed-node biases of
single-reference trial functions using several high-level corre-
lated wave function approaches such as coupled cluster (CC)
and configuration interaction (CI) methods as well as CI using
a perturbative selection made iteratively (CIPSI) [44] with
PT2 corrections. Combined with extensive basis sets we were
able to obtain total energies and differences (excitations in
singlet and triplet channels) within about 0.025 eV residual
uncertainties. We point out that this is better than chemical
accuracy roughly by a factor of two. We also verified that
our results were on par with the best available all-electron
state-of-the-art studies [45,46]. The remaining bias of about
25 meV corresponds to the discrepancies seen in Si2 and SiO
molecules that were studied in generating the ccECP table
[42]. We conclude that the ccECP for this regime of binding
and excitations is highly accurate and represents the valence
energy differences with very high accuracy (see Ref. [19] for
further discussion). This opens a path to address the rest of the
errors specified above.

2. Accuracy of basis sets

We address this aspect by exploring two complementary
routes. One is based on CRYSTAL code [47] using triple-zeta
valence with polarization (TZVP: [3s, 3p, 1d]) gaussian ba-
sis set with accurate contractions (see Supplemental Material
[41] for the actual data). The other option is based on QUAN-
TUM ESPRESSO (QE) code [48] with plane waves and 100 Ry
kinetic energy cutoff (more details on convergence in plane
wave energy cutoff can be found in the Supplemental Material
[41]).

3. Type of single-particle orbitals and corresponding effective
one-particle Hamiltonian

Here we have probed the cases of GGA with PBE
functional [49], Hartree-Fock orbitals, as well as PBE0
[50] orbitals. The detailed analysis is presented in Sec. III
(Results).
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4. Form and optimization of Jastrow factors and their consistency

It is well known that the optimization bias can affect the
projection of the nonlocal terms and thus induce presumably
small shifts in energy, density, etc. Although we expect these
effects to be small, one has to verify that this is indeed the
case.

5. Periodicity and finite size biases

The basic finite size model we use for the ground and ex-
cited states with promoted single electron is given as follows:

EGS
N = e0n + AGS + gGS(N ) (1)

EEX
N = e0n + Eg + AEX + gEX(N ), (2)

where e0 is the asymptotic energy per atom, N is the number
of electrons, n is the number of chemical formula units (num-
ber of atoms in this case), AGS and AEX are energy offsets, and
Eg is the excitation energy. Functions gGS(N ), gEX(N ) capture
finite size effects of the lower order that vanish in the limit
N → ∞ (as n → ∞). In general, the commonly used form is
a reciprocal power term B/nα where B is some constant [9].
Unfortunately, this form is rather crude and does not capture
the nonlinear effects that come into the consideration such as
different behavior of kinetic and potential energies on n, the
impact of Ewald sums, effects from compensating background
in ionized cells, etc. Therefore, we also probe energies per
atom/chemical formula since for intensive quantities the con-
taminating terms vanish correspondingly faster. For intensive
quantities we used linear extrapolations considering only the
two largest calculated sizes since we found that more general
nonlinear fits were not very useful. The inclusion of smaller
supercells provided very little benefit and indeed made the
analysis more complicated with much lower robustness and
transparency overall. Our only simplifying assumption is that
depending on the system, dimension, and electronic state,
the exponent α > 0 of the subleading term is qualitatively
assumed to be at least 1 or close to it. The generalization
of these expressions for charged supercells is straightforward,
and it is discussed further in the Results section.

6. Fixed-node bias

We discuss this aspect throughout the paper. We have
shown before [18,42,43] that Si systems with closed-shells
and single bond patterns exhibit some of the lowest fixed-node
errors observed in QMC calculations, typically within 1–2%
of the correlation energy. The same is true also for the Si atom
which shows a bias of only ≈1.5%. This provides a favorable
setting for insights into the other systematic errors involved.

III. RESULTS

A. HF energies and basis sets

In Table I, we show VMC energies per atom for HF orbitals
calculated by CRYSTAL with Gaussians vs QE with orbitals
expanded in plane waves for sizes that span the primitive cell,
8, 64, and 216 atom cubic supercells. We report the ground
state with �-point occupation (GS) as well as the � → � ex-
cited state formed by single particle promotion (��). Clearly,

TABLE I. VMC energies [Ha] per atom for the supercell k = �

point for GS and � to � excitation (��) using the single-reference
HF trial function (no Jastrow functions). ∞64→216 represents the
extrapolated energy using the 64 and 216 atom supercells with
1/n extrapolation. Energies per atom using the corresponding self-
consistent field (SCF) codes at high k meshes are also shown.

CRYSTAL HF orbitals QE HF orbitals

Atoms (n) GS �� GS ��

2 −3.5718(1) −3.5339(2) −3.5904(1) −3.5416(1)
8 −3.77535(3) −3.75884(3) −3.78330(7) −3.76558(6)
64 −3.78529(4) −3.78217(5) −3.79235(4) −3.78903(3)
216 −3.78381(2) −3.78266(3) −3.790797(9) −3.78965(1)
∞64→216 −3.78319(4) −3.78287(5) −3.79014(2) −3.78992(2)
SCF −3.78240 −3.78878

the plane-wave basis set is more accurate showing uniformly
lower energies. Further experimentation with basis sets using
CRYSTAL has produced only marginal gains that were not
able to match the accuracy of plane waves in QE. We note
that in principle, one should be able to reach the same com-
plete basis set (CBS) limit using localized gaussian basis sets
and adequate computational tools. However, in practice, the
convergence with large basis sets can be challenging so that
achieving the CBS limit might be either limited by the used
software or impractical. (The difficulties are typically rooted
in near-linear dependencies from small exponent gaussians
that complicate the stability of the diagonalization.) There-
fore, for the rest of the calculations we use the plane wave
basis.

We also point out the consistency of the results using lin-
ear extrapolations as illustrated in Fig. 1. The figure shows
two linear extrapolations with dashed lines corresponding
to 8–64 atom supercells while the solid lines correspond to
64–216 atom supercells. Note the significant biases for 8–64
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FIG. 1. Discrepancy between QE self-consistent HF and un-
correlated VMC/HF energies per atom. The plot shows linear
extrapolations to the thermodynamic limit in 1/n using 8–64 atoms
(dashed line) and 64–216 atoms (solid line). See text for further
details.
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TABLE II. QMC total energies [Ha] at k = � for n = [8, 64, 216] atoms with HF, PBE0, and PBE orbitals. Calculations for Slater trial
wave function (WFN) without Jastrow (S) and Slater-Jastrow WFN (SJ) are shown.

State Method WFN Orbitals n = 8 n = 64 n = 216

GS VMC S PBE −30.2354(6) −242.2753(27) −817.0897(23)
GS VMC S PBE0 −30.2478(5) −242.4541(18) −817.8381(14)
GS VMC S HF −30.2664(6) −242.7106(26) −818.8121(20)
GS VMC SJ PBE −31.1587(5) −251.1578(13) −848.1912(12)
GS VMC SJ PBE0 −31.1609(8) −251.1697(4) −848.2195(5)
GS VMC SJ HF −31.1479(4) −250.9287(7) −847.2472(8)
GS DMC SJ PBE −31.2457(9) −251.5702(22) −849.2468(35)
GS DMC SJ PBE0 −31.2440(9) −251.5744(13) −849.2688(30)
GS DMC SJ HF −31.2370(9) −251.4369(18) −848.7195(44)
�� VMC S PBE −30.1028(5) −242.0868(25) −816.8788(27)
�� VMC S PBE0 −30.1155(4) −242.2576(10) −817.6114(13)
�� VMC S HF −30.1246(5) −242.4981(19) −818.5652(22)
�� VMC SJ PBE −31.0439(4) −251.0227(10) −848.0547(16)
�� VMC SJ PBE0 −31.0458(2) −251.0358(3) −848.0805(7)
�� VMC SJ HF −31.0284(2) −250.7860(7) −847.0966(7)
�� DMC SJ PBE −31.1344(10) −251.4338(25) −849.1081(31)
�� DMC SJ PBE0 −31.1360(4) −251.4371(10) −849.1225(25)
�� DMC SJ HF −31.1233(10) −251.2869(16) −848.5496(30)

estimators with regard to the reference value. In addi-
tion, the slope of ground state extrapolations changes the
sign while this is not observed for the excited state mak-
ing thus any nonlinear extrapolation very questionable. A
very clear improvement is obtained in extrapolations using
64–216 supercells with the residual difference being about
1.4 mHa/atom from the reference HF energy. A minor dif-
ference is not unexpected considering the difference between
the methods and some remaining impact from finite sizes.

B. Total energies and orbitals

Table II shows the QMC total energies for HF, PBE0, and
PBE orbital sets. Complete results are listed with VMC for
both uncorrelated Slater (S) only and Jastrow-correlated (SJ)
trial wave functions as well as fixed-node DMC values. The
question of orbitals is crucial for QMC calculations since they
determine the fixed-node errors and often do have signifi-
cant impact on the results. We can see that for uncorrelated
Slater wave functions (S), HF obtains the lowest energies
for all states and sizes by large margins. However, when the
correlation is included, the DFT orbitals result in the lowest
energies in both VMC and DMC methods. Similar behavior
has been observed a number of times previously, for instance,
see Fig. 3 in Ref. [9]. Although the lowest total energies are
obtained using the PBE0 orbitals, the PBE orbitals lead to
very similar total energies indicating a comparable quality of
the trial wave function. Related results were reported before,
showing that even plain LDA orbitals are very close to VMC
natural orbitals and lead to similar resulting energies [51].

It is revealing to consider the total energy gains for the
DFT orbitals vs the HF orbitals for different sizes. For the
largest supercell, DMC/HF results in significantly higher to-
tal energies (≈0.5 Ha). This is very significant especially in
relation to the corresponding VMC/HF (S) energy that is
lower by almost 1 Ha. Additionally, we observed that the gaps

from QMC/HF are notably higher than QMC/DFT. Clearly,
the inclusion of correlation reveals that there are significant
differences between these two orbital sets. Interestingly, this
effect grows with size and it becomes obvious only for larger
supercells, while for the smallest one with eight atoms the ef-
fect is not clearly discernible. For instance in GS, the energies
per atom for DMC/PBE and DMC/HF differ by 0.030 eV for
n = 8 and 0.066 eV for n = 216.

For the sake of completeness, we list here also the results
for charged supercells that are further elaborated on later.
Table III provides QMC/PBE total energies for charged cases.
The cation state has one electron removed from the highest
occupied � state. We calculate two anion states, with an added
electron to the lowest unoccupied orbitals in � and X k points.
These results are further analyzed in detail in Sec. III E.

Datasets from Tables II and III are used to probe for dif-
ferences of the thermodynamic limit (TDL) for the energy per
atom, denoted as e0 in Eqs. (1) and (2). Linear extrapolations
used for all six DMC/PBE sets are depicted in Fig. 2. The

TABLE III. QMC/PBE total energies [Ha] at supercell k = � for
charged cases presented as raw data. Cation (CA) is obtained by one
electron removed from the k = � state. AN(�/X) represents an extra
electron added to the conduction band at k = �/X point.

State Method WFN n = 8 n = 64 n = 216

CA VMC S −30.4965(4) −242.5156(27) −817.3213(19)
CA VMC SJ −31.3905(3) −251.3755(4) −848.4080(9)
CA DMC SJ −31.4771(9) −251.7891(22) −849.4721(30)
AN(�) VMC S −29.8442(3) −241.8537(24) −816.6532(17)
AN(�) VMC SJ −30.8153(3) −250.8053(5) −847.8367(8)
AN(�) DMC SJ −30.9056(9) −251.2213(24) −848.9063(37)
AN(X) VMC S −29.9305(3) −241.9467(23) −816.7409(20)
AN(X) VMC SJ −30.8992(3) −250.8896(8) −847.9204(8)
AN(X) DMC SJ −30.9917(9) −251.3005(23) −848.9833(38)
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FIG. 2. DMC/PBE total energy per atom extrapolations using
64–216 atoms at the supercell k = � occupation. AN(�)/AN(X)
represents the anionic state with an electron added to the state that
corresponds to the primitive cell �/X k point. Note the excellent
agreement of e0 at TDL.

consistency between excited and ground states as well as for
ionized cases is encouragingly tight [the range of these energy
values is ≈2(1) meV]. Clearly, one can explore larger cells
to diminish the discrepancies further, however, the overall
small discrepancies provided a clear validation for subsequent
analysis and enabled us to avoid further costly calculations.

C. Cohesive energy

One of the quantities that serves as an important indicator
of the quality of the many-body method and the corresponding
correlated wave functions is the cohesive energy. Table IV
provides the cohesive energies for uncorrelated HF wave
functions. Note that our HF cohesion is ∼0.1 eV better than
previously reported independent calculations based on basis
set expansions of many-body wave functions [27,29] that so
far were the most accurate known.

Table V provides the cohesive energy obtained in this work
compared with previous calculations as well as with experi-
ment. We present the cohesive energies using the DMC/PBE0

TABLE IV. Hartree-Fock cohesive energies (eV) as obtained by
the corresponding self-consistent codes and by VMC/HF (no Jas-
trow) in �-point occupation and extrapolation n → ∞. Complete
basis set extrapolated ROHF atomic energy of −3.6724778(1) Ha
was used for the Si atom.

Method HF cohesion (eV) Ref.

HF/CRYSTAL 2.9912 this worka

VMC/HF/CRYSTAL 3.013(1) this workwa

HF/QE 3.1649 this worka

VMC/HF/QE 3.2018(6) this worka

SCF(TZVP) 3.03 McClain et al. [27]
SCF(PAW)b 2.97 Grüneis et al. [29]

aReferenced to the exact atomic ROHF energy.
bPAW: Projector-augmented-wave method.

TABLE V. Cohesive energy [eV] obtained from DMC/PBE0
data compared with independent calculations and with the ex-
perimental value. All values were corrected by zero-point energy
(0.06 eV) [52] to correspond to the bottom of the interaction well
(De).

Method Cohesion (eV) Ref.

DMC/PBE0 4.629(2) this worka

DMC/PBE0 4.683(3) this workb

DFT/LDA 5.1 Dappe et al. [53]
MP2 5.05 Grüneis et al. [29]
MP2 4.96 McClain et al. [27]
CCSD 4.15 McClain et al. [27]
DMC/LDA 4.57(3) Li et al. [39]
VMC/LDA 4.54(1) Leung et al. [54]
DMC/LDA 4.69(1) Leung et al. [54]
DMC 4.68(2) Alfè et al. [28]
Experiment 4.68(8) Farid et al. [55]

aReferenced to the exact Si atomic energy.
bReferenced to the fixed-node DMC Si atomic energy.

results since they correspond to the lowest obtained energies.
It is reassuring to see that nearly all DMC estimations of
the cohesive energy agree with the experiment within the
uncertainties regardless of the single-particle approach used
for generating the orbitals. Our results are represented by the
following two estimations:

(i) The first one is referenced to the exact Si atom
[−3.762073(57) Ha] as calculated by full-CI with complete
basis set extrapolation.

(ii) The second estimator used the atomic fixed-node DMC
energy [−3.7601(1) Ha], resulting in partial error cancella-
tion. We consider this result to be the closest to the true value.

The comparison between these two estimators reveals an
important insight into the systematic errors since the only
difference is whether we account for the atomic fixed-node
bias or not. Here the finite-size errors are significantly smaller,
and since we use essentially a saturated basis set and very
accurate ccECPs, the fixed-node error becomes the dominant
remaining bias. This suggests that a reasonable estimate of the
total systematic error of our cohesive energy is approximately
0.05 eV. Consequently, we can write

Ecoh = 4.683 ± 0.05(syst) ± 0.003(stat) eV (3)

where the first deviation indicates the estimated systematic
error while the second one corresponds to the statistical
DMC error. If we assume that ≈4.68 eV is the true value
of the cohesive energy, that implies that the DMC solution
of the many-body problem for this particular system is in-
deed very accurate with the correlation energy deficit of only
η = 1.3(2)%, where η is defined as:

η = eexact
0 − eDMC

0

eexact
0 − eHF

0

× 100%. (4)

This also corroborates a very good agreement between inde-
pendent DMC cohesive energy estimations. In addition, we
can further infer that the Si crystal is very well described
by the single-reference trial wave function. This is a highly
nontrivial result since otherwise we are not aware of any
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a priori argument why this should be the case. Note that this
is true regardless of the fact that the trial function corresponds
to the direct product of nodes from the two spin-subspaces
which is almost surely not correct. The result also implies that
the cancellation of errors with the atom is almost perfect since
the FN error of the atom happens to be also almost identical
≈0.054 eV. More support for these conjectures comes from
our recent calculations of SixHy molecules where on aver-
age ∼2% fixed-node errors were observed for ground states
and ∼2.7% for excited states which roughly corresponds to
0.05 eV.

Of course, we do not expect such favorable error cancel-
lation in general. In fact, it is more difficult to guarantee
the same degree of accuracy for excited states since these
are often more complicated due to possible multireference
effects or other obstacles such as difficulties in obtaining the
corresponding fully self-consistent orbital sets.

D. Quasiparticle and optical gaps

For the sake of clarity, we define the optical gap as is cus-
tomary, as the difference between ground and excited states:

Eg = EEX
N − EGS

N . (5)

The quasiparticle gap definition using cation, anion, and neu-
tral systems is given by:

EG = IP − EA = EAN
N+1 + ECA

N−1 − 2 · EGS
N , (6)

where IP is the ionization potential, EA is the electron affinity,
and N is the number of electrons.

Typically, both promotion and quasiparticle gaps are cal-
culated directly from the definition as differences of extensive
total energies. Recently, we suggested using slopes of in-
tensive, per particle energies as less biased estimators. The
slopes of intensive energies as functions of 1/n enable us to
enforce the common thermodynamic limit for both states and
therefore partially diminish some biases in extensive energies
[9]. We recast Eq. (1) as follows:

EGS
N /n = e0 + AGS/n + gGS(N )/n (7)

with analogous rearrangements for EEX
N , ECA

N−1, and EAN
N+1. In

each of these energy expressions we neglect the last term that
is approximated as

g(N )/n ≈ B/nα+1 (8)

where B is a constant. The gaps can be rewritten using slopes
S for each state as:

Ẽg = SEX
N − SGS

N (9)

where SGS
N = AGS and SEX

N = (Eg + AEX). Similarly, assuming
that the offset constants approximately cancel out, one can
express the fundamental gaps using slopes as follows

ẼG = SAN
N+1 + SCA

N−1 − 2 · SGS
N . (10)

Note that one can enforce the energy per atom e0 in the
thermodynamic limit to be identical for both ground and ex-
cited states. We call this construction “constrained-fit.” It is
also possible to keep values of e0 as they are determined by
an independent fit parameter for each state (see Fig. 2) and

TABLE VI. QMC/PBE0 total and kinetic energies [Ha] for n =
[8, 64] atoms in �� excited state. Triplet state is single-determinant
WFN where an electron is transferred from one spin channel
to the other. Singlet state is a two-determinant WFN: �

spatial
singlet =

1√
2
(αEXβGS + αGSβEX). Mixed state is a single-determinant WFN:

�
spatial
mixed = (αEXβGS). The same Jastrow was used for all states above.

State Method Total Kinetic

n = 8
Singlet VMC −31.0462(3) 14.0271(10)
Mixed VMC −31.0458(2) 14.0289(10)
Triplet VMC −31.0498(2) 14.0272(10)
Singlet DMC −31.1343(4) 14.0193(16)
Mixed DMC −31.1360(4) 14.0158(15)
Triplet DMC −31.1396(4) 14.0149(15)

n = 64
Singlet VMC −251.0356(3) 107.3878(17)
Mixed VMC −251.0358(3) 107.3880(12)
Triplet VMC −251.0363(3) 107.3917(14)
Singlet DMC −251.4331(17) 107.352(12)
Mixed DMC −251.4371(10) 107.341(12)
Triplet DMC −251.4381(11) 107.3672(86)

we refer to this as “free-fit.” More detailed discussions about
obtaining gaps using slopes of intensive energies can be found
in Ref. [9].

1. Spin contamination

Nominally, an excited state which is constructed from a
single determinant with an electron promoted in one spin
channel introduces spin contamination to the trial wave func-
tion, specifically, this state represents a mixture of pure singlet
and triplet states. However, we found that the biases due to this
issue are small or comparable to other systematic errors. This
is illustrated in Table VI which shows the energies for the pure
singlet, triplet, and mixed states. Therefore, we used the mixed
state with a single determinant for excited states throughout
this work for simplicity. Next, we present the gap estimations
using PBE and PBE0 references as trial wave functions in
VMC and DMC.

2. Gaps with PBE orbitals

The band gaps from extensive energies with PBE orbitals
are given in Table VII. On the other hand, Table VIII presents
the gaps estimated from slopes with the types of constructions
introduced above. We can see that the agreement is very good
in general, with better consistency between VMC and DMC
estimations using the slopes and the constraints. In partic-
ular, when e0 values show minor differences, constraining
the values of e0 reduces the minor biases as also observed
before [9]. The explicit data for each n is provided in the
Supplemental Material [41]. Using the slope estimators, we
can see that there is a good agreement between promotion and
quasiparticle gaps within the error bars (Table VIII), so that
we can write:

EG ≈ Eg. (11)
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TABLE VII. QMC/PBE gaps (eV) using extensive total energies
as in Eqs. (5) and (6) for n = [8, 64, 216] atoms.

Gap Method WFN n = 8 n = 64 n = 216

Promotion gaps Eg

�� VMC S 3.61(2) 5.1(1) 5.7(1)
�� VMC SJ 3.12(2) 3.68(4) 3.71(5)
�� DMC SJ 3.03(4) 3.71(9) 3.8(1)
�X VMC S 1.35(2) 2.55(9) 3.39(8)
�X VMC SJ 0.94(2) 1.36(4) 1.49(4)
�X DMC SJ 0.84(4) 1.46(8) 1.4(2)

Quasiparticle gaps EG

�� VMC S 3.54(4) 4.9(2) 5.6(1)
�� VMC SJ 3.04(3) 3.67(7) 3.75(7)
�� DMC SJ 2.96(6) 3.5(1) 3.1(2)
�X VMC S 1.19(4) 2.4(2) 3.2(1)
�X VMC SJ 0.75(3) 1.37(7) 1.47(7)
�X DMC SJ 0.61(6) 1.4(1) 1.0(2)

This is expected for the Si crystal since energy wise an exciton
in larger supercells should be significantly below 0.1 eV [56].
Indeed, eight atom supercells show some deviations between
promotion vs quasiparticle gaps, but this difference disappears
in larger supercells.

3. Gaps with PBE0 orbitals

For the case of PBE0 orbitals, we calculated only promo-
tion band gaps since we expect general agreement as observed
above for PBE orbitals. Note that there are also (perhaps mi-
nor) technical advantages in favor of promotion gaps. One of
these is the error bars are smaller in general (due to difference
of two total energies instead of multiple ones for quasiparticle
gaps). In addition, the charged supercells show a tendency to
enhance the systematic biases as discussed further in the next
section. This is also visible in Fig. 2 that clearly shows that
the slopes are the largest for charged cells.

TABLE VIII. QMC/PBE gaps (eV) using intensive energies and
slopes as in Eqs. (9) and (10) for free and constrained fits with 64–
216 atom extrapolation.

Gap Method WFN Free-fit Const-fit

Promotion gaps Eg

�� VMC S 4.9(1) 5.4(3)
�� VMC SJ 3.66(7) 3.69(2)
�� DMC SJ 3.7(1) 3.74(3)
�X VMC S 2.2(1) 3.1(4)
�X VMC SJ 1.31(6) 1.42(6)
�X DMC SJ 1.5(1) 1.46(1)

Quasiparticle gaps EG

�� VMC S 4.7(3) 5.4(2)
�� VMC SJ 3.6(1) 3.69(3)
�� DMC SJ 3.7(2) 3.4(1)
�X VMC S 2.1(3) 2.9(3)
�X VMC SJ 1.3(1) 1.41(4)
�X DMC SJ 1.5(2) 1.3(1)

TABLE IX. QMC/PBE0 gaps (eV) using extensive total energies
as in Eq. (5) for n = [8, 64, 216] atoms.

Gap Method WFN n = 8 n = 64 n = 216

Promotion gaps Eg

�� VMC S 3.60(2) 5.35(6) 6.17(5)
�� VMC SJ 3.13(2) 3.64(1) 3.78(2)
�� DMC SJ 2.94(3) 3.74(4) 4.0(1)
�X VMC S 1.20(2) 2.84(5) 3.61(6)
�X VMC SJ 0.80(3) 1.38(2) 1.48(2)
�X DMC SJ 0.61(3) 1.49(5) 1.5(1)

In Table IX we list the QMC/PBE0 gaps using extensive
energies while in Table X the same gaps are estimated from
slopes. This latter set we consider as our most consistent and
accurate results. As a summary, Table XI presents these results
compared to other independent calculations and experiments.
Our results show a notable improvement over previous cal-
culations; however, there appears to be a minor ∼0.2 eV
overestimation of gaps. We identify a couple of most plausible
possibilities for this overestimation:

(1) The FN error cancellation is not perfect for ground and
excited states—this has been observed also in small Si clusters
[19]. Another related point is that the single-particle orbitals
are optimized for the ground state and therefore they are not
fully relaxed for excited states.

We note that direct optimization of the orbitals and wave
functions for both the ground and excited states has been car-
ried out previously for band gap calculations [57]. However,
this approach is currently limited to small supercells while we
are interested in obtaining band gaps in the thermodynamic
limit. Therefore, we are limited to trial wave functions built
from the mean-field orbitals.

(1) The terms AGS, AEX in Eqs. (1) and (2) do not nec-
essarily cancel out. Namely, the difference �A = AEX − AGS

will persist as O(1) constant even for large n values. Using
intensive energies does not eliminate this particular problem
since the slope difference is (Eg + �A) so that the bias from
offsets “sticks” to the gap value.

Additionally, Table XI shows that VMC/PBE0 (SJ) pro-
vides the same quality gaps as DMC/PBE0 (SJ). We conclude
that for this system with cubic shape of supercells, VMC/DFT
(SJ) could be used for future gap studies with significant
computational savings.

TABLE X. QMC/PBE0 gaps (eV) using intensive energies and
slopes as in Eq. (9) for free and constrained fits with 64–216 atom
extrapolation.

Gap Method WFN Free-fit Const-fit

Promotion gaps Eg

�� VMC S 5.00(8) 5.7(4)
�� VMC SJ 3.59(2) 3.67(5)
�� DMC SJ 3.63(8) 3.77(8)
�X VMC S 2.52(8) 3.0(3)
�X VMC SJ 1.34(3) 1.44(5)
�X DMC SJ 1.46(8) 1.50(2)
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TABLE XI. Gaps (eV) obtained in this work using extrapolated
DMC/PBE0 data compared with previous independent calculations
and with experimental values. Experimental gaps were increased by
a zero-point band gap renormalization value of 64 meV [58] (see also
Ref. [59]).

Method WFN Gap (eV) Ref.

��

DFT/PBE0 S 3.96 this work
VMC/PBE0 SJ 3.67(5) this work
DMC/PBE0 SJ 3.77(8) this work
GW 3.32 Rieger et al. [60]
DMC/PBE SJ 4.14(3) Hunt et al. [17]
Experiment 3.44 Jellison et al. [61]

�X
DFT/PBE0 S 1.84 this work
VMC/PBE0 SJ 1.44(5) this work
DMC/PBE0 SJ 1.50(2) this work
GW 1.42 Rieger et al. [60]
DMC/PBE SJ 1.9(1) Hunt et al. [17]
DMC BFa 1.7(1) Yang et al. [16]
Experiment 1.31 Ortega et al. [62]

aBF: backflow wave function.

E. Estimation of IP and EA for Si crystal

Using the energies from Table II and III, we can evaluate
IP and EA from the extensive energies as given by

IP = ECA
N−1 − EGS

N (12)

EA = EGS
N − EAN

N+1. (13)

Clearly, we run into a problem since the raw values do not
give meaningful results, see Table II. They are negative while
for a stable system they must be positive. The reason for
this naively incorrect result is the well-known nonuniqueness
of total energy for charged periodic systems recognized a
long time ago, see, for example, Refs. [26,63] and references
therein. Note that the charged supercell energy can be shifted
by some effective chemical potential, which results from a
particular balance between kinetic and potential energy com-
ponents given by the adopted potential energy and periodicity
model. Related issues such as offsets of eigenvalues as well
as nonuniqueness of total energy of charged periodic systems
are present also in DFT calculations [26,63].

In order to sort this out, one needs to define the refer-
ence (zero) level of the potential appropriately. The proper
reference is the vacuum level at some point infinitely far
from the considered system since this corresponds to relevant
experiments such as direct or inverse photoemissions. We
therefore define the Fermi level EFL as customary for intrinsic
semiconductors to be in the center of the band gap

EFL = −(IP + EA)/2 = −(
ECA

N−1 − EAN
N+1

)/
2, (14)

where IP and EA values are top/bottom energies of the cor-
responding valence/conduction bands referenced to vacuum.
Note that this would be correct assuming our supercell total
energies would be also referenced accordingly. For isolated
systems such as atoms or molecules in vacuum this level

is naturally defined by the zero of the Coulomb potential
at infinity. However, our model of potential energy and cor-
responding Ewald sums together with an imperfect balance
with the other energy components produce an offset. Unless
compensated, this offset survives to the thermodynamic limit.
Unfortunately, this issue is further complicated by local ef-
fects from core states (or by effective core potentials that
mimic the core states), finite size supercell, k-point occupa-
tion, and also by the correlation treatment level. In order to
take this nominally unknown shift into account, we write the
supercell Fermi level offset by a constant �s

ẼFL = EFL + �s. (15)

Now we can express the cation (q = 1, hole) and the anion
(q = −1, electron) supercell total energies as follows:

EN−1 = EN + EG/2 − qẼFL (q = 1) (16)

EN+1 = EN + EG/2 − qẼFL (q = −1). (17)

One could argue that the shift is not necessarily constant
and that it could vary with the supercell size. However, this
is not the case and in fact, the shifted Fermi level ẼFL is
remarkably constant as can be seen from Table XII (using
energies from Tables II and III). This behavior holds for the
expectation energy of the bare Slater determinant, as well as
for the VMC and DMC methods, even for a very small su-
percell size with eight atoms. Interestingly, it exhibits smaller
variation than, for example, the band gaps from differences
of total energies listed in the tables above. The early onset
of the Fermi level invariance on size suggests that it should
be possible to estimate it from related smaller systems. In
particular, Si clusters with atoms in similar bonding patterns
show Fermi levels that are comparable to the bulk [64,65].
Perhaps even more surprisingly, free-standing Si clusters of
very small sizes such as Si6-Si11 show mildly varying Fermi
levels that are very close to the atomic Fermi level given as
an average of EA and IP [66]. This is true despite the fact that
IP and EA values themselves change by several eVs from their
atomic values. A similar trend is observed for larger, hydrogen
saturated clusters [67,68]. Although the convergence is not
monotonous due to the shell effects in cluster geometries
and the varying number of terminating atoms, the tendency
towards the bulk values of band gap, Fermi level, and work
function are unmistakable. There are basically two key rea-
sons for observing these trends:

(a) First, both the clusters and the Si bulk are monoatomic
systems with nonpolar bonds and closed-shell ground states.
Absence of charge transfers as well as presence of gaps there-
fore incur significant constraints on restructuring of the energy
levels.

(b) Second, note that electron affinities and ionization po-
tentials involve predominantly, and for the considered states
almost exclusively, only the p levels. In the solid the valence
band maximum �25′ as well as the X-band conduction X1c

states are essentially p bands. Note that the same applies to
the atom where affinity and ionization comes from changes
in occupations of the p subshell. This implies that a p-band
model with symmetric electron-hole levels should be an ap-
propriate picture of the ionized states, both in the atom and in
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TABLE XII. QMC/PBE estimation of Fermi level ẼFL (eV) using raw total energies ẼFL = −(ECA
N−1 − EAN

N+1)/2 from both extensive and
extrapolation formulations. Note that ẼFL includes an artificial offset as discussed in text, Eq. (15).

Qty. Method WFN 8 64 216 ∞free-fit ∞const-fit

(AN(�)−CA)/2 VMC S 8.875(7) 9.01(5) 9.09(3) 8.97(7) 9.1(1)
(AN(�)−CA)/2 VMC SJ 7.826(6) 7.758(9) 7.77(2) 7.75(1) 7.76(1)
(AN(�)−CA)/2 DMC SJ 7.78(2) 7.73(4) 7.70(6) 7.74(7) 7.72(7)
(AN(X)−CA)/2 VMC S 7.701(7) 7.74(5) 7.90(4) 7.67(7) 7.8(1)
(AN(X)−CA)/2 VMC SJ 6.684(6) 6.61(1) 6.63(2) 6.60(2) 6.63(2)
(AN(X)−CA)/2 DMC SJ 6.60(2) 6.65(4) 6.65(7) 6.65(7) 6.66(6)

the solid. Indeed, similar electron-hole symmetry was found
in related systems by many-body perturbation methods such
as GW [69,70].

Consequently, while the relevant levels move very sig-
nificantly from the constituent atom to the insulating bulk,
we assume that these shifts are symmetric with regard to
the Fermi level. Therefore, for our system, we estimate the
position of the Fermi level referenced to the vacuum by its
atomic value:

E Si solid
FL ≈ E Si atom

FL (18)

which we take from the nearly exact atomic ccECP calcula-
tions [42] (see Supplemental Material [41]):

E Si atom, exact
FL = −0.1759 Ha. (19)

Considering Eqs. (6), (11), (14), (18) we get familiar expres-
sions for intrinsic semiconductor IP and EA given by

IP = Eg/2 − EFL, EA = −Eg/2 − EFL, (20)

where Eg represents the actual conduction band minimum
(CBM)-valence band maximum (VBM) gap. Furthermore, for
Eg we use our DMC/PBE0 estimates of Eg(�X) corrected
by a small value of ≈0.08 eV which corresponds to both
experimentally and theoretically known differences between
CBM-VBM gap and �X gap [61,62]. Based on these con-
siderations, Table XIII provides the estimations for IP and
EA using the EFL and Eg values. Remarkably, even this ten-
tative assessment leads to very reasonable IP and EA values
that compare favorably both with other calculations and with

TABLE XIII. Estimations of IP and EA (eV) obtained in this
work using Eg gaps (see text) compared with experimental values
and independent calculations.

Method Qty. (eV) Ref.

IP
VMC/PBE0 5.46(2) this work
DMC/PBE0 5.49(1) this work
GW (VBM)/PBE 5.45 Jiang et al. [70]
Experiment 5.10 Gobeli et al. [73]
Experiment 5.35(2) Sebenne et al. [74]

EA
VMC/PBE0 4.11(2) this work
DMC/PBE0 4.08(1) this work
GW (CBM)/PBE 4.34 Jiang et al. [70]
Experiment 4.01 Gobeli et al. [73]

experiments. We note that while our estimations are for an
ideal crystal, the experiments involve possible surface effects
that we do not consider here at all. It is also clear that for
other systems the Fermi level might be more complicated
to find, for example, by using calculations of a surface or a
slab to properly align the corresponding energy levels or other
approaches (see, for example, Refs. [26,63] and papers cited
therein).

In our definitions above, the total energies of charged sys-
tems are shifted by a constant addition [26] to the Fermi
energy/chemical potential, which is the same regardless of
whether an electron was added or subtracted. We can estimate
�s using the DMC/PBE data:

�s = ẼFL − EFL ≈ 0.2446 + 0.1759 = 0.4205 Ha (21)

where ẼFL corresponds to k = X occupied anion state and
∞const−fit value. This offset is substantial and it overshadows
the true value of the Fermi level with consequences that we
described before. Note that in the calculations of fundamental
gaps, the Fermi level (true or shifted) cancels out so that the
gap calculations are not affected.

The precise value of the offset does not have a single source
and therefore it is not straightforward to identify its genuine
origin as we already alluded to above. Its large value, at least
in our definition, suggests that the localized atomic contribu-
tions are dominant. Its size invariance points toward an energy
density contribution that can be also recast as corresponding
effective chemical potential(s) [16,71,72]. This is further tied
to the oversimplified charge compensation by the constant
background and associated contributions generated by the
artificial periodicity. The constant background is perfectly
appropriate for the homogeneous electron gas since its density
is constant as well. On the other hand, for inhomogeneous
systems the electrostatic model should be more elaborate
in order to not only cancel out the divergences but also to
counteract any related finite offset. Many-body effects such as
exchange and correlation add another facet to this. Note that
an appropriate model might involve also state and correlation
treatment dependencies as suggested by the variation of the
shift between methods and chosen states, see Table XII. This
clearly calls for further elaboration in the future.

IV. CONCLUSIONS

We present real space QMC calculations of Si crystal
which study cohesion, optical and fundamental gaps, and pro-
vide estimations of the ionization potential and the electron
affinity. We emphasize considerations of systematic errors and
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the necessity of their analysis for reliable predictions. Our data
shows the importance of basis set accuracy as well as prob-
ing of effective single-particle theories to generate the most
optimal orbitals. Further errors involve the fixed-node biases
and extrapolations from finite sizes that require sufficiently
large supercells in order to reach a regime that is adequately
close to the thermodynamic limit. We demonstrate that we
reached this regime by consistently extrapolating to the same
cohesive energy per atom for all calculated states, including
ground and excited states with one-particle promotions as
well as cation and anion states. We find that the optical and
fundamental gaps agree with very good accuracy as observed
also in previous calculations [8,9,75]. Overall, only small gap
discrepancies of the order of 0.2 eV were revealed when com-
pared with experiments. These residual errors are attributed
to the remaining imperfections both from excited state trial
functions that are marginally worse than the ground state ones
as well as from probable residual finite size effects that need
more refined estimations.

The calculations enabled us to estimate the cohesive energy
with both systematic and random errors under ≈0.05 eV,
making this prediction fully ab initio with control over the re-
maining minor biases. In turn, the results suggest remarkably
high accuracy of the ground state trial functions that pro-
vide 98.7(2)% of the correlation energy in fixed-node DMC
method. This value is estimated by indirect comparisons with
relevant smaller Si systems as well as by using the experiment
as an additional indicator.

In general, the ionized states provide information about
the electron affinity and ionization potential of the Si crystal.
However, referencing the band edges to vacuum assumes that
one can estimate the Fermi level in bulk with desired accuracy.
We used the atomic Fermi level for the intrinsic ideal crystal
by providing arguments why this is appropriate (single ho-
mopolar bonds, monoatomic system, and the fact that relevant
atomic and crystal states involve p orbitals/p bands only so
that one-band model with electron-hole symmetry applies).
The obtained electron affinity and ionization potential are in
very good agreement with the experimental values despite the
fact that we did not consider any surface effects, possibly
suggesting that they might not play a major role for the Si
solid.

We have analyzed the results for the charged states that are
compensated by the homogeneous background within con-
ventional Ewald summation techniques. We have estimated
the artificial offsets of the charged states and show how they
obscure the true Fermi level by having large values with op-
posite signs. The offsets are essentially perfectly constant and
result from local atomic effects combined with oversimplified
charge compensation and periodicity model.

We would like to conclude with two key messages. Overall,
the results suggest that the QMC methods are making sys-
tematic progress in addressing much more subtle aspects of
electron-electron correlation effects than, say, a decade ago.
At the same time, further analysis is needed to find more
robust and more straightforward approaches to deal with some
of the remaining technical biases that contaminate accurate
QMC results. The significant progress that has been achieved
is due to new insights into the nature of many-body effects,
development of more sophisticated methods, as well as avail-
ability of new computational tools.

The input/output files and supporting data generated in this
work are published in Materials Data Facility [76,77] and can
be found in Ref. [78]. More information such as employed
geometry can be found in Supplemental Material [41].
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